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Hierarchical Models with Predictors

e Hierarchical regression models extend traditional regression
by incorporating the grouping structure of hierarchical data
while including predictor variables to enhance predictive
accuracy.

e Focus: We revisit the Cherry Blossom Road Race dataset.

e In Chapter 15, we analyzed net race time as a function of age
using a “complete-data” normal regression model.

e This model ignored the hierarchical structure of the data and
failed to adequately capture the relationship between race time
and age.

e Advancement:

e We now introduce more sophisticated hierarchical models that
explicitly account for the grouping structure present in the
dataset.

e These models better reflect the underlying relationship
between race time and age. 3
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Normal Hierarchical Model with Varying Intercepts



Hierarchical Model with Varying Intercepts

e This model allows each group (e.g., each runner) to have a

unique intercept, fo;, for j=1,... n:

Y | Bojs B1, 0 ~ N(uij, 07), where i = Boj + B1.Xj.

o Key assumptions:

e The slopes, (31, of the group-specific regression lines are
identical across all groups.

e The regression lines for different groups are parallel on a graph.

¢ Interpretation:

e Intercepts, (g, differ across groups, capturing variation in
overall performance (e.g., some runners are inherently faster or
slower).

e The rate of change in expected times with respect to age, (1,
is the same for all runners.

e Limitation:

e Assuming a constant slope across groups may not fully align

with reality, as individual aging effects could vary.



Parameters in the Hierarchical Model with Varying Intercepts

¢ Model Parameters:

o [oj: Group-specific intercept for runner j, capturing their
baseline performance level.

e [(31: Global coefficient of age, representing the rate of change
in race time with respect to age, assumed constant across all
runners.

e 0,: Measure of within-group variability, quantifying how race
times for a runner deviate from their true regression line.

e Interpretation of o:

e Describes the spread of the error terms, i.e., deviations of
observed race times from the predicted times based on the
runner’s regression line.

e This variability is assumed to be the same for all runners,
reflecting a consistent level of uncertainty within groups.



Layer 2 of the Hierarchical Model: Varying Intercepts

e The second layer of the model specifies the distribution of the
group-specific intercepts, [y;:

ind
Boj | Bo, o0 =~ N(Bo, a9).

¢ Parameter interpretations:
e (. Global average intercept, representing the mean baseline
performance across all runners.
e 0g: Between-group variability in 3p;, measuring the extent of
variation in baseline speeds among runners.
e Visual interpretation:
e 0 quantifies how vertically separated the runner-specific
regression lines are on a graph.
e Larger o indicates greater variation in baseline performance
across runners.



Hierarchical Model with All Priors

e Data model (within-runner regression):

Yi | Bojs Br, 0y ~ N(uij, 00),  pij = Boj + BiXi.

¢ Group-level model (variability in baseline speeds between
runners):
Boj | Bo, o0 S N(Bo, 3)-
e Priors on global parameters:
e (3o ~ N(mg,s3): Prior on the global intercept.
° Bl ~ N(my, s?): Prior on the global slope.
° ~ Exp(¢y): Prior on the within-runner variability.
e 0o ~ Exp(¢p): Prior on the between-runner variability.

e Structure: This hierarchical model combines within-group
regression with between-group variability, anchored by priors
on the global parameters.



Estimating the Model

e The model is estimated by simulating from the posterior
distributions using the stan_glmer function from the
rstanarm package (refer to R example).

o Key results:

e The 80% credible interval for 3y is:

(1.02,1.58).

e Since the credible interval contains only positive values, it

indicates that:
e Runners slow down on average as they age.
e Comparison with complete pooling model:

e In the complete pooling model, the credible interval for 5y
included O.

e This result conflicted with expectations and demonstrated the
limitations of the complete pooling approach.



Variation Among Runners

e The variation in intercepts (fp;) among runners can be
visualized (see the next 3 slides):

e Compare credible intervals for 5y; values of runners 4 and 5.

e Overlay posterior draws of their estimated regression lines.

e Key observation:

e Runner 4 has a lower baseline speed (slower) compared to
runner 5, as indicated by their respective 3y; values and
regression lines.

e Visualization for all runners:

e The runner-specific models for all 36 runners can be plotted,
showing the distribution of baseline speeds and regression
trends across the population (refer to R plot).
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Posterior Plausible Models

Global Regression Line with Pesterior Uncertainty
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Figure 1: 200 posterior plausible global model lines, By + 51X, for the

relationship between running time and age.
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Posterior Plausible Models for Runners 4 & 5

Runner-Specific Models with Posterior Samples
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Figure 2: 100 posterior plausible models of running time by age,
Boj + 51X, for subjects j € {4,5}.
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Posterior Models for all 36 Runners

Runner-Specific Models vs Global Model
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Figure 3: The posterior median models for our 36 runners j as

calculated from the hierarchical random intercepts model (gray), with the

posterior median global model (blue).
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Examining Sources of Variability

e Comparing 0, and oy:

e 0g: Variation in race times between runners.

e 0,: Variation in race times within the same runner.
e Estimates:

e 5o = 13.3 (between-runner variability).

e 7, = 5.25 (within-runner variability).
e Proportion of variance due to between-runner

differences:
o3 13.3

= = 0.867.
08 +02 13.3% +5.252

e Approximately 86.7% of the total variation in race times is
attributable to differences between runners.
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Normal Hierarchical Models with Predictors

Normal Hierarchical Model with Varying Intercepts and Slopes
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Hierarchical Model with Varying Intercepts and Slopes

e The earlier model assumed that all runners share the same
slope, (1, representing the rate at which race time changes
with age.

e This assumption likely does not reflect reality:

e Some runners slow down rapidly with age.

e Others slow down gradually.

e Some may even improve with age (see R plots in the next slide
for evidence).

e Advancement: The Varying Intercepts and Slopes
Model:

e This model allows each runner to have:
e A unique intercept, foj, reflecting their baseline performance.
e A unique slope, f31, capturing their individual rate of change
in race time with age.

e Benefit: By introducing varying slopes, the model better

captures the heterogeneity in how runners’ performances

change over time. 16



Models for each of 36 Runners

Linear Models for All Runners

120-

Emnf ——‘_“:"?71 -
2 i
— i

80-

60~ r r
500 525 55.0 575 60.0
Age

Figure 4: Observed trends in running time versus age for the 36 subjects

(blue) along with the posterior median model (black).
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Varying Intercepts and Slopes Model

e Data model (within-runner regression):

Yi | Boj, Bijs oy ~ N(uij,0}), i = Boj + B Xj.

¢ Group-level model (joint distribution of intercepts and

slopes): lﬁof] ‘B0751,2~ /\/( Fo ,z).
B1j B
e Priors on global parameters:

e 3y ~ N(100,102): Prior on the global intercept.
e 31 ~ N(2.5,1%): Prior on the global slope.
e 0, ~ Exp(0.072): Prior on the within-runner variability.
e >: Covariance matrix for So; and /31, often modeled using a

decomposition such as:
e Variances: o} (for Bo;) and of (for Bi;).

1

e Correlation: p between fy; and f3i;.
e Structure: This model captures both the variability in runners’
baseline performance (intercepts) and their rates of change with age

(slopes), as well as the relationship between these parameters. 18



Covariance Matrix of the (’s

e Covariance matrix X:

2
0 pPO001

p— )
pPO001 01

¢ Interpretation of elements:
e 02: Variance of the intercepts Boj, capturing variability in
baseline performance across runners.
e 0%: Variance of the slopes (3, representing variability in the
effect of age on race time.
e p: Correlation between fy; and f3y;.
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Covariance Matrix of the (’s

¢ Implications of strong correlation (|p| close to 1):

o If Bo; and 31, are strongly correlated, runners with particularly
fast baselines (low f;) or slow baselines (high So;) are likely to
have a pronounced effect of age on race time (very negative or
very positive (31;).

e The precise interpretation of this correlation depends on the
sign of By

o Positive f1j: Slower runners might improve more gradually
with age.

o Negative (1;: Faster runners might slow down more
dramatically with age.
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Variance Components of the /

e Variance components in X split the variability in runners’
regression lines into:

& o3
m=—-—->, NMT=-—5—7.
08 + o1 Jg—i-d%

¢ Interpretation:
e 7 Proportion of variability due to intercept differences (),
reflecting baseline performance differences.
e 1 Proportion of variability due to slope differences (1),
capturing aging trends.
e Implications:
e Large mp: Variation is mainly from intercepts (e.g., baseline
speeds).
e Large m;: Variation is primarily from slopes (e.g., aging
trends).
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Normal Hierarchical Models with Predictors

Posterior Simulation of the Model Parameters
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Posterior Simulation

e Posterior analysis:
e Performed using the stan_glmer function.
e The model includes 78 parameters, resulting in a slower
computation time.
e Posterior median model:
e The overall posterior median regression line is:

o~

Y =18.5 4 1.32 x age.

e This is similar to the random intercepts model but allows for
greater flexibility through runner-specific parameters.
e Advantages of varying intercepts and slopes:
e The model allows for runner-specific regression lines,
incorporating unique fy; and (31; parameters for each runner.
e Visualization of these runner-specific models (refer to R
examples and plots) demonstrates the added nuance and

variability captured by this approach.
23



Plots for Two Example Runners
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Figure 5: Posterior median relationships for runners 1 and 10 from the
hierarchical model (dashed), contrasted with no-pooling (blue) and
complete-pooling (black) models.
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Shrinkage in the Hierarchical Model

e Observation: (Refer to plots for runners 1 and 10)

e The no-pooling model's regression line for a runner (blue line)
is shrunk toward the overall regression line from the
complete-pooling model (solid black line).

e This produces the estimated regression line from the
hierarchical model (dashed black line).

¢ Rationale for shrinkage:

e The hierarchical model assumes that information from other
runners (captured by the complete-pooling model) informs the
estimated regression line for runner ;.

e Data from a single runner, particularly with limited
observations, may not fully describe that runner’s true trend
line.

e Incorporating information from the broader population
balances individual-level and group-level variability.

25



Shrinkage in the Hierarchical Model

e Connection to Bayesian inference:

e Shrinkage embodies the Bayesian principle of balancing
information:

e Observed data provide specific details for a runner.
e The population-level trend (akin to a prior) provides additional
context, especially for runners with few data points.
e Conclusion: Shrinkage reflects the hierarchical model’s ability
to combine individual and group information to produce more
robust estimates.

26



Normal Hierarchical Models with Predictors

Model Comparison & Selection
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Model Selection

¢ Model choices:

1. Complete pooling.

2. No pooling.

3. Varying intercepts.

4. Varying intercepts and slopes.
e Guidance for selection:

e Use intuition and context to inform the decision.

e Formally evaluate model fit using pp_check.
e Compare prediction accuracy using:

e Prediction summary output.
e Expected Log Predictive Density (ELPD) values.

28



Model Selection

e Practical comparison:

e Refer to R example: Examine the criteria to evaluate the
trade-off between the “varying intercepts” and “varying
intercepts and slopes” models.

e Consider whether the added complexity of varying slopes
provides significant improvement in predictive accuracy.

e Conclusion: The best model balances fit quality and
complexity, providing accurate predictions without
unnecessary overfitting.

29



Posterior Prediction of Race Time for a New Individual

¢ Prediction for a new individual:
e Use the posterior_predict function with the chosen
hierarchical model to predict race time for a new individual at
a specified age.
e Prediction for individuals in the sample:
e Predict race time for an individual in the sample at an age not

observed in the data.
e Example: Predict the race time at age 61 for:

e Runner 1.
e Runner 10.
e A new runner, Miles.

30



Posterior Prediction of Race Time for a New Individual

e Precision of predictions:
e Predictions for Runner 1 and Runner 10 leverage their
observed data, resulting in higher precision.
e Predictions for Miles (a new runner) rely solely on
population-level information, leading to much less precision
(see R plots in the next slide for comparison).

e Further exploration:

e Refer to Section 17.7 for an application using the Spotify

dataset.
e Example: Predict a song's danceability based on its genre and
valence (mood). Explore this on your own for additional

insights.
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Posterior Predictive Models for 3 Runners

Posterior Predictive Distributions at Age 61
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Figure 6: Posterior predictive models for the net running times at age 61
for sample runners 1 and 10, as well as Miles, a runner that wasn't in our
original sample. 32
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