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Hierarchical Models with Predictors

� Hierarchical regression models extend traditional regression

by incorporating the grouping structure of hierarchical data

while including predictor variables to enhance predictive

accuracy.
� Focus: We revisit the Cherry Blossom Road Race dataset.

� In Chapter 15, we analyzed net race time as a function of age

using a “complete-data” normal regression model.

� This model ignored the hierarchical structure of the data and

failed to adequately capture the relationship between race time

and age.

� Advancement:
� We now introduce more sophisticated hierarchical models that

explicitly account for the grouping structure present in the

dataset.

� These models better reflect the underlying relationship

between race time and age. 3
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Hierarchical Model with Varying Intercepts

� This model allows each group (e.g., each runner) to have a

unique intercept, β0j , for j = 1, . . . , n:

Yij | β0j , β1, σy ∼ N(µij , σ
2
y ), where µij = β0j + β1Xij .

� Key assumptions:
� The slopes, β1, of the group-specific regression lines are

identical across all groups.

� The regression lines for different groups are parallel on a graph.

� Interpretation:
� Intercepts, β0j , differ across groups, capturing variation in

overall performance (e.g., some runners are inherently faster or

slower).

� The rate of change in expected times with respect to age, β1,

is the same for all runners.

� Limitation:
� Assuming a constant slope across groups may not fully align

with reality, as individual aging effects could vary.
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Parameters in the Hierarchical Model with Varying Intercepts

� Model Parameters:

� β0j : Group-specific intercept for runner j , capturing their

baseline performance level.

� β1: Global coefficient of age, representing the rate of change

in race time with respect to age, assumed constant across all

runners.

� σy : Measure of within-group variability, quantifying how race

times for a runner deviate from their true regression line.

� Interpretation of σy :

� Describes the spread of the error terms, i.e., deviations of

observed race times from the predicted times based on the

runner’s regression line.

� This variability is assumed to be the same for all runners,

reflecting a consistent level of uncertainty within groups.
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Layer 2 of the Hierarchical Model: Varying Intercepts

� The second layer of the model specifies the distribution of the

group-specific intercepts, β0j :

β0j | β0, σ0
ind∼ N(β0, σ

2
0).

� Parameter interpretations:

� β0: Global average intercept, representing the mean baseline

performance across all runners.

� σ0: Between-group variability in β0j , measuring the extent of

variation in baseline speeds among runners.

� Visual interpretation:

� σ0 quantifies how vertically separated the runner-specific

regression lines are on a graph.

� Larger σ0 indicates greater variation in baseline performance

across runners.
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Hierarchical Model with All Priors

� Data model (within-runner regression):

Yij | β0j , β1, σy ∼ N(µij , σ
2
y ), µij = β0j + β1Xij .

� Group-level model (variability in baseline speeds between

runners):

β0j | β0, σ0
ind∼ N(β0, σ

2
0).

� Priors on global parameters:
� β0 ∼ N(m0, s

2
0 ): Prior on the global intercept.

� β1 ∼ N(m1, s
2
1 ): Prior on the global slope.

� σy ∼ Exp(ℓy ): Prior on the within-runner variability.

� σ0 ∼ Exp(ℓ0): Prior on the between-runner variability.

� Structure: This hierarchical model combines within-group

regression with between-group variability, anchored by priors

on the global parameters.
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Estimating the Model

� The model is estimated by simulating from the posterior

distributions using the stan glmer function from the

rstanarm package (refer to R example).

� Key results:

� The 80% credible interval for β1 is:

(1.02, 1.58).

� Since the credible interval contains only positive values, it

indicates that:

� Runners slow down on average as they age.

� Comparison with complete pooling model:

� In the complete pooling model, the credible interval for β1

included 0.

� This result conflicted with expectations and demonstrated the

limitations of the complete pooling approach.
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Variation Among Runners

� The variation in intercepts (β0j) among runners can be
visualized (see the next 3 slides):

� Compare credible intervals for β0j values of runners 4 and 5.

� Overlay posterior draws of their estimated regression lines.

� Key observation:

� Runner 4 has a lower baseline speed (slower) compared to

runner 5, as indicated by their respective β0j values and

regression lines.

� Visualization for all runners:

� The runner-specific models for all 36 runners can be plotted,

showing the distribution of baseline speeds and regression

trends across the population (refer to R plot).
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Posterior Plausible Models

Figure 1: 200 posterior plausible global model lines, β0 + β1X , for the

relationship between running time and age.
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Posterior Plausible Models for Runners 4 & 5

Figure 2: 100 posterior plausible models of running time by age,

β0j + β1X , for subjects j ∈ {4, 5}.
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Posterior Models for all 36 Runners

Figure 3: The posterior median models for our 36 runners j as

calculated from the hierarchical random intercepts model (gray), with the

posterior median global model (blue).
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Examining Sources of Variability

� Comparing σy and σ0:

� σ0: Variation in race times between runners.

� σy : Variation in race times within the same runner.

� Estimates:

� σ̂0 = 13.3 (between-runner variability).

� σ̂y = 5.25 (within-runner variability).

� Proportion of variance due to between-runner

differences:

σ̂2
0

σ̂2
0 + σ̂2

y

=
13.32

13.32 + 5.252
= 0.867.

� Approximately 86.7% of the total variation in race times is

attributable to differences between runners.
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Hierarchical Model with Varying Intercepts and Slopes

� The earlier model assumed that all runners share the same

slope, β1, representing the rate at which race time changes

with age.
� This assumption likely does not reflect reality:

� Some runners slow down rapidly with age.

� Others slow down gradually.

� Some may even improve with age (see R plots in the next slide

for evidence).

� Advancement: The Varying Intercepts and Slopes
Model:

� This model allows each runner to have:

� A unique intercept, β0j , reflecting their baseline performance.

� A unique slope, β1j , capturing their individual rate of change

in race time with age.

� Benefit: By introducing varying slopes, the model better

captures the heterogeneity in how runners’ performances

change over time. 16



Models for each of 36 Runners

Figure 4: Observed trends in running time versus age for the 36 subjects

(blue) along with the posterior median model (black).
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Varying Intercepts and Slopes Model

� Data model (within-runner regression):

Yij | β0j , β1j , σy ∼ N(µij , σ
2
y ), µij = β0j + β1jXij .

� Group-level model (joint distribution of intercepts and

slopes):

[
β0j

β1j

] ∣∣∣β0, β1,Σ ∼ N

([
β0

β1

]
,Σ

)
.

� Priors on global parameters:
� β0 ∼ N(100, 102): Prior on the global intercept.

� β1 ∼ N(2.5, 12): Prior on the global slope.

� σy ∼ Exp(0.072): Prior on the within-runner variability.

� Σ: Covariance matrix for β0j and β1j , often modeled using a

decomposition such as:

� Variances: σ2
0 (for β0j) and σ2

1 (for β1j).

� Correlation: ρ between β0j and β1j .

� Structure: This model captures both the variability in runners’

baseline performance (intercepts) and their rates of change with age

(slopes), as well as the relationship between these parameters. 18



Covariance Matrix of the β’s

� Covariance matrix Σ:

Σ =

[
σ2
0 ρσ0σ1

ρσ0σ1 σ2
1

]
.

� Interpretation of elements:

� σ2
0 : Variance of the intercepts β0j , capturing variability in

baseline performance across runners.

� σ2
1 : Variance of the slopes β1j , representing variability in the

effect of age on race time.

� ρ: Correlation between β0j and β1j .
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Covariance Matrix of the β’s

� Implications of strong correlation (|ρ| close to 1):

� If β0j and β1j are strongly correlated, runners with particularly

fast baselines (low β0j) or slow baselines (high β0j) are likely to

have a pronounced effect of age on race time (very negative or

very positive β1j).

� The precise interpretation of this correlation depends on the

sign of β1j :

� Positive β1j : Slower runners might improve more gradually

with age.

� Negative β1j : Faster runners might slow down more

dramatically with age.
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Variance Components of the β’s

� Variance components in Σ split the variability in runners’

regression lines into:

π0 =
σ2
0

σ2
0 + σ2

1

, π1 =
σ2
1

σ2
0 + σ2

1

.

� Interpretation:

� π0: Proportion of variability due to intercept differences (β0j),

reflecting baseline performance differences.

� π1: Proportion of variability due to slope differences (β1j),

capturing aging trends.

� Implications:

� Large π0: Variation is mainly from intercepts (e.g., baseline

speeds).

� Large π1: Variation is primarily from slopes (e.g., aging

trends).

21



Outline

Normal Hierarchical Models with Predictors

Normal Hierarchical Model with Varying Intercepts

Normal Hierarchical Model with Varying Intercepts and Slopes

Posterior Simulation of the Model Parameters

Model Comparison & Selection

22



Posterior Simulation

� Posterior analysis:
� Performed using the stan glmer function.

� The model includes 78 parameters, resulting in a slower

computation time.

� Posterior median model:
� The overall posterior median regression line is:

Ŷ = 18.5 + 1.32× age.

� This is similar to the random intercepts model but allows for

greater flexibility through runner-specific parameters.

� Advantages of varying intercepts and slopes:
� The model allows for runner-specific regression lines,

incorporating unique β0j and β1j parameters for each runner.

� Visualization of these runner-specific models (refer to R

examples and plots) demonstrates the added nuance and

variability captured by this approach.
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Plots for Two Example Runners

Figure 5: Posterior median relationships for runners 1 and 10 from the

hierarchical model (dashed), contrasted with no-pooling (blue) and

complete-pooling (black) models.
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Shrinkage in the Hierarchical Model

� Observation: (Refer to plots for runners 1 and 10)

� The no-pooling model’s regression line for a runner (blue line)

is shrunk toward the overall regression line from the

complete-pooling model (solid black line).

� This produces the estimated regression line from the

hierarchical model (dashed black line).

� Rationale for shrinkage:

� The hierarchical model assumes that information from other

runners (captured by the complete-pooling model) informs the

estimated regression line for runner j .

� Data from a single runner, particularly with limited

observations, may not fully describe that runner’s true trend

line.

� Incorporating information from the broader population

balances individual-level and group-level variability.
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Shrinkage in the Hierarchical Model

� Connection to Bayesian inference:

� Shrinkage embodies the Bayesian principle of balancing

information:

� Observed data provide specific details for a runner.

� The population-level trend (akin to a prior) provides additional

context, especially for runners with few data points.

� Conclusion: Shrinkage reflects the hierarchical model’s ability

to combine individual and group information to produce more

robust estimates.
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Model Selection

� Model choices:

1. Complete pooling.

2. No pooling.

3. Varying intercepts.

4. Varying intercepts and slopes.

� Guidance for selection:

� Use intuition and context to inform the decision.

� Formally evaluate model fit using pp check.

� Compare prediction accuracy using:

� Prediction summary output.

� Expected Log Predictive Density (ELPD) values.
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Model Selection

� Practical comparison:

� Refer to R example: Examine the criteria to evaluate the

trade-off between the “varying intercepts” and “varying

intercepts and slopes” models.

� Consider whether the added complexity of varying slopes

provides significant improvement in predictive accuracy.

� Conclusion: The best model balances fit quality and

complexity, providing accurate predictions without

unnecessary overfitting.
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Posterior Prediction of Race Time for a New Individual

� Prediction for a new individual:

� Use the posterior predict function with the chosen

hierarchical model to predict race time for a new individual at

a specified age.

� Prediction for individuals in the sample:

� Predict race time for an individual in the sample at an age not

observed in the data.

� Example: Predict the race time at age 61 for:

� Runner 1.

� Runner 10.

� A new runner, Miles.
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Posterior Prediction of Race Time for a New Individual

� Precision of predictions:

� Predictions for Runner 1 and Runner 10 leverage their

observed data, resulting in higher precision.

� Predictions for Miles (a new runner) rely solely on

population-level information, leading to much less precision

(see R plots in the next slide for comparison).

� Further exploration:

� Refer to Section 17.7 for an application using the Spotify

dataset.

� Example: Predict a song’s danceability based on its genre and

valence (mood). Explore this on your own for additional

insights.
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Posterior Predictive Models for 3 Runners

Figure 6: Posterior predictive models for the net running times at age 61

for sample runners 1 and 10, as well as Miles, a runner that wasn’t in our

original sample. 32
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