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Needed Background for this course

What is needed or expected:

� The expected level of statistics is equivalent to that obtained

by a graduate student in their first year of study of the theory

of statistics and probability.

� An understanding of maximum likelihood (ML) methods,

simple inference (HT) & estimation, and linear models is most

important. Many of these topics are reviewed in the Refresher

Notes on Prob & Stat (posted under Canvas).

� Familiarity with multivariate methods and some non-linear

models.

� The level of mathematics needed in this course does not

extend much beyond Taylor series and linear algebra (with

basic understanding of matrix algebra).

� A working knowledge of software package like R, Python, or

SAS.
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Goals of this course

Goals: At the end of this course, students will be able to

1. understand the theory and implementation of key methods in

Bayesian statistics

2. apply Bayesian methods to solve problems

3. develop new computational methods in Bayesian statistics
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Textbook(s) Textbook

The slides will be (mostly) developed from the book

Bayes Rules! An Introduction to Applied Bayesian Modeling,

by Alicia A. Johnson, Miles Q. Ott, & Mine Dogucu (CRC Press).

Book website: https://www.bayesrulesbook.com

� Suggested but not required:
� Bayesian Computation with R, 2nd ed. (Springer), by Albert,

J.

� Introducing Monte Carlo Methods with R (Springer), by

Robert, C.P. and Casella, G.

� Bayesian Data Analysis, Second Edition, by A. Gelman, J. B.

Carlin, H. S. Stern and D. B. Rubin (Chapman & Hall) [Can

be bought on Amazon.com]

� Introduction to Statistical Thought, by Michael Lavine,

available free as a pdf download at

http://www.math.umass.edu/ lavine/Book/book.html 5



Topics

� Emphasis will be on practical use of Bayesian inference in a

variety of problems, esp. on physical sciences but should be

useful generally

� Will not emphasize strictly mathematical results; the

mathematics is not difficult or advanced, but a different way

of thinking is required from classical statistical thinking

� Topics:
� Review of probability calculus, interpretations, coherence,

Bayes’s theorem. Joint, conditional and marginal distributions.

Independence. Prior distribution, likelihood, posterior

distribution. Bayesian estimation and inference on discrete

state spaces. Likelihoods, odds and Bayes factors. Simple and

composite alternatives

� Markov chain Monte Carlo (MCMC). Gibbs and

Metropolis-Hastings samplers. Metropolis-within- Gibbs.

Computer tools, e.g., R, Stan, JAGS, BUGS.
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Topics

� Topics (Cont’d):

� Bayesian point and interval parameter estimation. Bayesian

credible intervals (e.g. HDP intervals). Bayesian inference on

Gaussian, Poisson, Cauchy, and arbitrary distributions. MLE as

an approximation to Bayesian inference. Laplace

approximation. Linear and nonlinear models. Selection models.

Hierarchical models.

� Prior selection. Subjective and objective priors. Priors as

encoding knowledge. Sensitivity to prior and robustness. Priors

for hierarchical models.

� Bayesian hypothesis testing. Comparison with frequentist

hypothesis testing. Model selection and model averaging.

Reversible jump MCMC. Approximations, e.g., AIC, BIC.

Likelihood principle. Bayesian Ockham’s Razor. Bayesian point

and interval parameter estimation.

7



Software

� R

� We will be using the statistical computer language R for most

of the examples that will be computed in class. You are

encouraged to go to the R website:

� http://www.R-project.org/

� Download a free copy of R, and the R documentation

(RStudio is strongly encouraged too), to your computer. Play

around with it to get familiar with it. Consult the “tutorial” in

the back of the “Introduction to R” at

http://cran.r-project.org/doc/manuals/R-intro.pdf for some

ideas to get started.

� Download the bayesrules R package that goes with the

book from the CRAN website and add it to your R program.
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Introduction

� In real life, we continuously update our knowledge as we

gather more data.

� Bayesian thinking reflects this natural process of updating

beliefs with new information.

� Bayesian inference utilizes Bayes’ Rule to combine prior

knowledge with sample data, allowing us to draw conclusions

about parameters of interest. That is, it uses Bayes’ Law

(Bayes’ Theorem) to combine prior information and sample

data to make conclusions about a parameter of interest.

� Unlike (classical) frequentist methods, Bayesian inference also

models the probability distribution of the parameters.

10



Bayesian Knowledge-Building Process

� Acknowledge/elicit prior information.

� Collect data.

� Update your knowledge based on new data.

� Repeat the process as more data is gathered.
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Bayesian Knowledge-Building Diagram

Figure 1: A Bayesian knowledge-building diagram.
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Thinking Like a Bayesian

� Bayesian and frequentist analyses share the common goal of

learning from data (or making sense of data).

� The distinction between Bayesian and frequentist approaches

lies in their interpretation of probability and the role of prior

knowledge.
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Quiz Yourself

� How do you interpret the probability of flipping Heads as 0.5?

� How do you interpret a 0.9 probability that a candidate will

win an election?

� Assess your confidence in two different claims based on the

evidence presented.

� Which question would you ask your doctor if you tested

positive for a rare disease?
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Interpreting Probability

� Bayesian approach: Probability represents the relative

plausibility of an event.

� Frequentist approach: Probability is the long-run relative

frequency of an event that can be repeated.

� Example: Interpreting the probability of flipping a head in a

coin toss.
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Challenges in Defining Probability for Certain Events

� Some events, such as election outcomes or weather

predictions, are difficult to conceive as repeatable.

� Bayesian analysis provides a flexible framework for these

one-time events.
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The Bayesian Balancing Act

� Balance between prior knowledge and new data determines

the posterior.

� The strength of the data versus the strength of the prior

influences the final conclusion.

� As more data is collected, the influence of prior knowledge

diminishes.
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Asking Questions

� Bayesian: What’s the chance that the hypothesis is correct

given the data?

� Frequentist: What’s the chance of observing the data given

that the hypothesis is incorrect?
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Example from Bayes Rules! Textbook

� Consider a scenario where you tested positive for a rare
disease. Which question is more informative?

� Bayesian question: What is the chance that I actually have

the disease given the positive test result?

� Frequentist question: What is the chance of getting this

positive result if I do not have the disease?

� The frequentist “p-value” is often misinterpreted and less

intuitive.
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A Quick History Lesson

� Bayesian statistics originated with Thomas Bayes in the 1740s.

� The philosophy gained momentum in the late 20th century

due to advances in computing.

� The Bayesian framework is now used globally in various fields.

Resurgence of Bayesian Methods:

� Advances in computing have made complex Bayesian models

feasible (and practical).

� Growing recognition of the value of incorporating subjectivity

in scientific analysis.
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Why Use Bayesian Methods?

� Incorporate prior knowledge about parameters.

� Update our understanding logically after observing new data.

� Make formal probability statements regarding the parameters.

� Assess model assumptions and sensitivity in a straightforward

manner.
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Why Use Classical Methods?

� Useful when parameters are considered fixed, as in controlled

experiments.

� Applicable when there is no prior information available.

� Preferred by those who favor standardized, “cookbook”-type

formulaic approaches with minimal input from the researcher.

Historical Preference for Classical Methods:

� Many classical methods were developed for controlled

experiments.

� Bayesian methods historically required more complex

mathematical formalism.

� Realistic Bayesian analyses were once impractical due to

limited computing power.
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Bayesian Perspective on Data and Parameters

� Bayesian inference treats unobserved data and unknown

parameters similarly by assigning a probability distribution to

each.

� Bayesian models specify:

� A joint density function describing the distribution of the full

dataset given the parameter values.

� A prior distribution reflecting either uncertainty about a fixed

parameter or the possible values of a stochastic parameter.

� The prior could reflect:

� Uncertainty about a parameter that is actually fixed, OR

� the variety of values that a truly stochastic parameter could

take.
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Chapter Summary & Outline of the Course

Chapter Summary:

� Bayesian thinking involves updating knowledge by balancing

prior information with new data.

� As more data is gathered, different analysts will converge on

the same conclusions.

Course Outline:

� Foundations of Bayesian Models

� Posterior Simulation and Analysis, including MCMC methods

� Bayesian Regression and Classification

� Hierarchical Bayesian Models
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Different Interpretations of Probability

� Frequentist definition of the probability of an event: If we
repeat an experiment a very large number of times, what is
the proportion of times the event occurs?

� Problem: For some situations, it is impossible to repeat (or

even conceive of repeating) the experiment many times.

� Example: The probability that Governor Ivey is re-elected in

2022.

� Subjective probability: Based on an individual’s degree of
belief that an event will occur.

� Example: A bettor is willing to risk up to $200 betting that

Ivey will be re-elected, in order to win $100. The bettor’s

subjective probability, P(Ivey wins), is 2/3.

� The Bayesian approach can naturally incorporate subjective

probabilities about the parameter, where appropriate.
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Some Probability Notation - Events

� We denote events by letters such as A, B, C , . . .

� The idea of conditional probability is crucial in Bayesian

statistics:

P(A|B) = P(A ∩ B)

P(B)

� We denote random variables by letters such as X , Y , Z , etc.,

taking on values denoted by x , y , z , etc.

� The space of all possible values of the rv is called its support

(or support of its distribution).
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Some Probability Notation - RVs

� We will deal with both discrete and continuous rv’s.

� In general, let f (·) denote the probability distribution (p.m.f.

or p.d.f.) of a rv.

� Thus, f (x) is the marginal distribution of X and f (x , y) is

the joint distribution of X and Y .

� In general, f (x , y) = f (x |y)f (y) and
f (x) =

∫
f (x , y)dy =

∫
f (x |y)f (y)dy .

� If X , Y independent, then f (x , y) = f (x)f (y).
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Some Probability Notation

� The expected value of any function h(x) of X is:

E[h(X )] =


∑

x∈X h(x)f (x), if X is discrete∫
X h(x)f (x)dx , if X is continuous.

� Typically, the distribution of X depends on some

parameter(s), say θ, so in fact f (x) = f (x |θ).
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Exchangeability

� Bayesians usually assume the data values in the sample are

exchangeable: that is, reordering the data values does not

change the model.

� Example: In a social survey, respondents are asked whether

they are generally happy. Let

Yi =

1, if respondent i is happy

0, otherwise.
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Exchangeability

� Consider the first 5 respondents. What are the probabilities of

these 3 outcomes?

p(1, 0, 0, 1, 1) =?

p(0, 1, 1, 0, 1) =?

p(1, 1, 0, 1, 0) =?

� If the data values are exchangeable, these three outcomes will

have the same probability.
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Exchangeability and iid Property

� Theorem: If the data are independent and identically

distributed (iid), i.e., a random sample, from a distribution

with parameter θ which itself follows the distribution p(θ),

then the data are exchangeable.

� Proof:
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Exchangeability and iid

� A famous theorem (de Finetti’s Theorem) shows the converse

is* usually true as well:

� Y1, . . . ,Yn are exchangeable for all n

⇒ Y1, . . . ,Yn are iid given θ, θ ∼ p(θ).

� * It is only approximate when sampling from a finite

population without replacement.
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Bayes’ Law

� In its simplest form, with two events A and B, Bayes’ Law

relates the conditional probabilities P(A|B) and P(B|A).
� Recall

P(A|B) = P(A ∩ B)

P(B)

� and

P(B|A) = P(B ∩ A)

P(A)
=

P(A ∩ B)

P(A)
=

� Hence, P(A ∩ B) = P(A|B)P(B) = P(B|A)P(A)

⇒ P(A|B) = P(B|A)P(A)
P(B)

.

� Similarly,

P(B|A) = P(A|B)P(B)
P(A)

.
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