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Bayes' Rule for Events (with lllustrative Examples)



An lllustrative Example

Categorizing Online News Items

e The rise of “fake news” has highlighted the need for reliable
methods to distinguish real from fake news.

e Bayesian analysis offers a powerful approach to tackling this
issue.

e The goal is to classify online news items as either “fake news”
or “real news.”

e The true nature of an article (fake or real) is not directly
observable.

e However, certain observable characteristics of the article can
be noted.

e Prior knowledge may provide insight into the frequency of
“fake news" articles.



The Dataset and Prior Information

o Example: In a dataset of 150 Facebook articles, 60 were
identified as “fake news” by experts.

e Assuming this is a representative sample, it informs our prior
probability of an article being fake.

e Simple filter: Assume articles are real unless strong evidence

suggests otherwise.



Conditional Probability & Exclamation Points

e Data shows exclamation points are more common in fake
news. Among the 60 fake news items, 16 have exclamation
points in the headline:

e In contrast, only 2 out of 90 real news items have exclamation
points.

e Exclamation points can serve as an indicator of whether an
article is fake or real.

e We balance prior knowledge with new data to update our
understanding using Bayes' Rule.

e This observable characteristic can be considered as data
information.

e By combining prior knowledge with this data, we can update
the probability of an article being fake.

e The combination of prior and data information yields posterior
information about the probability of fake news.



Setting Up a Prior Model

e Let B represent the event that a random news item is fake
news.

e Based on prior knowledge, set P(B) = 0.4, implying
P(B€) = 0.6 for real news.

e i.e., the prior model: Probability that an article is fake
P(B) = 0.4, real P(B¢) = 0.6.

e This is a valid prior, as the probabilities sum to 1 and cover all
possible outcomes.



Incorporating Observable Data

e Let A denote the event that a news item'’s title contains an

exclamation point.
e From the data:
2

= 0.0222
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P(A|B) ~ 676) — 02667, P(A|BS) ~

e P(A|B) is the probability of an exclamation point given the
article is fake news.

e Recall that in general, if P(A|B) equals the unconditional
probability P(A), events A and B are independent.



Understanding Likelihood

e If event A (“exclamation point”) is observed, we can use this
to assess the likelihood of event B (“fake news").

e The likelihood function L is defined as L(B|A) = P(A|B) for
discrete/categorical cases.

e Note: The likelihood function is not a probability function
(e.g., L(B|A) + L(B¢|A) = 0.2889, not 1) (Qu: Can you show
this in general?).

e The likelihood helps determine how compatible the observed
data is with a hypothetical scenario.



Marginal and Joint Probabilities

e The likelihood function is not a valid probability distribution,
but marginal probability P(A) can be used as a normalizing
constant.

e Joint probability P(AN B) represents the probability of both
events A and B occurring.

e Example:
P(AN B) = P(A|B)P(B) = 0.2667 x 0.4 = 0.1067
e Similarly,

P(AN BS) = P(A|B°)P(B) = 0.0222 x 0.6 = 0.0133



Why is P(A) a Normalizing Constant?

e Bayes’ Rule:
P(B) x P(A|B)
P(A)

P(B|A) =

¢ Normalization:

e The numerator P(B) x P(A|B) = P(AN B) gives an
unnormalized probability (i.e. P(AN B)+ P(AN B¢) = P(A)
for events B and B€).

e Dividing by P(A) scales the posterior P(B|A) so that the total
probability across all B (restricted to A) sums to 1.

e Conclusion: P(A) ensures P(B|A) is a valid probability
distribution (i.e.
P(ANB)/P(A)+ P(An B°)/P(A) = P(A)/P(A) =1 for
events B and B€), making it the normalizing constant in
Bayes' Rule.
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Law of Total Probability

e The total probability that an article has an exclamation point
is the sum of:

e The probability that the article has an exclamation point and is
fake.

e The probability that the article has an exclamation point and is
real.

e Thus,
P(A) = P(ANB)+ P(AN B€) = 0.1067 + 0.0133 = 0.12

e This is an example of the Law of Total Probability (LTP).
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Bayes’ Rule & Posterior Probability

The key question: Given that an article’s title has an

exclamation point, what is the probability it is fake news?

This is calculated as P(BJA).

Bayes' Rule for events is expressed as:

_ P(B) x P(AB)
PE = pey < P(aiB) + P(8) < PIAB)
) P(B) x L(BIA)
P(B) x L(B|A) 4+ P(B¢) x L(B¢|A)
e In words: Posterior = (Prior) x (Likelihood) / (Normalizing

constant).
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Application of Bayes’ Rule: News Example

Applying Bayes' Rule:

0.4) x (0.2667)

012 =0.889

P(BlA) = |

e Given an article with an exclamation point in the title, the
probability it is fake news is 0.889.

Prior to observing the exclamation point, the probability was
0.4.

The observed data has updated our estimate.
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Simulation and Model Validation

e Simulate 10,000 articles to validate the model and understand

the distribution of fake vs. real articles.

e Simulation reflects the prior model and likelihood of

exclamation point usage.

e Results: Approximate posterior probability of an article being
fake when it uses exclamation points is around 88.7%.
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Another Bayes’ Rule Example: 1975 UK Referendum

e Context: 1975 UK national referendum on remaining in the
EEC.

e Suppose 52% of voters supported the Labour Party, and 48%
the Conservative Party. (i.e. voters are assumed to belong to

either the Labour Party or the Conservative Party.)

e 55% of Labour voters supported remaining in the EEC, while
85% of Conservative voters supported it.
e What is the probability that a person voting “Yes" to
remaining in the EEC is a Labour voter?
P(Y|L) x P(L)
P(LIY)= ——FF———+
(1Y) = =5y
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Example Continued

e Note that:
P(Y)=P(YNL)+P(YNL) = P(Y|L)P(L)+P(Y|L)P(L)

e So:

(0.55) x (0.52)
(0.55) x (0.52) + (0.85) x (0.48)

P(LIY) = =041
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Bayes’ Rule for Multiple Events

e Let D represent observed data, and A, B, and C be mutually

exclusive (and exhaustive) events.
e We can express P(D) as:

P(D)=P(DNA)+P(DNB)+ P(DNC)
= P(D|A)P(A) + P(D|B)P(B) + P(D|C)P(C)

e By Bayes' Rule:

P(D|A)P(A)
(D|A)P(A) + P(D|B)P(B) + P(D|C)P(C)

P(AID) =
(AID) =
e P(B|D) and P(C|D) are similar.
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Generalizing Bayes’ Rule

e Denoting k events A, B, C, ..., as 01,02,03,...,0k, we

generalize as:

P(6;)P(D|6;
p(41p) = __POIPEI)
Ej:l P(ej)P(DWJ)
e The denominator equals P(D), the marginal distribution of
the data.

e For continuous 6, the sum may be replaced by an integral.
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Example: General Social Survey

e In the 1996 General Social Survey, for males (age 30+):
e 11% of those in the lowest income quartile were college

graduates.
e 19% of those in the second-lowest income quartile were college

graduates.

e 31% of those in the third-lowest income quartile were college
graduates.

e 53% of those in the highest income quartile were college

graduates.
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Example: General Social Survey

e What is the probability that a college graduate falls in the
lowest income quartile?

P(G | @)P(Q1)

1] G) =
PO = b6 Q@)
- (.11)(.25)
= (10)(25) + (19)(.25) + (:31)(.25) + (.53)(.25)
— 0.09
o Exercise:

e Find P(Q2|G), P(Q3]|G), and P(Q4|G) as well.

e How does this conditional distribution differ from the
unconditional distribution {P(Q1), P(Q2), P(Q3), P(Q4)}?
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Bayes’ Rule Applied to Regional Dialects

Example: Use of the term “pop” to infer the region of a
speaker in the U.S.

Prior information: Regional population distribution.

Likelihood: Probability of using “pop” in different regions.

Posterior: Updated probability of the speaker’s region after
hearing “pop.”
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Statistics Using Bayes' Rule
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Inference About Parameters

e We consider inference about parameters based on observed
data.

e Let 0 represent an unobserved parameter of interest, and D
represent the observed data.

e The probability model for the data, given 0, is denoted
p(DI0).
e The prior knowledge about 6 is denoted p().

e This prior can be highly specific or quite vague.
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Posterior Distribution

e We seek to make probability statements about 6, given the
observed data D: p(6|D).

e By Bayes' Rule:

p(0)p(D|6)
p(0|D) =
¢IP) p(D)
e Note p(D) does not depend on 6 and is merely a normalizing

constant.

e For inference about 6, we can write:

p(01D) o p(8)p(D|0)
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Summarizing the Posterior

e The posterior distribution p(0|D) represents a compromise
between prior information p(#) and sample information
p(DI[6).

e Useful summaries of the posterior include:

e Posterior mean:
E[Q\D]:/Op(G\D)dG
e Posterior variance:

Var[6|D] = /(9 — E[6|D])2p(0|D) d6
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Posterior Probability in Chess Example

e Analyze Kasparov's chances of winning against Deep Blue in
1997.

e Prior model: Kasparov's win probability 7 could be 0.2, 0.5,
or 0.8.

e Assume the number of games Kasparov wins, Y, out of 6
games follows a Binomial(6, 7) distribution.

o After observing one win out of six games, the likelihood
strongly suggests m = 0.2.

e Posterior model confirms Kasparov is likely the weaker player.

e A more realistic analysis would spread the prior distribution for
7 over the entire interval from 0 to 1.

o We will explore such models in the next chapter.
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Likelihood values in Chess Example

e After observing one win out of six games (i.e. Data is y = 1),
the likelihood for each = is:

L(mly =1) = G)wl(l —m)°
<6> ~ 0.3932

L(0.5]y = 1) :<6> 5 ~0.0938
-

6> ~ 0.0013
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Posterior Probabilities in Chess Example

e Posterior probabilities are proportional to P(7) x L(w|y = 1).

e Assume a uniform prior,
P(m =0.2) = P(m =0.5) = P(mr =0.8) =

e Posterior for 1 = 0.2 is:

Wl

P(r=02]y=1)=

(P(r =0.2) x L(0.2]y = 1))/(P(m = 0.2) x L(0.2]y = 1)+

P(r =0.5) x L(0.5]y = 1) + P(r = 0.8) x L(0.8]y = 1)) =
0.3932 x 1

0.3932 x 3 +0.0938 x } 4 0.0013 x %

~ 0.799

e Similarly, P(m = 0.5|y = 1) ~ 0.191,
P(r = 0.8]y = 1) ~ 0.010.
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Summary of Chapter 2

Construct prior models for the variable of interest.
e Summarize data dependence via conditional probability.

Define likelihood functions based on observed data.

Use Bayes’ Rule to balance prior and likelihood to form
the posterior model.

Simulation helps to validate and understand Bayesian models.
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