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An Illustrative Example

Categorizing Online News Items

� The rise of “fake news” has highlighted the need for reliable

methods to distinguish real from fake news.

� Bayesian analysis offers a powerful approach to tackling this

issue.

� The goal is to classify online news items as either “fake news”

or “real news.”

� The true nature of an article (fake or real) is not directly

observable.

� However, certain observable characteristics of the article can

be noted.

� Prior knowledge may provide insight into the frequency of

“fake news” articles.

3



The Dataset and Prior Information

� Example: In a dataset of 150 Facebook articles, 60 were

identified as “fake news” by experts.

� Assuming this is a representative sample, it informs our prior

probability of an article being fake.

� Simple filter: Assume articles are real unless strong evidence

suggests otherwise.
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Conditional Probability & Exclamation Points

� Data shows exclamation points are more common in fake

news. Among the 60 fake news items, 16 have exclamation

points in the headline:

� In contrast, only 2 out of 90 real news items have exclamation

points.

� Exclamation points can serve as an indicator of whether an

article is fake or real.

� We balance prior knowledge with new data to update our

understanding using Bayes’ Rule.

� This observable characteristic can be considered as data

information.

� By combining prior knowledge with this data, we can update

the probability of an article being fake.

� The combination of prior and data information yields posterior

information about the probability of fake news. 5



Setting Up a Prior Model

� Let B represent the event that a random news item is fake

news.

� Based on prior knowledge, set P(B) = 0.4, implying

P(Bc) = 0.6 for real news.

� i.e., the prior model: Probability that an article is fake

P(B) = 0.4, real P(Bc) = 0.6.

� This is a valid prior, as the probabilities sum to 1 and cover all

possible outcomes.
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Incorporating Observable Data

� Let A denote the event that a news item’s title contains an

exclamation point.

� From the data:

P(A|B) ≈ 16

60
= 0.2667, P(A|Bc) ≈ 2

90
= 0.0222

� P(A|B) is the probability of an exclamation point given the

article is fake news.

� Recall that in general, if P(A|B) equals the unconditional

probability P(A), events A and B are independent.
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Understanding Likelihood

� If event A (“exclamation point”) is observed, we can use this

to assess the likelihood of event B (“fake news”).

� The likelihood function L is defined as L(B|A) = P(A|B) for
discrete/categorical cases.

� Note: The likelihood function is not a probability function

(e.g., L(B|A) + L(Bc |A) = 0.2889, not 1) (Qu: Can you show

this in general?).

� The likelihood helps determine how compatible the observed

data is with a hypothetical scenario.
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Marginal and Joint Probabilities

� The likelihood function is not a valid probability distribution,

but marginal probability P(A) can be used as a normalizing

constant.

� Joint probability P(A ∩ B) represents the probability of both

events A and B occurring.

� Example:

P(A ∩ B) = P(A|B)P(B) = 0.2667× 0.4 = 0.1067

� Similarly,

P(A ∩ Bc) = P(A|Bc)P(Bc) = 0.0222× 0.6 = 0.0133
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Why is P(A) a Normalizing Constant?

� Bayes’ Rule:

P(B|A) = P(B)× P(A|B)
P(A)

� Normalization:
� The numerator P(B)× P(A|B) = P(A ∩ B) gives an

unnormalized probability (i.e. P(A ∩ B) + P(A ∩ Bc) = P(A)

for events B and Bc).

� Dividing by P(A) scales the posterior P(B|A) so that the total

probability across all B (restricted to A) sums to 1.

� Conclusion: P(A) ensures P(B|A) is a valid probability

distribution (i.e.

P(A ∩ B)/P(A) + P(A ∩ Bc)/P(A) = P(A)/P(A) = 1 for

events B and Bc), making it the normalizing constant in

Bayes’ Rule.
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Law of Total Probability

� The total probability that an article has an exclamation point
is the sum of:

� The probability that the article has an exclamation point and is

fake.

� The probability that the article has an exclamation point and is

real.

� Thus,

P(A) = P(A ∩ B) + P(A ∩ Bc) = 0.1067 + 0.0133 = 0.12

� This is an example of the Law of Total Probability (LTP).
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Bayes’ Rule & Posterior Probability

� The key question: Given that an article’s title has an

exclamation point, what is the probability it is fake news?

� This is calculated as P(B|A).
� Bayes’ Rule for events is expressed as:

P(B|A) = P(B)× P(A|B)
P(B)× P(A|B) + P(Bc)× P(A|Bc)

=
P(B)× L(B|A)

P(B)× L(B|A) + P(Bc)× L(Bc |A)

� In words: Posterior = (Prior) × (Likelihood) / (Normalizing

constant).
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Application of Bayes’ Rule: News Example

� Applying Bayes’ Rule:

P(B|A) = (0.4)× (0.2667)

0.12
= 0.889

� Given an article with an exclamation point in the title, the

probability it is fake news is 0.889.

� Prior to observing the exclamation point, the probability was

0.4.

� The observed data has updated our estimate.
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Simulation and Model Validation

� Simulate 10,000 articles to validate the model and understand

the distribution of fake vs. real articles.

� Simulation reflects the prior model and likelihood of

exclamation point usage.

� Results: Approximate posterior probability of an article being

fake when it uses exclamation points is around 88.7%.
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Another Bayes’ Rule Example: 1975 UK Referendum

� Context: 1975 UK national referendum on remaining in the

EEC.

� Suppose 52% of voters supported the Labour Party, and 48%

the Conservative Party. (i.e. voters are assumed to belong to

either the Labour Party or the Conservative Party.)

� 55% of Labour voters supported remaining in the EEC, while

85% of Conservative voters supported it.

� What is the probability that a person voting “Yes” to

remaining in the EEC is a Labour voter?

P(L|Y ) =
P(Y |L)× P(L)

P(Y )
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Example Continued

� Note that:

P(Y ) = P(Y ∩L)+P(Y ∩Lc) = P(Y |L)P(L)+P(Y |Lc)P(Lc)

� So:

P(L|Y ) =
(0.55)× (0.52)

(0.55)× (0.52) + (0.85)× (0.48)
= 0.41
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Bayes’ Rule for Multiple Events

� Let D represent observed data, and A, B, and C be mutually

exclusive (and exhaustive) events.

� We can express P(D) as:

P(D) = P(D ∩ A) + P(D ∩ B) + P(D ∩ C )

= P(D|A)P(A) + P(D|B)P(B) + P(D|C )P(C )

� By Bayes’ Rule:

P(A|D) =
P(D|A)P(A)

P(D|A)P(A) + P(D|B)P(B) + P(D|C )P(C )

� P(B|D) and P(C |D) are similar.
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Generalizing Bayes’ Rule

� Denoting k events A,B,C , . . . , as θ1, θ2, θ3, . . . , θk , we

generalize as:

P(θi |D) =
P(θi )P(D|θi )∑k
j=1 P(θj)P(D|θj)

� The denominator equals P(D), the marginal distribution of

the data.

� For continuous θ, the sum may be replaced by an integral.
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Example: General Social Survey

� In the 1996 General Social Survey, for males (age 30+):

� 11% of those in the lowest income quartile were college

graduates.

� 19% of those in the second-lowest income quartile were college

graduates.

� 31% of those in the third-lowest income quartile were college

graduates.

� 53% of those in the highest income quartile were college

graduates.
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Example: General Social Survey

� What is the probability that a college graduate falls in the

lowest income quartile?

P(Q1 | G ) =
P(G | Q1)P(Q1)∑4
j=1 P(G | Qj)P(Qj)

=
(.11)(.25)

(.11)(.25) + (.19)(.25) + (.31)(.25) + (.53)(.25)

= 0.09

� Exercise:

� Find P(Q2|G ), P(Q3|G ), and P(Q4|G ) as well.

� How does this conditional distribution differ from the

unconditional distribution {P(Q1),P(Q2),P(Q3),P(Q4)}?

20



Bayes’ Rule Applied to Regional Dialects

� Example: Use of the term “pop” to infer the region of a

speaker in the U.S.

� Prior information: Regional population distribution.

� Likelihood: Probability of using “pop” in different regions.

� Posterior: Updated probability of the speaker’s region after

hearing “pop.”
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Inference About Parameters

� We consider inference about parameters based on observed

data.

� Let θ represent an unobserved parameter of interest, and D

represent the observed data.

� The probability model for the data, given θ, is denoted

p(D|θ).
� The prior knowledge about θ is denoted p(θ).

� This prior can be highly specific or quite vague.
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Posterior Distribution

� We seek to make probability statements about θ, given the

observed data D: p(θ|D).

� By Bayes’ Rule:

p(θ|D) =
p(θ)p(D|θ)

p(D)

� Note p(D) does not depend on θ and is merely a normalizing

constant.

� For inference about θ, we can write:

p(θ|D) ∝ p(θ)p(D|θ)
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Summarizing the Posterior

� The posterior distribution p(θ|D) represents a compromise

between prior information p(θ) and sample information

p(D|θ).
� Useful summaries of the posterior include:

� Posterior mean:

E [θ|D] =

∫
θp(θ|D) dθ

� Posterior variance:

Var[θ|D] =

∫
(θ − E [θ|D])2p(θ|D) dθ
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Posterior Probability in Chess Example

� Analyze Kasparov’s chances of winning against Deep Blue in

1997.

� Prior model: Kasparov’s win probability π could be 0.2, 0.5,

or 0.8.

� Assume the number of games Kasparov wins, Y , out of 6

games follows a Binomial(6, π) distribution.

� After observing one win out of six games, the likelihood

strongly suggests π = 0.2.

� Posterior model confirms Kasparov is likely the weaker player.

� A more realistic analysis would spread the prior distribution for

π over the entire interval from 0 to 1.

� We will explore such models in the next chapter.
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Likelihood values in Chess Example

� After observing one win out of six games (i.e. Data is y = 1),

the likelihood for each π is:

L(π|y = 1) =

(
6

1

)
π1(1− π)5

L(0.2|y = 1) =

(
6

1

)
(0.2)1(0.8)5 ≈ 0.3932

L(0.5|y = 1) =

(
6

1

)
(0.5)1(0.5)5 ≈ 0.0938

L(0.8|y = 1) =

(
6

1

)
(0.8)1(0.2)5 ≈ 0.0013
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Posterior Probabilities in Chess Example

� Posterior probabilities are proportional to P(π)× L(π|y = 1).

� Assume a uniform prior,

P(π = 0.2) = P(π = 0.5) = P(π = 0.8) = 1
3 .

� Posterior for π = 0.2 is:

P(π = 0.2|y = 1) =

(P(π = 0.2)× L(0.2|y = 1))/(P(π = 0.2)× L(0.2|y = 1)+

P(π = 0.5)× L(0.5|y = 1) + P(π = 0.8)× L(0.8|y = 1)) =

0.3932× 1
3

0.3932× 1
3 + 0.0938× 1

3 + 0.0013× 1
3

≈ 0.799

� Similarly, P(π = 0.5|y = 1) ≈ 0.191,

P(π = 0.8|y = 1) ≈ 0.010.

28



Summary of Chapter 2

� Construct prior models for the variable of interest.

� Summarize data dependence via conditional probability.

� Define likelihood functions based on observed data.

� Use Bayes’ Rule to balance prior and likelihood to form

the posterior model.

� Simulation helps to validate and understand Bayesian models.
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