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Notation

� Denote our data as the n × k matrix Y.

� Denote the parameter(s) of interest (possibly

multidimensional) as the vector θ.

� The posterior distribution for θ is denoted by p(θ|Y).
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Likelihood Function

� The likelihood function L(θ|Y) is a function of θ that shows

how “likely” various parameter values θ are to have produced

the observed data Y.

� In classical statistics, the specific value of θ that maximizes

L(θ|Y) is the maximum likelihood estimator (MLE) of θ.

� For large sample sizes n, L(θ|Y) is often unimodal in θ.

� Unlike p(θ|Y), L(θ|Y) does not necessarily obey the usual

laws for probability distributions.
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Mathematical Formulation

� If the data Y represent iid observations from probability

distribution p(Y|θ), then:

L(θ|Y) =
n∏

i=1

p(Yi |θ)

where Y1, . . . ,Yn are the n data vectors.

The Likelihood Principle

� The Likelihood Principle of Birnbaum states that, given the

data, all evidence about θ is contained in the likelihood

function.

� It implies that two experiments yielding equal likelihoods

should produce equivalent inference about θ.
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The Bayesian Framework

� Suppose we observe an iid sample of data Y = (Y1, . . . ,Yn).

� Now Y is considered fixed and known.

� We also must specify p(θ), the prior distribution for θ, based

on any knowledge we have about θ before observing the data.

� Our model for the distribution of the data will give us the

likelihood:

L(θ | Y) =
n∏

i=1

p(Yi | θ).
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The Bayesian Framework

� Then by Bayes’ Rule, our posterior distribution is:

p(θ | Y) =
p(θ)L(θ | Y)

p(Y)
=

p(θ)L(θ | Y)∫
Θ p(θ)L(θ | Y)dθ

� Note that the marginal distribution of Y, p(Y), is simply the

joint density p(θ,Y) (i.e., the numerator) with θ integrated

out.

� With respect to θ, it is simply a normalizing constant that

ensures that p(θ | Y) integrates to 1.
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The Bayesian Framework

� Since p(Y ) carries no information about θ, for conciseness,

we may drop it and write:

p(θ | Y) ∝ p(θ)L(θ | Y).

� Often we can calculate the posterior distribution by

multiplying the prior by the likelihood and then normalizing

the posterior at the last step by including the necessary

constant.

� Having presented the Bayesian framework in general, we now

look at a specific example of a very common Bayesian model.
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Examples of the Beta-Binomial Model

� Example (Kasparov vs Deep Blue):

� Recall the model for Y , the number of games (out of 6) that

Kasparov would win in the tournament against Deep Blue.

� We model Y as binomial with parameters n = 6 and success

probability π ∈ [0, 1].

� Example (Candidate Running for Office):

� The book gives the example of a candidate (Michelle) running

for office. If the probability of a randomly selected voter

supporting the candidate is π, then the number of voters in a

random sample of 50 voters who support her is

Binomial(50, π).
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Introduction to Michelle’s Election Model

� Michelle is running for president, and you’ve conducted 30

different polls in Minnesota.

� Michelle’s support has varied between 35% and 55%, with an

average of 45%.

� The results of these polls can be organized into a continuous

prior probability model for π, the proportion of Minnesotans

supporting Michelle.

� The left plot shows a histogram of poll results, and the right

plot shows a density plot for π.
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Building the Prior Model

� Elections are dynamic, but past polls can provide prior

information about π.

� We construct a continuous prior probability model of π based

on the polls.

� This prior model allows π to take any value between 0 and 1,

most likely around 0.45.

� Since the parameter π is restricted to be between 0 and 1, we

should choose a prior distribution with support on [0, 1].

� Let f (π) denote the prior probability density function (pdf) for

π.

� Note f (π) has the usual properties of a pdf: It is non-negative

everywhere, and it integrates to 1 over its support (which is

[0, 1] in this example).
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A Prior Distribution for π

� A reasonable prior is represented by a Beta distribution, which

we’ll explore further in this chapter.

� The Beta distribution is defined by two shape parameters, α

and β, which determine the distribution’s shape.

� The formula for the pdf of a Beta prior distribution for π is:

f (π) =
Γ(α+ β)

Γ(α)Γ(β)
πα−1(1− π)β−1, 0 ≤ π ≤ 1,

where α > 0 and β > 0 are the hyperparameters of this prior

model.

� Note that Γ(z) =

∫ ∞

0
xz−1e−xdx .
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Properties of the Beta Distribution

� In a real problem, we need to specify the values of our

hyperparameters α and β of our prior.

� Ideally, our choices of α and β should reflect our prior beliefs

about π.

� If we have no prior idea what π is, we could set α = β = 1,

which corresponds to a Uniform(0, 1) prior for π, meaning all

values of π are equally likely a priori.

� If we have more informative prior beliefs about the value of π,

we could choose α and β to reflect that.

� Plots of the Beta pdf for various values of α and β can help

inform the prior specification.
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Expected Value of the Beta

� The expected value of a Beta(α, β) random variable is:

E[π] =
α

α+ β
.

� If our prior belief is that π is closer to 0 than to 1, we should

choose our hyperparameters α < β.

� If our prior belief is that π is closer to 1 than to 0, we should

set α > β.

� The mode (location where the pdf reaches its maximum) for

the Beta(α, β) pdf is:

Mode =
α− 1

α+ β − 2
.
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Variance of the Beta

� The variance of a Beta(α, β) random variable is:

Var(π) =
αβ

(α+ β)2(α+ β + 1)
.

� The standard deviation is the square root of this variance.

� If our prior belief is strong that π is near a certain value, we

can pick α and β so that this variance is small.

� If our prior belief is less certain, we can pick α and β so that

this variance is large.
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Selecting the Hyperparameters of the Beta Distribution

� The plot beta function in the bayesrules package allows

us to experiment with different values of α and β to find the

best fit for our prior beliefs.

� For example, if we believe that π is around 0.45, various

combinations of α and β could be used to achieve

E[π] = 0.45.

� Some options include α = 9 and β = 11, α = 18 and β = 22,

or α = 45 and β = 55.

� Plotting the Beta(45, 55) probability density function (pdf)

indicates that π is most likely between 0.3 and 0.6.

� For the Beta(45, 55) distribution, the standard deviation is

approximately 0.05, meaning the interval (0.3, 0.6) shows the

region which is within three standard deviations of the mean.
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Tuning the Beta Prior

� We tune the Beta prior model to reflect our understanding of

Michelle’s support.

� For example, α = 45, β = 55 reflects an average support

around 45%.

� The resulting Beta(45,55) prior captures the typical outcomes

and variability observed in the polls.
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Modeling with the Binomial Distribution

� Recall the poll which is conducted with 50 randomly selected

voters in Minnesota, and the number of supporters of Michelle

(denoted as Y | π) is modeled as a Binomial(50, π) random

variable:

Y | π ∼ Binomial(50, π)

� The probability mass function (pmf) for this binomial

distribution is given by:

f (y | π) = P(Y = y | π) =
(
50

y

)
πy (1− π)50−y .

� This pmf answers the question: Given a success probability π,

what is the probability that exactly y out of the 50 voters

support the candidate?

� The likelihood function describes the probability of observing

the data given different values of π.
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The Binomial Data Model
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Calculating the Likelihood Using the Binomial Model

� Suppose we find that 30 out of the 50 voters support Michelle.

We can then compute the likelihood of π given y = 30:

L(π | y = 30) =

(
50

30

)
π30(1− π)20.

� This likelihood function tells us: Given that 30 voters were

supportive, what is the likelihood of any particular binomial

probability π?

� For instance, the likelihood that π = 0.6 given y = 30 is

approximately 0.115, while the likelihood that π = 0.5 given

y = 30 is approximately 0.042.
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Maximizing the Likelihood with the Binomial Model

� Through calculus, it can be demonstrated that the likelihood

function is maximized when π = 0.6.

� Therefore, the estimate π̂ = 0.6, which corresponds to the

sample proportion 30/50, is known as the maximum likelihood

estimate (MLE) of π for this data set.

� It is important to note that this maximum likelihood

estimation method relies solely on the information from the

sample data and does not incorporate any prior information

about π.
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The Beta Posterior Model

� The prior distribution provides information about π based on

our prior knowledge.

� Example: We might believe that π is close to 0.45 before

observing any data.

� The likelihood function, on the other hand, reflects the

information from the observed data.

� Example: Based on the data, we might estimate that π is

close to 0.6.

� The posterior distribution combines the prior information with

the data, updating our belief about π.

� You can use R plots to visually compare the posterior

distribution with the prior and the likelihood.
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Mathematical Development of the Posterior

� The posterior density function is denoted by f (π | y).
According to Bayes’ Rule:

f (π | y) = f (π)f (y | π)
f (y)

=
f (π)L(π | y)

f (y)

� The denominator f (y) is simply a normalizing constant,

ensuring that the posterior distribution integrates to 1.

� We can simplify this by noting that the posterior is

proportional to the product of the prior and the likelihood:

f (π | y) ∝ f (π)× L(π | y)

� Example: For Michelle:

f (π | y) ∝ π74(1− π)74
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Complete Derivation of Beta-Binomial Bayesian Model

� Suppose we observe n independent Bernoulli(π) random

variables X1, . . . ,Xn.

� We wish to estimate the “success probability” π via the

Bayesian approach.

� We will use a Beta(α, β) prior for π and show this is a

conjugate prior.

� Consider the random variable Y =
∑n

i=1 Xi , which has a

Binomial(n, π) distribution.

� First, write the joint density of Y and π (using f (·) to denote

densities, not p(·), to avoid confusion with the parameter π).
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Derivation of Beta-Binomial Model

f (y , π) = f (y |π)f (π)

=

(
n

y

)
πy (1− π)n−y × Γ(α+ β)

Γ(α)Γ(β)
πα−1(1− π)β−1

=
Γ(n + 1)

Γ(y + 1)Γ(n − y + 1)
× Γ(α+ β)

Γ(α)Γ(β)
πy+α−1(1− π)n−y+β−1
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Derivation of Beta-Binomial Model

� Although it is not really necessary, let’s derive the marginal

density of Y (this pdf is called the Beta-Binomial(n, α, β)

distribution):

f (y) =

∫ 1

0
f (y , π) dπ

=
Γ(n + 1)

Γ(y + 1)Γ(n − y + 1)
· Γ(α+ β)

Γ(α)Γ(β)

∫ 1

0
πy+α−1(1− π)n−y+β−1 dπ

=
Γ(n + 1)Γ(α+ β)

Γ(y + 1)Γ(n − y + 1)Γ(α)Γ(β)
· Γ(y + α)Γ(n − y + β)

Γ(n + α+ β)

×
∫ 1

0

Γ(n + α+ β)

Γ(y + α)Γ(n − y + β)
πy+α−1(1− π)n−y+β−1 dπ

=
Γ(n + 1)Γ(α+ β)

Γ(y + 1)Γ(n − y + 1)Γ(α)Γ(β)
× Γ(y + α)Γ(n − y + β)

Γ(n + α+ β)
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Derivation of Beta-Binomial Model

� Then, the posterior p(π | y) = f (π | y) is

f (π|y) = f (y , π)

f (y)

=

Γ(n+1)
Γ(y+1)Γ(n−y+1) ·

Γ(α+β)
Γ(α)Γ(β)π

y+α−1(1− π)n−y+β−1

Γ(n+1)Γ(α+β)
Γ(y+1)Γ(n−y+1)Γ(α)Γ(β) ·

Γ(y+α)Γ(n−y+β)
Γ(n+α+β)

=
Γ(n + α+ β)

Γ(y + α)Γ(n − y + β)
πy+α−1(1− π)n−y+β−1, 0 ≤ π ≤ 1.

� Clearly, this posterior is a Beta(α+ y , β + n − y) distribution.
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The Beta Posterior Model

� Combining the prior and data, we construct the posterior

model:

π | Y = 30 ∼ Beta(75, 75)

� The posterior model reflects the updated belief about π after

incorporating the new poll results.

� The posterior strikes a balance between the prior and the data.
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Focusing on the Kernel of the Posterior

� It is important to note that we can disregard all normalizing

constants in both the likelihood and the prior.

� By doing so, we are left with only the kernel of the posterior

distribution.

� In this case, we identify the kernel as corresponding to a

Beta(75, 75) distribution for π.

� Thus, the posterior distribution of π is Beta(75, 75).
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General Formula for the Beta Posterior

� Generally, if Y | π ∼ Bin(n, π) (data model) and

π ∼ Beta(α, β) (prior model), then the posterior distribution

is:

π | y ∼ Beta(α+ y , β + n − y).

� The posterior expected value (i.e. mean) is:

E[π | y ] = α+ y

α+ β + n
.

� The posterior mode is:

Mode[π | y ] = α+ y − 1

α+ β + n − 2
.

� The posterior variance is:

Var[π | y ] = (α+ y)(β + n − y)

(α+ β + n)2(α+ β + n + 1)
.
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Choosing Point Estimators Based on the Posterior

� Both the posterior mean (expected value) and the posterior

mode can serve as estimators for π. Posterior mean is also

called Bayes estimator.

� An estimator derived from the posterior distribution takes into

account both prior information and the observed data.
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Conjugate Prior

� A conjugate prior is a prior distribution where the posterior

distribution belongs to the same family (has the same

functional form) as the prior, but with updated parameters.

� For instance, in the Beta-binomial model, the prior distribution

is a Beta distribution, and the posterior distribution also

remains a Beta distribution—hence, this is a conjugate prior.

� The parameters of the prior distribution represent our initial

beliefs (through α and β), while the parameters of the

posterior distribution incorporate both the prior beliefs and

the data (through α, β, y , and n).

38



Inference with the Beta-Binomial Model

� Consider using the Bayesian point estimate π̂B , which is the

posterior mean of π.

� The posterior mean of the Beta distribution is given by:

π̂B =
y + α

α+ β + n
.

� This can also be expressed as a combination:

π̂B =
y

α+ β + n
+

α

α+ β + n
,

=

(
n

α+ β + n

)(y
n

)
+

(
α+ β

α+ β + n

)(
α

α+ β

)
� where the first term is related to the sample data and the

second term to the prior information.

39



Inference with the Beta/Binomial Model

� The Bayesian estimator π̂B is essentially a weighted average

of the frequentist estimator (sample mean or proportion of

successes) and the prior mean.

� As the sample size n increases, the sample data have more

influence, while the prior information becomes less influential.

� In general, with Bayesian estimation, as the sample size

grows, the likelihood increasingly dominates the prior.

� For a practical illustration, see the R example using credit

card debt data.
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Milgram’s Behavioral Study

� Milgram’s study investigated the propensity to obey authority,

even when it might harm others.

� We can analyze the study using the Beta-Binomial framework.

� The prior model π ∼ Beta(1, 10) reflects the psychologist’s

belief that a small proportion of people would obey authority.

� After observing the data, where 26 out of 40 participants

administered the most severe shock, the posterior model is

π | Y = 26 ∼ Beta(27, 24).
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Chapter Summary

� The Beta-Binomial model is a powerful tool for modeling

proportions π between 0 and 1.

� The model combines prior information with new data to

update beliefs about π.

� The posterior distribution is a Beta distribution with updated

parameters reflecting both prior beliefs and observed data.

� This model is applicable in various settings where proportions

are of interest, such as election polling, social behavior

studies, and more.
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