

STAT7630: Bayesian Statistics

Lecture Slides # 3

Chapter 3 - The Beta-Binomial Bayesian Model

Elvan Ceyhan

Department of Mathematics & Statistics

Auburn University

Fall 2024,

Updated: August, 2024

Outline

Introduction

Beta-Binomial Model

Examples

Deciding on the Prior

Likelihood as Data Model

Finding the Posterior

Conjugacy & Inference

Notation

- Denote our data as the $n \times k$ matrix \mathbf{Y} .
- Denote the parameter(s) of interest (possibly multidimensional) as the vector $\boldsymbol{\theta}$.
- The posterior distribution for $\boldsymbol{\theta}$ is denoted by $p(\boldsymbol{\theta}|\mathbf{Y})$.

Likelihood Function

- The likelihood function $L(\theta|\mathbf{Y})$ is a function of θ that shows how “likely” various parameter values θ are to have produced the observed data \mathbf{Y} .
- In classical statistics, the specific value of θ that maximizes $L(\theta|\mathbf{Y})$ is the maximum likelihood estimator (MLE) of θ .
- For large sample sizes n , $L(\theta|\mathbf{Y})$ is often unimodal in θ .
- Unlike $p(\theta|\mathbf{Y})$, $L(\theta|\mathbf{Y})$ does not necessarily obey the usual laws for probability distributions.

Mathematical Formulation

- If the data \mathbf{Y} represent iid observations from probability distribution $p(\mathbf{Y}|\theta)$, then:

$$L(\theta|\mathbf{Y}) = \prod_{i=1}^n p(Y_i|\theta)$$

where $\mathbf{Y}_1, \dots, \mathbf{Y}_n$ are the n data vectors.

The Likelihood Principle

- The Likelihood Principle of Birnbaum states that, given the data, all evidence about θ is contained in the likelihood function.
- It implies that two experiments yielding equal likelihoods should produce equivalent inference about θ .

The Bayesian Framework

- Suppose we observe an iid sample of data $\mathbf{Y} = (\mathbf{Y}_1, \dots, \mathbf{Y}_n)$.
- Now \mathbf{Y} is considered fixed and known.
- We also must specify $p(\theta)$, the prior distribution for θ , based on any knowledge we have about θ before observing the data.
- Our model for the distribution of the data will give us the likelihood:

$$L(\theta \mid \mathbf{Y}) = \prod_{i=1}^n p(\mathbf{Y}_i \mid \theta).$$

The Bayesian Framework

- Then by Bayes' Rule, our posterior distribution is:

$$p(\theta | \mathbf{Y}) = \frac{p(\theta)L(\theta | \mathbf{Y})}{p(\mathbf{Y})} = \frac{p(\theta)L(\theta | \mathbf{Y})}{\int_{\Theta} p(\theta)L(\theta | \mathbf{Y})d\theta}$$

- Note that the marginal distribution of \mathbf{Y} , $p(\mathbf{Y})$, is simply the joint density $p(\theta, \mathbf{Y})$ (i.e., the numerator) with θ integrated out.
- With respect to θ , it is simply a normalizing constant that ensures that $p(\theta | \mathbf{Y})$ integrates to 1.

The Bayesian Framework

- Since $p(Y)$ carries no information about θ , for conciseness, we may drop it and write:
$$p(\theta | \mathbf{Y}) \propto p(\theta)L(\theta | \mathbf{Y}).$$
- Often we can calculate the posterior distribution by multiplying the prior by the likelihood and then normalizing the posterior at the last step by including the necessary constant.
- Having presented the Bayesian framework in general, we now look at a specific example of a very common Bayesian model.

Outline

Introduction

Beta-Binomial Model

Examples

Deciding on the Prior

Likelihood as Data Model

Finding the Posterior

Conjugacy & Inference

Outline

Introduction

Beta-Binomial Model

Examples

Deciding on the Prior

Likelihood as Data Model

Finding the Posterior

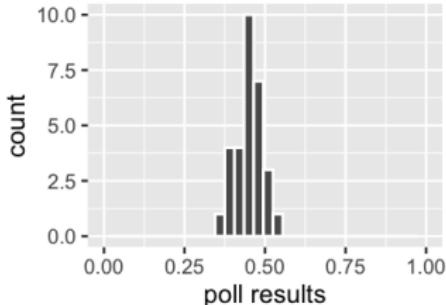
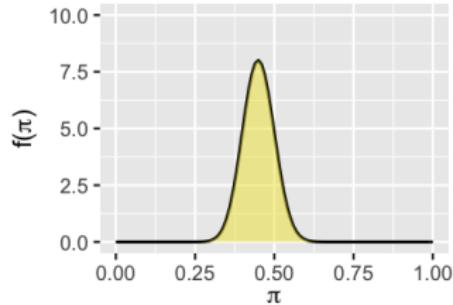
Conjugacy & Inference

Examples of the Beta-Binomial Model

- **Example (Kasparov vs Deep Blue):**
 - Recall the model for Y , the number of games (out of 6) that Kasparov would win in the tournament against Deep Blue.
 - We model Y as binomial with parameters $n = 6$ and success probability $\pi \in [0, 1]$.
- **Example (Candidate Running for Office):**
 - The book gives the example of a candidate (Michelle) running for office. If the probability of a randomly selected voter supporting the candidate is π , then the number of voters in a random sample of 50 voters who support her is $\text{Binomial}(50, \pi)$.

Introduction to Michelle's Election Model

- Michelle is running for president, and you've conducted 30 different polls in Minnesota.
- Michelle's support has varied between 35% and 55%, with an average of 45%.
- The results of these polls can be organized into a continuous prior probability model for π , the proportion of Minnesotans supporting Michelle.
- The left plot shows a histogram of poll results, and the right plot shows a density plot for π .



Outline

Introduction

Beta-Binomial Model

Examples

Deciding on the Prior

Likelihood as Data Model

Finding the Posterior

Conjugacy & Inference

Building the Prior Model

- Elections are dynamic, but past polls can provide prior information about π .
- We construct a continuous prior probability model of π based on the polls.
- This prior model allows π to take any value between 0 and 1, most likely around 0.45.
- Since the parameter π is restricted to be between 0 and 1, we should choose a prior distribution with support on $[0, 1]$.
- Let $f(\pi)$ denote the prior probability density function (pdf) for π .
- Note $f(\pi)$ has the usual properties of a pdf: It is non-negative everywhere, and it integrates to 1 over its support (which is $[0, 1]$ in this example).

A Prior Distribution for π

- A reasonable prior is represented by a Beta distribution, which we'll explore further in this chapter.
- The Beta distribution is defined by two shape parameters, α and β , which determine the distribution's shape.
- The formula for the pdf of a Beta prior distribution for π is:

$$f(\pi) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \pi^{\alpha-1} (1 - \pi)^{\beta-1}, \quad 0 \leq \pi \leq 1,$$

where $\alpha > 0$ and $\beta > 0$ are the **hyperparameters** of this prior model.

- Note that $\Gamma(z) = \int_0^{\infty} x^{z-1} e^{-x} dx$.

Properties of the Beta Distribution

- In a real problem, we need to specify the values of our hyperparameters α and β of our prior.
- Ideally, our choices of α and β should reflect our prior beliefs about π .
- If we have no prior idea what π is, we could set $\alpha = \beta = 1$, which corresponds to a $\text{Uniform}(0, 1)$ prior for π , meaning all values of π are equally likely a priori.
- If we have more informative prior beliefs about the value of π , we could choose α and β to reflect that.
- Plots of the Beta pdf for various values of α and β can help inform the prior specification.

Expected Value of the Beta

- The expected value of a $\text{Beta}(\alpha, \beta)$ random variable is:

$$\mathbf{E}[\pi] = \frac{\alpha}{\alpha + \beta}.$$

- If our prior belief is that π is closer to 0 than to 1, we should choose our hyperparameters $\alpha < \beta$.
- If our prior belief is that π is closer to 1 than to 0, we should set $\alpha > \beta$.
- The mode (location where the pdf reaches its maximum) for the $\text{Beta}(\alpha, \beta)$ pdf is:

$$\text{Mode} = \frac{\alpha - 1}{\alpha + \beta - 2}.$$

Variance of the Beta

- The variance of a $\text{Beta}(\alpha, \beta)$ random variable is:

$$\text{Var}(\pi) = \frac{\alpha\beta}{(\alpha + \beta)^2(\alpha + \beta + 1)}.$$

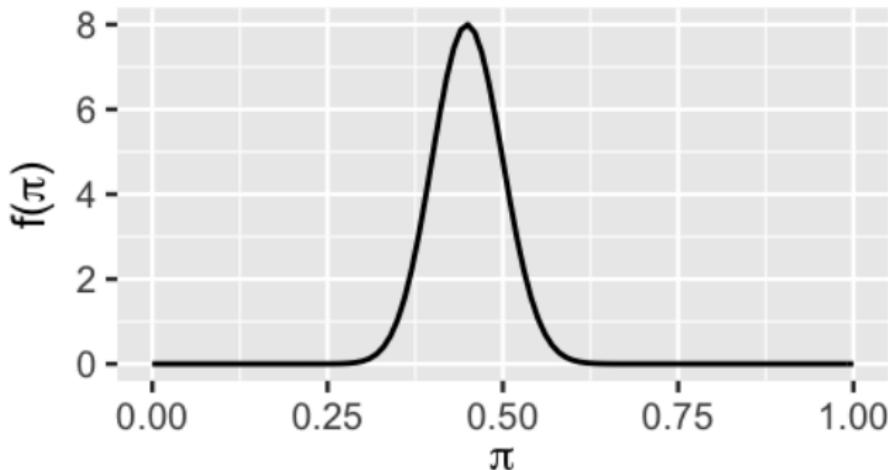
- The standard deviation is the square root of this variance.
- If our prior belief is strong that π is near a certain value, we can pick α and β so that this variance is small.
- If our prior belief is less certain, we can pick α and β so that this variance is large.

Selecting the Hyperparameters of the Beta Distribution

- The `plot_beta` function in the `bayesrules` package allows us to experiment with different values of α and β to find the best fit for our prior beliefs.
- For example, if we believe that π is around 0.45, various combinations of α and β could be used to achieve $E[\pi] = 0.45$.
- Some options include $\alpha = 9$ and $\beta = 11$, $\alpha = 18$ and $\beta = 22$, or $\alpha = 45$ and $\beta = 55$.
- Plotting the $\text{Beta}(45, 55)$ probability density function (pdf) indicates that π is most likely between 0.3 and 0.6.
- For the $\text{Beta}(45, 55)$ distribution, the standard deviation is approximately 0.05, meaning the interval (0.3, 0.6) shows the region which is within three standard deviations of the mean.

Tuning the Beta Prior

- We tune the Beta prior model to reflect our understanding of Michelle's support.
- For example, $\alpha = 45$, $\beta = 55$ reflects an average support around 45%.
- The resulting Beta(45,55) prior captures the typical outcomes and variability observed in the polls.



Modeling with the Binomial Distribution

- Recall the poll which is conducted with 50 randomly selected voters in Minnesota, and the number of supporters of Michelle (denoted as $Y | \pi$) is modeled as a $\text{Binomial}(50, \pi)$ random variable:

$$Y | \pi \sim \text{Binomial}(50, \pi)$$

- The probability mass function (pmf) for this binomial distribution is given by:

$$f(y | \pi) = P(Y = y | \pi) = \binom{50}{y} \pi^y (1 - \pi)^{50-y}.$$

- This pmf answers the question: Given a success probability π , what is the probability that exactly y out of the 50 voters support the candidate?
- The likelihood function describes the probability of observing the data given different values of π .

Outline

Introduction

Beta-Binomial Model

Examples

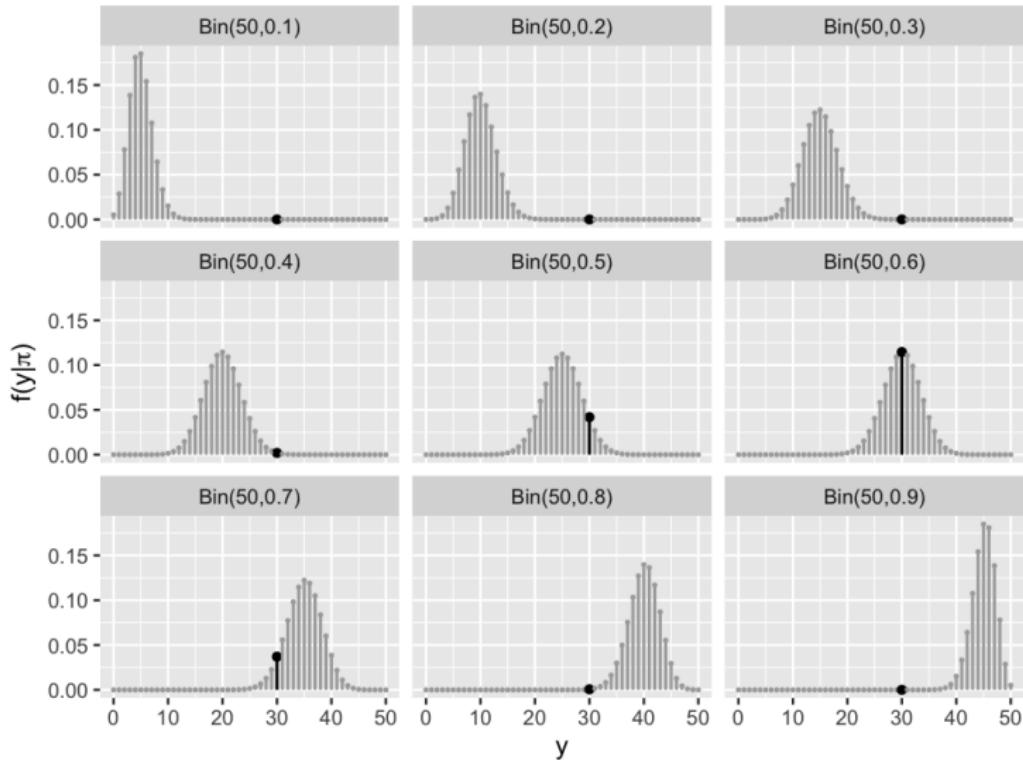
Deciding on the Prior

Likelihood as Data Model

Finding the Posterior

Conjugacy & Inference

The Binomial Data Model



Calculating the Likelihood Using the Binomial Model

- Suppose we find that 30 out of the 50 voters support Michelle. We can then compute the likelihood of π given $y = 30$:

$$L(\pi \mid y = 30) = \binom{50}{30} \pi^{30} (1 - \pi)^{20}.$$

- This likelihood function tells us: Given that 30 voters were supportive, what is the likelihood of any particular binomial probability π ?
- For instance, the likelihood that $\pi = 0.6$ given $y = 30$ is approximately 0.115, while the likelihood that $\pi = 0.5$ given $y = 30$ is approximately 0.042.

Maximizing the Likelihood with the Binomial Model

- Through calculus, it can be demonstrated that the likelihood function is maximized when $\pi = 0.6$.
- Therefore, the estimate $\hat{\pi} = 0.6$, which corresponds to the sample proportion 30/50, is known as the maximum likelihood estimate (MLE) of π for this data set.
- It is important to note that this maximum likelihood estimation method relies solely on the information from the sample data and does not incorporate any prior information about π .

Outline

Introduction

Beta-Binomial Model

Examples

Deciding on the Prior

Likelihood as Data Model

Finding the Posterior

Conjugacy & Inference

The Beta Posterior Model

- The prior distribution provides information about π based on our prior knowledge.
- Example: We might believe that π is close to 0.45 before observing any data.
- The likelihood function, on the other hand, reflects the information from the observed data.
- Example: Based on the data, we might estimate that π is close to 0.6.
- The posterior distribution combines the prior information with the data, updating our belief about π .
- You can use R plots to visually compare the posterior distribution with the prior and the likelihood.

Mathematical Development of the Posterior

- The posterior density function is denoted by $f(\pi | y)$.
According to Bayes' Rule:

$$f(\pi | y) = \frac{f(\pi)f(y | \pi)}{f(y)} = \frac{f(\pi)L(\pi | y)}{f(y)}$$

- The denominator $f(y)$ is simply a normalizing constant, ensuring that the posterior distribution integrates to 1.
- We can simplify this by noting that the posterior is proportional to the product of the prior and the likelihood:

$$f(\pi | y) \propto f(\pi) \times L(\pi | y)$$

- Example: For Michelle:

$$f(\pi | y) \propto \pi^{74}(1 - \pi)^{74}$$

Complete Derivation of Beta-Binomial Bayesian Model

- Suppose we observe n independent Bernoulli(π) random variables X_1, \dots, X_n .
- We wish to estimate the “success probability” π via the Bayesian approach.
- We will use a $\text{Beta}(\alpha, \beta)$ prior for π and show this is a conjugate prior.
- Consider the random variable $Y = \sum_{i=1}^n X_i$, which has a $\text{Binomial}(n, \pi)$ distribution.
- First, write the joint density of Y and π (using $f(\cdot)$ to denote densities, not $p(\cdot)$, to avoid confusion with the parameter π).

Derivation of Beta-Binomial Model

$$\begin{aligned}f(y, \pi) &= f(y|\pi)f(\pi) \\&= \binom{n}{y} \pi^y (1-\pi)^{n-y} \times \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \pi^{\alpha-1} (1-\pi)^{\beta-1} \\&= \frac{\Gamma(n+1)}{\Gamma(y+1)\Gamma(n-y+1)} \times \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \pi^{y+\alpha-1} (1-\pi)^{n-y+\beta-1}\end{aligned}$$

Derivation of Beta-Binomial Model

- Although it is not really necessary, let's derive the marginal density of Y (this pdf is called the Beta-Binomial(n, α, β) distribution):

$$\begin{aligned} f(y) &= \int_0^1 f(y, \pi) d\pi \\ &= \frac{\Gamma(n+1)}{\Gamma(y+1)\Gamma(n-y+1)} \cdot \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} \int_0^1 \pi^{y+\alpha-1} (1-\pi)^{n-y+\beta-1} d\pi \\ &= \frac{\Gamma(n+1)\Gamma(\alpha+\beta)}{\Gamma(y+1)\Gamma(n-y+1)\Gamma(\alpha)\Gamma(\beta)} \cdot \frac{\Gamma(y+\alpha)\Gamma(n-y+\beta)}{\Gamma(n+\alpha+\beta)} \\ &\quad \times \int_0^1 \frac{\Gamma(n+\alpha+\beta)}{\Gamma(y+\alpha)\Gamma(n-y+\beta)} \pi^{y+\alpha-1} (1-\pi)^{n-y+\beta-1} d\pi \\ &= \frac{\Gamma(n+1)\Gamma(\alpha+\beta)}{\Gamma(y+1)\Gamma(n-y+1)\Gamma(\alpha)\Gamma(\beta)} \times \frac{\Gamma(y+\alpha)\Gamma(n-y+\beta)}{\Gamma(n+\alpha+\beta)} \end{aligned}$$

Derivation of Beta-Binomial Model

- Then, the posterior $p(\pi | y) = f(\pi | y)$ is

$$\begin{aligned} f(\pi | y) &= \frac{f(y, \pi)}{f(y)} \\ &= \frac{\frac{\Gamma(n+1)}{\Gamma(y+1)\Gamma(n-y+1)} \cdot \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} \pi^{y+\alpha-1} (1-\pi)^{n-y+\beta-1}}{\frac{\Gamma(n+1)\Gamma(\alpha+\beta)}{\Gamma(y+1)\Gamma(n-y+1)\Gamma(\alpha)\Gamma(\beta)} \cdot \frac{\Gamma(y+\alpha)\Gamma(n-y+\beta)}{\Gamma(n+\alpha+\beta)}} \\ &= \frac{\Gamma(n+\alpha+\beta)}{\Gamma(y+\alpha)\Gamma(n-y+\beta)} \pi^{y+\alpha-1} (1-\pi)^{n-y+\beta-1}, \quad 0 \leq \pi \leq 1. \end{aligned}$$

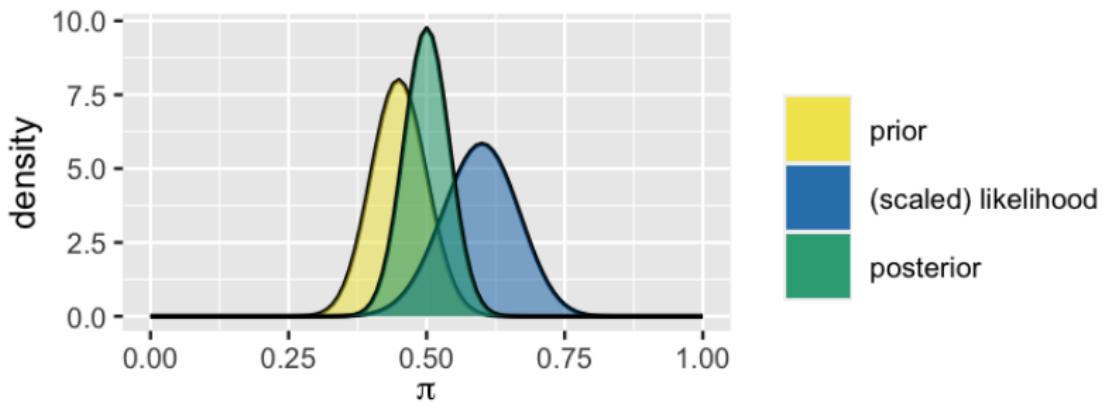
- Clearly, this posterior is a $\text{Beta}(\alpha + y, \beta + n - y)$ distribution.

The Beta Posterior Model

- Combining the prior and data, we construct the posterior model:

$$\pi \mid \mathbf{Y} = 30 \sim \text{Beta}(75, 75)$$

- The posterior model reflects the updated belief about π after incorporating the new poll results.
- The posterior strikes a balance between the prior and the data.



Focusing on the Kernel of the Posterior

- It is important to note that we can disregard all normalizing constants in both the likelihood and the prior.
- By doing so, we are left with only the **kernel** of the posterior distribution.
- In this case, we identify the kernel as corresponding to a $\text{Beta}(75, 75)$ distribution for π .
- Thus, the posterior distribution of π is $\text{Beta}(75, 75)$.

General Formula for the Beta Posterior

- Generally, if $Y | \pi \sim \text{Bin}(n, \pi)$ (data model) and $\pi \sim \text{Beta}(\alpha, \beta)$ (prior model), then the posterior distribution is:

$$\pi | y \sim \text{Beta}(\alpha + y, \beta + n - y).$$

- The posterior expected value (i.e. mean) is:

$$\mathbf{E}[\pi | y] = \frac{\alpha + y}{\alpha + \beta + n}.$$

- The posterior mode is:

$$\text{Mode}[\pi | y] = \frac{\alpha + y - 1}{\alpha + \beta + n - 2}.$$

- The posterior variance is:

$$\text{Var}[\pi | y] = \frac{(\alpha + y)(\beta + n - y)}{(\alpha + \beta + n)^2(\alpha + \beta + n + 1)}.$$

Choosing Point Estimators Based on the Posterior

- Both the posterior mean (expected value) and the posterior mode can serve as estimators for π . Posterior mean is also called Bayes estimator.
- An estimator derived from the posterior distribution takes into account both prior information and the observed data.

Outline

Introduction

Beta-Binomial Model

Examples

Deciding on the Prior

Likelihood as Data Model

Finding the Posterior

Conjugacy & Inference

Conjugate Prior

- A **conjugate prior** is a prior distribution where the posterior distribution belongs to the same family (has the same functional form) as the prior, but with updated parameters.
- For instance, in the Beta-binomial model, the prior distribution is a Beta distribution, and the posterior distribution also remains a Beta distribution—hence, this is a conjugate prior.
- The parameters of the prior distribution represent our initial beliefs (through α and β), while the parameters of the posterior distribution incorporate both the prior beliefs and the data (through α , β , y , and n).

Inference with the Beta-Binomial Model

- Consider using the Bayesian point estimate $\hat{\pi}_B$, which is the posterior mean of π .
- The posterior mean of the Beta distribution is given by:

$$\hat{\pi}_B = \frac{y + \alpha}{\alpha + \beta + n}.$$

- This can also be expressed as a combination:

$$\begin{aligned}\hat{\pi}_B &= \frac{y}{\alpha + \beta + n} + \frac{\alpha}{\alpha + \beta + n}, \\ &= \left(\frac{n}{\alpha + \beta + n} \right) \left(\frac{y}{n} \right) + \left(\frac{\alpha + \beta}{\alpha + \beta + n} \right) \left(\frac{\alpha}{\alpha + \beta} \right)\end{aligned}$$

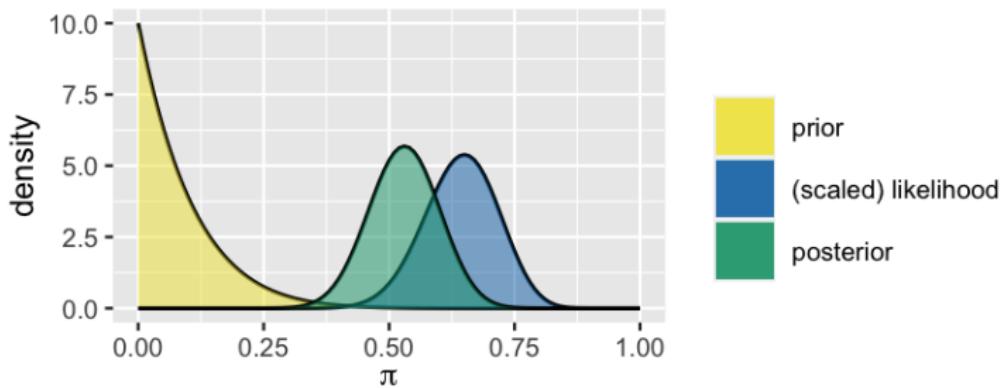
- where the first term is related to the sample data and the second term to the prior information.

Inference with the Beta/Binomial Model

- The Bayesian estimator $\hat{\pi}_B$ is essentially a weighted average of the frequentist estimator (sample mean or proportion of successes) and the prior mean.
- As the sample size n increases, the sample data have more influence, while the prior information becomes less influential.
- In general, with Bayesian estimation, as the sample size grows, the likelihood increasingly dominates the prior.
- For a practical illustration, see the R example using credit card debt data.

Milgram's Behavioral Study

- Milgram's study investigated the propensity to obey authority, even when it might harm others.
- We can analyze the study using the Beta-Binomial framework.
- The prior model $\pi \sim \text{Beta}(1, 10)$ reflects the psychologist's belief that a small proportion of people would obey authority.
- After observing the data, where 26 out of 40 participants administered the most severe shock, the posterior model is $\pi | \mathbf{Y} = 26 \sim \text{Beta}(27, 24)$.



Chapter Summary

- The Beta-Binomial model is a powerful tool for modeling proportions π between 0 and 1.
- The model combines prior information with new data to update beliefs about π .
- The posterior distribution is a Beta distribution with updated parameters reflecting both prior beliefs and observed data.
- This model is applicable in various settings where proportions are of interest, such as election polling, social behavior studies, and more.