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Introduction



Conjugate Families Introduction

e Conjugate prior: A prior distribution is conjugate if the
posterior is in the same family as the prior.

e More formally, a conjugate prior is a prior distribution that,
combined with the data model, results in a posterior
distribution with the same functional form as the prior, but
with updated parameter values.

e Example: For a Beta prior in a Binomial likelihood, the
posterior is also Beta.

e That is, in the Beta-Binomial model, the Beta prior is
conjugate since the posterior is also a Beta distribution.

f(0ly) o< f(8)L(0|ly) = Posterior: Beta(aw +y,B8+n—y)

e This property allows for straightforward posterior analysis.



Revisiting Choice of Prior

e When choosing a prior, we consider:

e Computational ease: Is the posterior easy to compute?
e Interpretability: Can we interpret the prior vs. data
contribution?

¢ Example: Beta-Binomial model
Posterior: Beta(a+y, 5+ n—y)

e The influence of the data depends on the sample size n and y
relative to o and S.



Why are Conjugate Priors Nice?

o Why conjugate priors?
e They make Bayesian analysis easier by simplifying the
computation of the posterior.
e Conjugate priors allow for tractable posterior distributions.
e Conjugate priors are advantageous because:

1. They reduce the computational burden. The posterior can be
derived without complex computations.

2. Posterior models are easy to interpret. It's easier to understand
how the prior and data contribute to the posterior.

e Next, we will explore an example of non-conjugate prior and
then other Bayesian models with conjugate priors.



Non-Conjugate Priors

e Non-conjugate priors make posterior computation harder.

Consider a non-conjugate prior for m:

f(r)=e—¢€", me]0,1]

The resulting posterior:

f(m]ly =10) x (e — e”)ﬂlo(l — 77)40

This posterior is messy and not easy to interpret or compute.



Example: Non-Conjugate Posterior

e A non-conjugate prior leads to complex posterior:

(e — e™)m1O(1 — 7)*0

i (e — em)rl0(1 — m)40dn

f(mly = 10) =

e This is hard to compute, requiring numerical integration.

e Conjugate priors would avoid this complexity.



Gamma-Poisson Conjugate Family



The Poisson Distribution

e The Poisson distribution is a widely used model for count
data, where the possible values are nonnegative integers
(0,1,2,...).

e It is parameterized by A > 0. Given ), the probability mass
function (pmf) of a Poisson random variable Y | A is:

Ne A
iy ==
e For a random sample of n independent counts Y7, Ya,..., Y,,

the likelihood function is the product of the individual pdfs:

FyalNF(v2lA) -~ F(yalN)



Poisson Data Model

e Poisson model: The number of independent events in a fixed

time period.
Y|\ ~ Pois(A)

e The Poisson probability mass function (pmf) is:

e A
fly|A) = )i

e Mean and variance:

E(Y|A\) = Var(Y|A) = A
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Choice of Prior for the Poisson Model

e When modeling data with a Poisson distribution, a suitable
prior for A should have support on (0,00), as A > 0.
e The Gamma distribution is a good choice, as its support is
(0, 00).
e In this class, we use a different parameterization of the
Gamma distribution than in STAT 7600.
e Specifically, we use the Gamma distribution with:
e Shape parameter: s
¢ Rate parameter: r

e The Gamma pdf is:

s
r 1
AS 1e ra

= ,

e Note: The rate parameter r is the reciprocal of the scale

A>0

parameter used in other parameterizations.
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The Gamma/Poisson Bayesian Model

e If the data Yi,..., Y, are iid Poisson(\), then a Gamma(s,
r) prior on \ is conjugate.
o Likelihood:
N a=A )i —nANDYi
e "\ e A
L(\y) = =
Ay) =11 i Ty

i=1

e Prior: <

F(\) = rEs) e A>0

e Posterior (using proportionality):

F(Ay) oc AZYits=le=(ntr)A =y 5 ¢

e The posterior distribution is Gamma(>_ y; +s,n+r),

confirming conjugacy!
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Gamma-Poisson Conjugate Family

e Poisson distribution: A common model for count data.
Yi|A ~ Pois(\)
e The conjugate prior for A\ is a Gamma distribution:
A ~ Gamma(s, r)
e The resulting posterior is also Gamma:

Aly ~ Gamma (s + Zy,-, r+ n)

13



Properties of the Gamma (Mean)

e In the shape/rate parameterization, the mean of the

Gamma(s, r) prior distribution is:

E(\) =

S
r

o We select the hyperparameters s and r based on our prior
beliefs about A.

e The mean of the Gamma()>_ y; + s, n+ r) posterior

distribution is:

ZYi +s
E(\y) = ﬁ

e This posterior mean also serves as a Bayesian estimator of \.
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Properties of the Gamma (Variance)

e Once we have a good estimate of the prior mean of A\, how do
we choose s and r for the prior?

e In the shape/rate parameterization, the variance of the
Gamma(s, r) prior distribution is:

Var(\) = riz

e The prior variance (or standard deviation) helps inform our
choice of s and r.

e Visualizing the potential prior using the plot_gamma()
function in the bayesrules package can assist in selecting
appropriate values for the prior.
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The Posterior Mean in the Gamma/Poisson Bayesian Model

e The posterior mean for \ is:

C X Yits >y s
AB = = +
n—+r n—+r n—+r

e This can be rewritten as:

o= () (B2)+ (5) ©)

e As n — o0, the data receives more weight in the posterior

mean.
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Example: Fraud Risk Phone Calls

e The textbook presents an example involving data on the
number of fraud risk phone calls per day, modeled by a
Poisson distribution.

e The parameter of interest is A, the mean number of fraud risk
calls per day.

e Prior belief: The average number of calls per day is
approximately 5.

e We choose s and r such that s/r = 5.
o Additionally, we believe X is very likely to fall between 2 and 7.

e Let's plot several potential priors with s/r =5 to explore
possible choices (refer to the R examples).
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Plot of Gamma priors with

Gamma(5,1)

0.20-
0.15-
= ot0-
0.05-
0.00-
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Gamma(10.2)

Gamma(15.,3)

Figure 1: Gamma(s, r) priors with s/r = 5. 18



Example: Fraud Risk Phone Calls (Posterior Calculation)

e We choose s = 10 and r = 2, which align with our prior
beliefs.
e That is, we use a Gamma(10, 2) prior: A ~ Gamma(10,2)
e Data collected (n=4): 6,2,2, 1
(Xyi=11 and j =2.75).
e The posterior distribution is:

Gamma (Zy,- +s,n+ r) =

Gamma(1l + 10,4 + 2) = Gamma(21, 6)

e A Bayesian estimate of X is the posterior mean:

21
— =35
6

e Compare this to the prior mean of 5 calls/day.
e Visualize the R plots to see how the data updated our prior

beliefs. 19



Example

: Fraud Risk Phone Calls (Posterior Calculation)

0.4-
2 prior
2
Lo2- . (scaled) likelihood
. posterior
0.0-
] 1 ] ]
0 5 10 15
N

Figure 2: The Gamma-Poisson model of A, the daily rate of fraud risk
calls.
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Posterior Intervals

Bayesian vs Frequentist Intervals

21



Bayesian Inference: Posterior Intervals

e Simple summaries like the posterior mean E[f]y] and
posterior variance Var[f|y] are helpful for understanding 6.

¢ Quantiles of the posterior distribution p(fy), such as the
posterior median, provide additional useful insights about 6.

e The ideal summary of 6 is an interval (or region) with a
specified probability of containing 6.

e Unlike a Bayesian posterior interval, a classical confidence
interval does not directly provide this interpretation.

22



Bayesian Credible Intervals

e A credible interval (or more generally, a credible set) is the
Bayesian counterpart to a confidence interval.

e A 100(1 — ) % credible set C is a subset of the parameter
space © s.t.

/p(e\y)dezl—a
C

e If © is a discrete set, the integral is replaced by a summation.

23



Quantile-Based Intervals

e If 6] is the /2 posterior quantile and 6}, is the 1 — a/2
posterior quantile, then (67,67,) forms a 100(1 - )% credible
interval for 6.

o Key relationships:
P[0 < 0]]y] = % and P[0 > 0]|y] = %
e Therefore, the credible interval satisfies:

PO € (00, 00)ly] =1 — P[0 ¢ (01,00)ly] =1 -«

24



Quantile-Based Intervals: Example

e The figure shows the Gamma(21, 6) posterior distribution.

e The interval between 2.17 and 5.15 represents the central
95% of the posterior distribution.

e This is a 95% credible interval for \, meaning the posterior
probability that A falls within this interval is 0.95.

e The tails on either side represent the remaining 5% of the
distribution, split evenly with 2.5% in each tail.

Gamma(21,6) posterior

area=0.025 area=0.025

L : ‘ - \ 25




Example 2: Quantile-Based Interval

Consider an experiment with 10 flips of a coin, where the

probability of heads is 6.

We observe 2 heads in the experiment.

The number of heads follows a binomial distribution:

1
p10) = (7))o=, y=o01,....10

We assume a uniform prior for 6:

p(0)=1, 0<0<1

26



Example 2: Quantile-Based Interval (Posterior)

e The posterior distribution is given by:

p(Bly) o< p(B)L(0]y) = (1) <1y0) 6 (1 — )10~y

Simplifying:

p(fly) < V(1 —0)10Y, 0<6<1

This is a Beta distribution for 6 with parameters y + 1 and
10—y +1.

Since y = 2, the posterior is:

p(dly = 2) ~ Beta(3,9)

The 0.025 and 0.975 quantiles of Beta(3,9) are (0.0602,
0.5178), forming a 95% credible interval for 6.

27



Example 2: Quantile-Based Interval (Posterior)

Equal-Tailed 95% Credible Interval

25 30
1

Density
15 20

1.0

0.5

0.0
|

Figure 4: 95% equal tail credible interval for Beta(3,9) posterior. -



HPD Intervals / Regions

e The equal-tail credible interval is most effective when the
posterior distribution is symmetric.

e However, if the posterior distribution p(f]y) is skewed, the
equal-tail interval might not be the best choice.

e In such cases, the Highest Posterior Density (HPD)
interval is preferred, as it identifies the region with the highest
posterior probability density that covers a specified probability.

6)
[0 o
Il Il

0%
1

000
I

Figure 5: A skewed posterior distribution. 29



HPD Intervals / Regions

e Notice that values of § around 1 have a much higher
posterior probability than values around 7.5.

e However, in the equal-tail interval, 7.5 is included, while 1 is

not!

e A more appropriate approach in this case is to construct an
HPD interval, which includes the #-values with the highest
posterior density.

30



HPD Intervals / Regions: Definition

e Definition: A 100(1 - a)% HPD region for 6 is a subset
C C © defined as:

C={6: p(oly) > k)
where k is the largest value such that:
[ plelyyds =1-a
C

e The value k can be visualized as a horizontal line over the
posterior density. The intersections of this line with the
posterior density define regions with probability 1 — «.

31



HPD Intervals / Regions: Example

e The figure shows the Gamma(21, 6) posterior distribution
and the corresponding 95% HPD interval.

e The values between 6] = 2.25 and 60, = 4.72 have the highest
posterior density.

e This region contains 90% of the posterior probability:

P{o; <6 < 6} =0.90

Gamma(21,6) posterior

)

32



Example 2: Coin Toss Example

95% HPD Credible Interval

25 30
1

Density
15 20

1.0

0.5

0.0
|

Figure 7: 95% HPD credible interval for Beta(3,9) posterior. 2



HPD Intervals / Regions: Unimodal vs. Multimodal

e The HPD region is an interval when the posterior
distribution is unimodal.

e However, for a multimodal posterior, the HPD region may be
a discontiguous set.

e Example: In a bimodal posterior distribution, the HPD region
might consist of two separate intervals:

{0:0 ¢ (2.85,4.1) U (6.0,7.25)}

Bimodal postarior distribution

/\

i

34



Example 1 Revisited: HPD Interval

e Refer to Canvas for R code to find an HPD interval for A in
the fraud risk call example.

e The 90% quantile-based credible interval for \ is
(2.167,5.148).

e You can also use the hpd () function from the
TeachingDemos package in R to calculate the HPD interval,
yielding (2.345,4.844)

e Check the R code for Example 2 (coin-flipping data) on
Canvas.

35



Introduction
Gamma-Poisson Conjugate Family

Posterior Intervals

Bayesian vs Frequentist Intervals

Normal-Normal Conjugacy
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Bayesian vs Frequentist Coverage

Definition: A random interval (L¢(Y), Us(Y)) has 100(1 — a)%
frequentist coverage for 6 if, before the data are gathered:

PILe(Y) <8 < Ur(Y)|0] =1 — «
(Pre-experimental 1 — « coverage)

Note: If we observe Y =y and plug y into the confidence interval

formula:

0, if0¢(Le(y), Ur(y))
1, if 0 € (Le(y), Ur(y))

(NOT Post-experimental 1 — « coverage)

P[L¢(y) < 0 < Ur(y)|0] =

37



Bayesian vs Frequentist Coverage

Definition: An interval (Lp(y), Up(y)), based on the observed
data Y =y, has 100(1 — «)% Bayesian coverage for 6 if:

PlLo(y) <0 < Us(y)ly] =1—a
(Posterior (i.e. post-experimental) 1 — « coverage)

The frequentist interpretation is less desirable when performing

inference about 6 based on a single interval.

38



Frequentist Coverage for Bayesian Intervals

Hartigan (1966) showed that for standard posterior intervals, an
interval with 100(1 — «)% Bayesian coverage will have:

PILp(Y) < 8 < Up(Y)|0] = (1 — ) + €p,
where |e,| < 2 for some constant a.

That is,

Frequentist coverage (of the Bayesian interval) — 1—« as n — oo.

Note: Many classical confidence interval methods only achieve
100(1 — a)% frequentist coverage asymptotically, as well.

39



Normal-Normal Conjugacy

40



The Normal-Normal Model

e Why is the normal distribution so frequently used to model
data?

e Many quantities in nature are approximately normally
distributed.

e The Central Limit Theorem (CLT) suggests that any
variable that is a sum of independent components will be
approximately normal.

e Additionally, when sampling from a normal population, Y
(sample mean) and S? (sample variance) are independent.

o If beliefs about the mean are independent of beliefs about the
variance, using a normal model is often appropriate.

41



Why Normal Models?

e The normal model is analytically convenient due to its
properties, including being part of the exponential family
and having sufficient statistics Y and S2.

e Inference about the population mean based on a normal
model remains correct as n — oo, even if the data are not
truly normal.

e By assuming a normal likelihood, we can obtain a wide
range of posterior distributions by choosing different priors.

42



A Conjugate Analysis with Normal Data (Variance Known)

Simple scenario: Assume data Yi,..., Y, are iid N(u,c?),
with g unknown and 2 known.

For example, Normal model: Continuous data such as

hippocampal volumes.
The goal is to make inference about p.

The likelihood function is:

n

1 (v.—)2
L(,UJ‘Y) — H(27T02)_1/2€ 702 (yi—n)
i=1

The parameter of interest, u, can take values from —oo to oc.

A conjugate prior for y is 1 ~ N(J,72), with:
p(u) = (27T7'2)_1/2e_2%2(”_6)2

43



A Conjugate Analysis with Normal Data (Variance Known):

Posterior

e The posterior distribution is obtained by combining the

likelihood and the prior: p(u|y) o< p(p)L(ly)
e Substituting in the expressions:

n
x e 22 (h=0)’ H e 32 Vi) _ a5 (=00 o= 5 L (vi—p)?
i=1
e Collecting and simplifying the exponent:

e <—§ (; S 01— 1+ e 0)2))
i=1

111 < 1
= exp (—2 [(72 D7 =2yt ?) + S5 (0 = 206 + %)
i=1

)

of Gaussian terms from the likelihood and the prior. 44

e This expression shows the posterior distribution as a product



A Conjugate Analysis with Normal Data (Variance Known):

Posterior

e The posterior distribution is given by:

p(ply) o exp ( 5 027_2 [ Zy, 27—2n}7u+n7—2u2+02u2202;L5+J262]>

e Simplifying further:
1 1 _

x exp <— 5 52 [/L2(02 +n72) = 2u(80% + 72 ny) + (6%0° 477 Zy?)])

e Finally, the posterior can be written as:
1] ,/1 n 0 ny
e —— 4+ = | -2ul =+ k
vor (g () 2 (5 )+
where k is a constant.
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A Conjugate Analysis with Normal Data (Variance Known):

Final Posterior

e The posterior distribution simplifies to:

e [(52) (- (5+2)) )

e Further simplifying:

-
1 1 n §/7% + ny/o?
p(ly) oc exp > (2 + 2) (M - /y/)

1 n
T o L4+
7'2+(72

e Thus, the posterior distribution is normally distributed as

§/7% + ny/o? 1
'u‘yNN< 1 n 71 n

46



A Conjugate Analysis with Normal Data (Variance Known):

Posterior Summary

e The posterior distribution for i is a normal distribution with:

§/12 + ny/o?

e Mean: I m
=to
-1
. 1 n 7252
e Variance: - T ==
T o o<+ nt

e The precision is the reciprocal of the variance:

L is the prior precision.

e 3 is the data precision.

o L + % is the posterior precision.

47



A Conjugate Analysis with Normal Data (Variance Known):

Posterior Mean

e The posterior mean E[uly] is:
1/72 n/o? _
2/ 20T 2/ 2y

1/m2+n/o 1/m2+n/o

e This is a weighted average of the prior mean ¢§ and the

Eluly] =

sample mean j.

e If the prior is highly precise (small 72), more weight is
placed on ¢.

e If the data are highly precise (large n), more weight is
placed on y.

e As n— oo, E[uly] = y; and Var[uly] = %2 when 72 is large.

e This shows that for large 72 and n, Bayesian and frequentist
inference about p will be nearly identical.

48



A Conjugate Analysis with Normal Data (Mean Known)

e Now assume Yi,..., Y, are iid N(u,c?), with 1 known and
o2 unknown.
e We aim to make inference about o2.
e The likelihood function is:
2 2y-12 no|1¢ 2
L(o”ly) o (0°) 2 exp <—M [n Zl(}/i — ) ])
o Let W =131 (Y;— u)? which is the sufficient statistic.
e The conjugate prior for o2 is the inverse gamma
distribution.
e If Y ~ Gamma(a, ), then 1/Y ~ Inverse Gamma(c, 3).
e The prior for o2 is:
plo?) = £y o) e (5> L 20
where o« > 0 and 8 > 0. 49




A Conjugate Analysis with Normal Data (Mean Known)

e The prior mean and variance of ¢ are:

fora > 2

2 p 2 5
E(c°) = a_lfora> 1; Var(o?) = (a —1)2(a—2)

The posterior distribution for o2 is: p(a?|y) o p(c?)L(c?]y)

Substituting the likelihood and prior:
n _n_ _ﬁ
p(o?ly) o< (0%) 26 27" (0%) (Ve 2

o (02)7e+ 2t exp <—B a gW)

o2

Hence, the posterior distribution is an Inverse Gamma:
5 n n
50459454
ocly o+ > B+ W
where w =150 (y; — ). Conjugate!

2 n ln Y
= o’ly IG<a+2,ﬁ+2;(% N))



A Conjugate Analysis with Normal Data (Mean Known):

Choosing Prior Parameters

e How do we choose the prior parameters o and 37

e The parameters can be determined from the prior mean,

E(0?) = m and variance of 02, Var(c?) = 5,3 :
2
o= 12 +2
Sp

/Bzm<mz2+l>
Sp

e Thus, by making reasonable guesses about m and s2, we can

determine « and 3 for the inverse gamma prior.
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A Model for Normal Data (Mean and Variance Both Unknown)

e When Yi,..., Y, are iid N(u,c?) with both x and o2
unknown, the conjugate prior for 1 depends explicitly on o2,

e The prior for o is:
—(a —B/a?
p(0?) o (o?) (e
e The prior for u|o? is:

1 (=62
p(,u|02)o<(a2)_%e 202/SO(N )

e The parameter sy represents the analyst’'s confidence in the
prior specification.

e When sj is large, it indicates strong confidence in the prior
belief about .
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A Model for Normal Data (Mean and Variance Both Unknown):

Joint Posterior

e The joint posterior distribution for (u, 0?) is:

p(1.02ly) o p(o?)p(ulo?)L (11, 2ly)
e Substituting the likelihood and priors:

1 (u—6)?
O((O’Z)iaifiée by 202/50(11' )

e Expanding the squares in the exponent:

_ (0?)o- ik mr (D2 mi) = (- 2ud 4 7)

53



A Model for Normal Data (Mean and Variance Both Unknown):

Joint Posterior

e Simplifying:
= (02)707575 exp ( 0_2 — T‘Q (Zy, —ny ))

x (o) Lexp < 212 ((n+ so)u? — 2(ny + dso)pu + (ny® + 5052)))

e The second part is a normal kernel for .
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A Model for Normal Data (Mean and Variance Both Unknown):

Posterior for o2

e To obtain the posterior for o2, we integrate out u from the
joint posterior:

p6m=[%w&ww

e This results in:

P(1) o (e (<5 [543 (7 - 7))

since the term involving p integrates to a normalizing
constant.
. n 1 n 1
e Hence, since —a— 7 — 5 = (a+ 5 2)
the posterior for 2 is inverse gamma.

5 n 1 1 _\2
o ‘YN|G<04+2—27ﬁ+2Z(Yi—Y)>

— 1, we see that
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A Model for Normal Data (Mean and Variance Both Unknown):

Posterior for u

e The posterior distribution for i given o2 and y is:

)
p(a?ly)

e After simplification, the posterior is:

p(ulo®.y) =

B 1 _ _
p(plo’,y) oc o~ exp (—ﬁ [(" + s0)u” = 2(ny + dso)p + (ny® + 5052)D

e This simplifies further to:

’ iy 1 2 ny + dso ny* + sp6°
p(ulo,y) o< o exp( 207/ (n T %) i, .

e Clearly, |02,y follows a normal distribution:

ny +0sy o2
n+sy ' n+sg

M|O-27y ~ N <

56



A Model for Normal Data (Mean and Variance Both Unknown):

Limiting Cases

e The conditional posterior mean is a weighted average of the
sample mean y and the prior mean §:

(Fra)7+ (575)?
n—+ sg n—+ sy

e The relative sizes of n and sp determine the weighting of y
(the sample mean) and § (the prior mean):

e When n is large, more weight is placed on y.
e When s; is large, more weight is placed on 4.

e As sy — 0, the posterior distribution for |2,y approaches:
2
_ o
plo®y ~ N (y, n)

57



A Model for Normal Data (Mean and Variance Both Unknown):

Marginal Posterior for 1

e The marginal posterior for 1 is obtained by integrating out o2

p(uly) = /OOO p(p, o°|y) do?

e Substituting the joint posterior:

p(uly) /Ow(gz)agg exp (_2ﬁ+ (s0 + ”)(M_5)2> do?

202

o Letting A =28+ (s + n)(u — 6)? and making the
substitution z = 2%‘2, so 02 = % and do? = —2% dz, we

transform the integral for further simplification.
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A Model for Normal Data (Mean and Variance Both Unknown):

Marginal Posterior for 1

o After substitution, the marginal posterior for 1 becomes:

n_3
/AN Y272 A
p(uly) o / <> S 56 “dz
0 2z 2z

% /AN ]
Simplifying: p(u]y) o</ <> —e ?dz

0 2z z
Factor out terms that don't depend on z:

,a,Q,l o a+ﬂ+l,1 —z
x A 272 zéT2T2 T e % dz
0

The integrand is the kernel of a Gamma distribution, so the
integral is a constant.

Thus, the marginal posterior for i is proportional to:

puly) o A= 7372 = (28 + (so + m)(u = 0)%) 22
59



A Model for Normal Data (Mean and Variance Both Unknown):

Marginal Posterior for 1

e The marginal posterior for i simplifies to:

_ 2a+n+1

p(uly) o< (28 + (so + n)(p — 6)?)

e This can be rewritten as:

( )( 5)2 _ 2a+4n+1
Sso+n)(p— 2

1

p(uly) oc |1+ 23

e This represents a (scaled) noncentral t-distribution kernel

with:
¢ Noncentrality parameter: §
e Degrees of freedom: n+ 2«
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Bayesian Analysis for Normal Data Model

Case Prior Posterior
2+ny/o?
a? known, M N(6’ 7—2) 'uly ~ N (51//7';;://02 ’ 1/72—01—n/02)
1 unknown
& known, 02 ~1G(a, B) oy ~1G (a+ 53,84 33 (vi — 1))
o2 unknown
pand o2 | plo® ~ N(8,0%/s0) | o?ly ~1G (a+ 252, B+ 33 (vi — 7)?)
ny o?
both 0%~ lG(avﬁ) M|U27y ~ N ( ﬁj.fa? n+so)
unknown wly ~ tae(0, n + 2a)

Table 1: Conjugacy Table for Normal Data Model
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Example 1: Midge Data

e Example 1: Yi,..., Yy represent a random sample of midge
wing lengths (in mm), assumed to be iid N(u,o?).

e Example 1(a): If 02 = 0.01 is known, we aim to make
inference about . (See R example)

e The Bayesian point estimate for the population mean midge
wing length is the posterior mean: 1.806 mm.

e A 95% credible interval for p is (1.741,1.871), meaning
there is a 95% posterior probability that the population mean
midge wing length lies between 1.741 and 1.871 mm.
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Example 1: Midge Data (Part 1b)

e Example 1(b): Make inference about both z and o2, both

unknown. (See R example)

e This involves selecting the hyperparameters « and (3 for the

inverse gamma prior on o2.

e The 95% credible interval for o2 is (0.012,0.028), with a
posterior median of 0.0188.
e To approximate the posterior distribution for y:

e Randomly generate values from the posterior distribution of o2.
e For each generated o2, generate values from the posterior
distribution of j|o?.

e The 95% credible interval for 1 is (1.727,1.90), with a
posterior median of 1.81 mm.
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Example 2: Brain Data

The textbook provides an example of Bayesian inference on
the mean hippocampal volume in a population of college
football players with a history of concussions.

Example 2: Y7,..., Y5 represent a random sample of
hippocampal volumes (in cm®) for these football players.
Assume the Y;'s are iid N(u,d?).

Example 2(a): If 0 = 0.5 (i.e., 02 = 0.25), we aim to make
inference about p. We assume a prior distribution for

p~ N(6.5,0.42).

The posterior mean is 5.78 cm?.

With posterior probability 0.95, the mean hippocampal
volume of the population of concussed players is between 5.59
and 5.97 cm3.
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Prior Elicitation for Normal Priors (A Brief Yet Fascinating In-

terlude)

e A challenge is putting “expert opinion” into a form where it

can be used as a prior distribution.

Strategies:

e Requesting guesses for several quantiles (maybe {0.1, 0.25,
0.5, 0.75, 0.9}?) from a few experts.
e For a normal prior, note that a quantile g(«) is related to the
z-value ®~1(a) by:
g(a) = mean + ¢~ 1(a) x (std. dev.)
e Via regression on the provided [g(c), ®~!(«)] values, we can
get estimates for the mean and standard deviation of the
normal prior. See the relevant R code on Canvas. -



Extension to Location-Scale Family Priors

e Many distributions can be expressed as part of the
location-scale family, where a random variable X is modeled
as:

X=0+71Z

e 0 is the location parameter, 7 is the scale parameter, and Z is

a standard distribution.

e Common examples include Normal, Cauchy, Laplace
(Double-Exponential), Exponential, and t-distributions.
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Eliciting Priors: A Quantile-Based Approach

e Similar to normal priors, we can ask experts for quantile
estimates at several probabilities «, such as
{0.1,0.25,0.5,0.75,0.9}.

e For location-scale distributions, the quantiles follow the
general form:
gla) =047 x F(a)
where F~1(a) is the quantile function of the standard version
of the distribution (e.g., standard normal, Cauchy, etc.).

e Use the elicited quantiles g(«) and known quantile functions
F~1(c) to perform regression on pairs [g(a), F~1(c)].

e This allows estimation of the location parameter # and scale
parameter 7.
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Prior Elicitation for Normal Priors (Cont.)

e Another strategy asks the expert to provide a “predictive
modal value” (most “likely” value) for the parameter.

e Then a rough 67% interval is requested from the expert.

e With a normal prior, the length of this interval is twice the
prior standard deviation and the modal value is the mean.

e For a prior on a Bernoulli probability, the “most likely"”
probability of success is often “clear”.
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