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Conjugate Families Introduction

� Conjugate prior: A prior distribution is conjugate if the

posterior is in the same family as the prior.

� More formally, a conjugate prior is a prior distribution that,

combined with the data model, results in a posterior

distribution with the same functional form as the prior, but

with updated parameter values.

� Example: For a Beta prior in a Binomial likelihood, the

posterior is also Beta.

� That is, in the Beta-Binomial model, the Beta prior is

conjugate since the posterior is also a Beta distribution.

f (θ|y) ∝ f (θ)L(θ|y) =⇒ Posterior: Beta(α+ y , β + n − y)

� This property allows for straightforward posterior analysis.
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Revisiting Choice of Prior

� When choosing a prior, we consider:

� Computational ease: Is the posterior easy to compute?

� Interpretability: Can we interpret the prior vs. data

contribution?

� Example: Beta-Binomial model

Posterior: Beta(α+ y , β + n − y)

� The influence of the data depends on the sample size n and y

relative to α and β.

4



Why are Conjugate Priors Nice?

� Why conjugate priors?

� They make Bayesian analysis easier by simplifying the

computation of the posterior.

� Conjugate priors allow for tractable posterior distributions.

� Conjugate priors are advantageous because:

1. They reduce the computational burden. The posterior can be

derived without complex computations.

2. Posterior models are easy to interpret. It’s easier to understand

how the prior and data contribute to the posterior.

� Next, we will explore an example of non-conjugate prior and

then other Bayesian models with conjugate priors.
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Non-Conjugate Priors

� Non-conjugate priors make posterior computation harder.

� Consider a non-conjugate prior for π:

f (π) = e − eπ, π ∈ [0, 1]

� The resulting posterior:

f (π|y = 10) ∝ (e − eπ)π10(1− π)40

� This posterior is messy and not easy to interpret or compute.

6



Example: Non-Conjugate Posterior

� A non-conjugate prior leads to complex posterior:

f (π|y = 10) =
(e − eπ)π10(1− π)40∫ 1

0 (e − eπ)π10(1− π)40dπ

� This is hard to compute, requiring numerical integration.

� Conjugate priors would avoid this complexity.
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The Poisson Distribution

� The Poisson distribution is a widely used model for count

data, where the possible values are nonnegative integers

(0, 1, 2, . . .).

� It is parameterized by λ > 0. Given λ, the probability mass

function (pmf) of a Poisson random variable Y | λ is:

f (y |λ) = λye−λ

y !

� For a random sample of n independent counts Y1,Y2, . . . ,Yn,

the likelihood function is the product of the individual pdfs:

f (y1|λ)f (y2|λ) · · · f (yn|λ)
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Poisson Data Model

� Poisson model: The number of independent events in a fixed

time period.

Y |λ ∼ Pois(λ)

� The Poisson probability mass function (pmf) is:

f (y |λ) = λye−λ

y !

� Mean and variance:

E(Y |λ) = Var(Y |λ) = λ
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Choice of Prior for the Poisson Model

� When modeling data with a Poisson distribution, a suitable

prior for λ should have support on (0,∞), as λ > 0.

� The Gamma distribution is a good choice, as its support is

(0,∞).

� In this class, we use a different parameterization of the

Gamma distribution than in STAT 7600.
� Specifically, we use the Gamma distribution with:

� Shape parameter: s

� Rate parameter: r

� The Gamma pdf is:

f (λ) =
r s

Γ(s)
λs−1e−rλ, λ > 0

� Note: The rate parameter r is the reciprocal of the scale

parameter used in other parameterizations.
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The Gamma/Poisson Bayesian Model

� If the data Y1, . . . ,Yn are iid Poisson(λ), then a Gamma(s,

r) prior on λ is conjugate.

� Likelihood:

L(λ|y) =
n∏

i=1

e−λλyi

yi !
=

e−nλλ
∑

yi∏n
i=1 yi !

� Prior:

f (λ) =
r s

Γ(s)
λs−1e−rλ, λ > 0

� Posterior (using proportionality):

f (λ|y) ∝ λ
∑

yi+s−1e−(n+r)λ, λ > 0

� The posterior distribution is Gamma(
∑

yi + s, n + r),

confirming conjugacy!
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Gamma-Poisson Conjugate Family

� Poisson distribution: A common model for count data.

Yi |λ ∼ Pois(λ)

� The conjugate prior for λ is a Gamma distribution:

λ ∼ Gamma(s, r)

� The resulting posterior is also Gamma:

λ|y ∼ Gamma
(
s +

∑
yi , r + n

)
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Properties of the Gamma (Mean)

� In the shape/rate parameterization, the mean of the

Gamma(s, r) prior distribution is:

E(λ) =
s

r

� We select the hyperparameters s and r based on our prior

beliefs about λ.

� The mean of the Gamma(
∑

yi + s, n + r) posterior

distribution is:

E(λ|y) =
∑

yi + s

n + r

� This posterior mean also serves as a Bayesian estimator of λ.
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Properties of the Gamma (Variance)

� Once we have a good estimate of the prior mean of λ, how do

we choose s and r for the prior?

� In the shape/rate parameterization, the variance of the

Gamma(s, r) prior distribution is:

Var(λ) =
s

r2

� The prior variance (or standard deviation) helps inform our

choice of s and r .

� Visualizing the potential prior using the plot gamma()

function in the bayesrules package can assist in selecting

appropriate values for the prior.
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The Posterior Mean in the Gamma/Poisson Bayesian Model

� The posterior mean for λ is:

λ̂B =

∑
yi + s

n + r
=

∑
yi

n + r
+

s

n + r

� This can be rewritten as:

λ̂B =

(
n

n + r

)(∑
yi
n

)
+

(
r

n + r

)(s
r

)
� As n → ∞, the data receives more weight in the posterior

mean.
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Example: Fraud Risk Phone Calls

� The textbook presents an example involving data on the

number of fraud risk phone calls per day, modeled by a

Poisson distribution.

� The parameter of interest is λ, the mean number of fraud risk

calls per day.

� Prior belief: The average number of calls per day is

approximately 5.

� We choose s and r such that s/r = 5.

� Additionally, we believe λ is very likely to fall between 2 and 7.

� Let’s plot several potential priors with s/r = 5 to explore

possible choices (refer to the R examples).
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Plot of Gamma priors with s/r = 5

Figure 1: Gamma(s, r) priors with s/r = 5. 18



Example: Fraud Risk Phone Calls (Posterior Calculation)

� We choose s = 10 and r = 2, which align with our prior

beliefs.

� That is, we use a Gamma(10, 2) prior: λ ∼ Gamma(10, 2)

� Data collected (n = 4): 6, 2, 2, 1

(
∑

yi = 11 and ȳ = 2.75).

� The posterior distribution is:

Gamma
(∑

yi + s, n + r
)
=

Gamma(11 + 10, 4 + 2) = Gamma(21, 6)

� A Bayesian estimate of λ is the posterior mean:

21

6
= 3.5

� Compare this to the prior mean of 5 calls/day.

� Visualize the R plots to see how the data updated our prior

beliefs.
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Example: Fraud Risk Phone Calls (Posterior Calculation)

Figure 2: The Gamma-Poisson model of λ, the daily rate of fraud risk

calls.
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Bayesian Inference: Posterior Intervals

� Simple summaries like the posterior mean E[θ|y] and
posterior variance Var[θ|y] are helpful for understanding θ.

� Quantiles of the posterior distribution p(θ|y), such as the

posterior median, provide additional useful insights about θ.

� The ideal summary of θ is an interval (or region) with a

specified probability of containing θ.

� Unlike a Bayesian posterior interval, a classical confidence

interval does not directly provide this interpretation.
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Bayesian Credible Intervals

� A credible interval (or more generally, a credible set) is the

Bayesian counterpart to a confidence interval.

� A 100(1− α) % credible set C is a subset of the parameter

space Θ s.t.: ∫
C
p(θ|y) dθ = 1− α

� If Θ is a discrete set, the integral is replaced by a summation.
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Quantile-Based Intervals

� If θ∗L is the α/2 posterior quantile and θ∗U is the 1− α/2

posterior quantile, then (θ∗L, θ
∗
U) forms a 100(1 - α)% credible

interval for θ.

� Key relationships:

P[θ < θ∗L|y] =
α

2
and P[θ > θ∗U |y] =

α

2

� Therefore, the credible interval satisfies:

P[θ ∈ (θ∗L, θ
∗
U)|y] = 1− P[θ /∈ (θ∗L, θ

∗
U)|y] = 1− α
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Quantile-Based Intervals: Example

� The figure shows the Gamma(21, 6) posterior distribution.

� The interval between 2.17 and 5.15 represents the central

95% of the posterior distribution.

� This is a 95% credible interval for λ, meaning the posterior

probability that λ falls within this interval is 0.95.

� The tails on either side represent the remaining 5% of the

distribution, split evenly with 2.5% in each tail.

Figure 3: Between 2.17 and 5.15 is the posterior probability of 0.95.
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Example 2: Quantile-Based Interval

� Consider an experiment with 10 flips of a coin, where the

probability of heads is θ.

� We observe 2 heads in the experiment.

� The number of heads follows a binomial distribution:

p(y |θ) =
(
10

y

)
θy (1− θ)10−y , y = 0, 1, . . . , 10

� We assume a uniform prior for θ:

p(θ) = 1, 0 ≤ θ ≤ 1
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Example 2: Quantile-Based Interval (Posterior)

� The posterior distribution is given by:

p(θ|y) ∝ p(θ)L(θ|y) = (1)

(
10

y

)
θy (1− θ)10−y

� Simplifying:

p(θ|y) ∝ θy (1− θ)10−y , 0 ≤ θ ≤ 1

� This is a Beta distribution for θ with parameters y + 1 and

10− y + 1.

� Since y = 2, the posterior is:

p(θ|y = 2) ∼ Beta(3, 9)

� The 0.025 and 0.975 quantiles of Beta(3, 9) are (0.0602,

0.5178), forming a 95% credible interval for θ.
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Example 2: Quantile-Based Interval (Posterior)

Figure 4: 95% equal tail credible interval for Beta(3, 9) posterior.
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HPD Intervals / Regions

� The equal-tail credible interval is most effective when the

posterior distribution is symmetric.

� However, if the posterior distribution p(θ|y) is skewed, the
equal-tail interval might not be the best choice.

� In such cases, the Highest Posterior Density (HPD)

interval is preferred, as it identifies the region with the highest

posterior probability density that covers a specified probability.

Figure 5: A skewed posterior distribution. 29



HPD Intervals / Regions

� Notice that values of θ around 1 have a much higher

posterior probability than values around 7.5.

� However, in the equal-tail interval, 7.5 is included, while 1 is

not!

� A more appropriate approach in this case is to construct an

HPD interval, which includes the θ-values with the highest

posterior density.
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HPD Intervals / Regions: Definition

� Definition: A 100(1 - α)% HPD region for θ is a subset

C ⊂ Θ defined as:

C = {θ : p(θ|y) ≥ k}

where k is the largest value such that:∫
C
p(θ|y) dθ = 1− α

� The value k can be visualized as a horizontal line over the

posterior density. The intersections of this line with the

posterior density define regions with probability 1− α.
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HPD Intervals / Regions: Example

� The figure shows the Gamma(21, 6) posterior distribution

and the corresponding 95% HPD interval.

� The values between θ∗L = 2.25 and θ∗U = 4.72 have the highest

posterior density.

� This region contains 90% of the posterior probability:

P{θ∗L < θ < θ∗U} = 0.90

Figure 6: 95% HPD Interval for Γ(21, 6).
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Example 2: Coin Toss Example

Figure 7: 95% HPD credible interval for Beta(3, 9) posterior.
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HPD Intervals / Regions: Unimodal vs. Multimodal

� The HPD region is an interval when the posterior

distribution is unimodal.

� However, for a multimodal posterior, the HPD region may be

a discontiguous set.

� Example: In a bimodal posterior distribution, the HPD region

might consist of two separate intervals:

{θ : θ ∈ (2.85, 4.1) ∪ (6.0, 7.25)}

Figure 8: HPD region for a bimodal posterior distribution.
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Example 1 Revisited: HPD Interval

� Refer to Canvas for R code to find an HPD interval for λ in

the fraud risk call example.

� The 90% quantile-based credible interval for λ is

(2.167, 5.148).

� You can also use the hpd() function from the

TeachingDemos package in R to calculate the HPD interval,

yielding (2.345, 4.844)

� Check the R code for Example 2 (coin-flipping data) on

Canvas.
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Bayesian vs Frequentist Coverage

Definition: A random interval (Lf (Y),Uf (Y)) has 100(1− α)%

frequentist coverage for θ if, before the data are gathered:

P[Lf (Y) < θ < Uf (Y)|θ] = 1− α

(Pre-experimental 1− α coverage)

Note: If we observe Y = y and plug y into the confidence interval

formula:

P[Lf (y) < θ < Uf (y)|θ] =

0, if θ /∈ (Lf (y),Uf (y))

1, if θ ∈ (Lf (y),Uf (y))

(NOT Post-experimental 1− α coverage)
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Bayesian vs Frequentist Coverage

Definition: An interval (Lb(y),Ub(y)), based on the observed

data Y = y, has 100(1− α)% Bayesian coverage for θ if:

P[Lb(y) < θ < Ub(y)|y] = 1− α

(Posterior (i.e. post-experimental) 1− α coverage)

The frequentist interpretation is less desirable when performing

inference about θ based on a single interval.
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Frequentist Coverage for Bayesian Intervals

Hartigan (1966) showed that for standard posterior intervals, an

interval with 100(1− α)% Bayesian coverage will have:

P[Lb(Y) < θ < Ub(Y)|θ] = (1− α) + ϵn,

where |ϵn| < a
n for some constant a.

That is,

Frequentist coverage (of the Bayesian interval) → 1−α as n → ∞.

Note: Many classical confidence interval methods only achieve

100(1− α)% frequentist coverage asymptotically, as well.
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The Normal-Normal Model

� Why is the normal distribution so frequently used to model

data?

� Many quantities in nature are approximately normally

distributed.

� The Central Limit Theorem (CLT) suggests that any

variable that is a sum of independent components will be

approximately normal.

� Additionally, when sampling from a normal population, Ȳ

(sample mean) and S2 (sample variance) are independent.

� If beliefs about the mean are independent of beliefs about the

variance, using a normal model is often appropriate.
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Why Normal Models?

� The normal model is analytically convenient due to its

properties, including being part of the exponential family

and having sufficient statistics Ȳ and S2.

� Inference about the population mean based on a normal

model remains correct as n → ∞, even if the data are not

truly normal.

� By assuming a normal likelihood, we can obtain a wide

range of posterior distributions by choosing different priors.
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A Conjugate Analysis with Normal Data (Variance Known)

� Simple scenario: Assume data Y1, . . . ,Yn are iid N(µ, σ2),

with µ unknown and σ2 known.

� For example, Normal model: Continuous data such as

hippocampal volumes.

� The goal is to make inference about µ.

� The likelihood function is:

L(µ|y) =
n∏

i=1

(2πσ2)−1/2e−
1

2σ2 (yi−µ)2

� The parameter of interest, µ, can take values from −∞ to ∞.

� A conjugate prior for µ is µ ∼ N(δ, τ2), with:

p(µ) = (2πτ2)−1/2e−
1

2τ2
(µ−δ)2
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A Conjugate Analysis with Normal Data (Variance Known):

Posterior

� The posterior distribution is obtained by combining the

likelihood and the prior: p(µ|y) ∝ p(µ)L(µ|y)
� Substituting in the expressions:

∝ e−
1

2τ2
(µ−δ)2

n∏
i=1

e−
1

2σ2 (yi−µ)2 = e−
1

2τ2
(µ−δ)2e−

1
2σ2

∑n
i=1(yi−µ)2

� Collecting and simplifying the exponent:

= exp

(
−1

2

(
1

σ2

n∑
i=1

(yi − µ)2 +
1

τ2
(µ− θ)2

))

= exp

(
−1

2

[
1

σ2

n∑
i=1

(y2i − 2yiµ+ µ2) +
1

τ2
(µ2 − 2µδ + δ2)

])
� This expression shows the posterior distribution as a product

of Gaussian terms from the likelihood and the prior. 44



A Conjugate Analysis with Normal Data (Variance Known):

Posterior

� The posterior distribution is given by:

p(µ|y) ∝ exp

(
−1

2
· 1

σ2τ 2

[
τ 2
∑

y 2
i −2τ 2nȳµ+nτ 2µ2+σ2µ2−2σ2µδ+σ2δ2

])

� Simplifying further:

∝ exp

(
− 1

2
· 1

σ2τ 2

[
µ2(σ2+nτ 2)−2µ(δσ2+τ 2nȳ)+(δ2σ2+τ 2

∑
y 2
i )
])

� Finally, the posterior can be written as:

∝ exp

(
−1

2

[
µ2

(
1

τ2
+

n

σ2

)
− 2µ

(
δ

τ2
+

nȳ

σ2

)
+ k

])
where k is a constant.
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A Conjugate Analysis with Normal Data (Variance Known):

Final Posterior

� The posterior distribution simplifies to:

p(µ|y) ∝ exp

(
−1

2

[(
1

τ 2
+

n

σ2

)(
µ2 − 2µ

(
δ

τ 2
+

nȳ

σ2

))
+ k

])
� Further simplifying:

p(µ|y) ∝ exp

−1

2

( 1

τ2
+

n

σ2

)(
µ− δ/τ2 + nȳ/σ2

1
τ2

+ n
σ2

)2


� Thus, the posterior distribution is normally distributed as

µ|y ∼ N

(
δ/τ2 + nȳ/σ2

1
τ2

+ n
σ2

,
1

1
τ2

+ n
σ2

)
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A Conjugate Analysis with Normal Data (Variance Known):

Posterior Summary

� The posterior distribution for µ is a normal distribution with:

� Mean:
δ/τ 2 + nȳ/σ2

1
τ 2 +

n
σ2

� Variance:

(
1

τ 2
+

n

σ2

)−1

=
τ 2σ2

σ2 + nτ 2

� The precision is the reciprocal of the variance:

�
1
τ 2 is the prior precision.

�
n
σ2 is the data precision.

�
1
τ 2 +

n
σ2 is the posterior precision.
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A Conjugate Analysis with Normal Data (Variance Known):

Posterior Mean

� The posterior mean E[µ|y] is:

E[µ|y] = 1/τ2

1/τ2 + n/σ2
δ +

n/σ2

1/τ2 + n/σ2
ȳ

� This is a weighted average of the prior mean δ and the

sample mean ȳ .

� If the prior is highly precise (small τ2), more weight is

placed on δ.

� If the data are highly precise (large n), more weight is

placed on ȳ .

� As n → ∞, E[µ|y] ≈ ȳ ; and Var[µ|y] ≈ σ2

n when τ2 is large.

� This shows that for large τ2 and n, Bayesian and frequentist

inference about µ will be nearly identical.
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A Conjugate Analysis with Normal Data (Mean Known)

� Now assume Y1, . . . ,Yn are iid N(µ, σ2), with µ known and

σ2 unknown.

� We aim to make inference about σ2.

� The likelihood function is:

L(σ2|y) ∝ (σ2)−
n
2 exp

(
− n

2σ2

[
1

n

n∑
i=1

(yi − µ)2

])
� Let W = 1

n

∑n
i=1(Yi − µ)2, which is the sufficient statistic.

� The conjugate prior for σ2 is the inverse gamma

distribution.

� If Y ∼ Gamma(α, β), then 1/Y ∼ Inverse Gamma(α, β).

� The prior for σ2 is:

p(σ2) =
βα

Γ(α)
(σ2)−(α+1) exp

(
− β

σ2

)
, σ2 > 0

where α > 0 and β > 0. 49



A Conjugate Analysis with Normal Data (Mean Known)

� The prior mean and variance of σ2 are:

E(σ2) =
β

α− 1
for α > 1; Var(σ2) =

β2

(α− 1)2(α− 2)
for α > 2

� The posterior distribution for σ2 is: p(σ2|y) ∝ p(σ2)L(σ2|y)
� Substituting the likelihood and prior:

p(σ2|y) ∝ (σ2)−
n
2 e−

n
2σ2w (σ2)−(α+1)e−

β

σ2

∝ (σ2)−(α+ n
2
+1) exp

(
−
β + n

2w

σ2

)
� Hence, the posterior distribution is an Inverse Gamma:

σ2|y ∼ IG
(
α+

n

2
, β +

n

2
w
)

where w = 1
n

∑n
i=1(yi − µ)2. Conjugate!

� =⇒ σ2|y ∼ IG

(
α+

n

2
, β +

1

2

n∑
i=1

(yi − µ)2

)
50



A Conjugate Analysis with Normal Data (Mean Known):

Choosing Prior Parameters

� How do we choose the prior parameters α and β?

� The parameters can be determined from the prior mean,

E(σ2) = m and variance of σ2, Var(σ2) = s2p :

α =
m2

s2p
+ 2

β = m

(
m2

s2p
+ 1

)
� Thus, by making reasonable guesses about m and s2p , we can

determine α and β for the inverse gamma prior.
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A Model for Normal Data (Mean and Variance Both Unknown)

� When Y1, . . . ,Yn are iid N(µ, σ2) with both µ and σ2

unknown, the conjugate prior for µ depends explicitly on σ2.

� The prior for σ2 is:

p(σ2) ∝ (σ2)−(α+1)e−β/σ2

� The prior for µ|σ2 is:

p(µ|σ2) ∝ (σ2)−
1
2 e

− 1
2σ2/s0

(µ−δ)2

� The parameter s0 represents the analyst’s confidence in the

prior specification.

� When s0 is large, it indicates strong confidence in the prior

belief about µ.
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A Model for Normal Data (Mean and Variance Both Unknown):

Joint Posterior

� The joint posterior distribution for (µ, σ2) is:

p(µ, σ2|y) ∝ p(σ2)p(µ|σ2)L(µ, σ2|y)

� Substituting the likelihood and priors:

∝ (σ2)−α− n
2−

3
2 e

− 1
2σ2

∑n
i=1(yi−µ)2− 1

2σ2/s0
(µ−δ)2

∝ (σ2)−α− n
2−

3
2 exp

(
− β

σ2
− 1

2σ2

(
n∑

i=1

(yi − µ)2 +
1

s0
(µ− δ)2

))

� Expanding the squares in the exponent:

= (σ2)−α− n
2
− 3

2 e
− 1

2σ2 (
∑

y2
i −2nȳµ+nµ2)− 1

2σ2/s0
(µ2−2µδ+δ2)
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A Model for Normal Data (Mean and Variance Both Unknown):

Joint Posterior

� Simplifying:

= (σ2)−α− n
2−

1
2 exp

(
− β

σ2
− 1

2σ2

(∑
y2
i − nȳ2

))

×(σ2)−1 exp

(
− 1

2σ2

(
(n + s0)µ

2 − 2(nȳ + δs0)µ+ (nȳ2 + s0δ
2)
))

� The second part is a normal kernel for µ.
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A Model for Normal Data (Mean and Variance Both Unknown):

Posterior for σ2

� To obtain the posterior for σ2, we integrate out µ from the

joint posterior:

p(σ2|y) =
∫ ∞

−∞
p(µ, σ2|y) dµ

� This results in:

p(σ2|y) ∝ (σ2)−α− n
2
− 1

2 exp

(
− 1

σ2

[
β +

1

2

(∑
y2i − nȳ2

)])
since the term involving µ integrates to a normalizing

constant.

� Hence, since −α− n
2 − 1

2 = −
(
α+ n

2 − 1
2

)
− 1, we see that

the posterior for σ2 is inverse gamma.

σ2|y ∼ IG

(
α+

n

2
− 1

2
, β +

1

2

∑
(yi − ȳ)2

)
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A Model for Normal Data (Mean and Variance Both Unknown):

Posterior for µ

� The posterior distribution for µ given σ2 and y is:

p(µ|σ2, y) =
p(µ, σ2|y)
p(σ2|y)

� After simplification, the posterior is:

p(µ|σ2, y) ∝ σ−2 exp

(
− 1

2σ2

[
(n + s0)µ

2 − 2(nȳ + δs0)µ+ (nȳ 2 + s0δ
2)
])

� This simplifies further to:

p(µ|σ2, y) ∝ σ−2 exp

(
− 1

2σ2/(n + s0)

[
µ2 − 2

nȳ + δs0
n + s0

µ+
nȳ 2 + s0δ

2

n + s0

])
� Clearly, µ|σ2, y follows a normal distribution:

µ|σ2, y ∼ N

(
nȳ + δs0
n + s0

,
σ2

n + s0

)
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A Model for Normal Data (Mean and Variance Both Unknown):

Limiting Cases

� The conditional posterior mean is a weighted average of the

sample mean ȳ and the prior mean δ:(
n

n + s0

)
ȳ +

(
s0

n + s0

)
δ

� The relative sizes of n and s0 determine the weighting of ȳ
(the sample mean) and δ (the prior mean):

� When n is large, more weight is placed on ȳ .

� When s0 is large, more weight is placed on δ.

� As s0 → 0, the posterior distribution for µ|σ2, y approaches:

µ|σ2, y ∼ N

(
ȳ ,

σ2

n

)
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A Model for Normal Data (Mean and Variance Both Unknown):

Marginal Posterior for µ

� The marginal posterior for µ is obtained by integrating out σ2:

p(µ|y) =
∫ ∞

0
p(µ, σ2|y) dσ2

� Substituting the joint posterior:

p(µ|y) ∝
∫ ∞

0

(σ2)−α− n
2−

3
2 exp

(
−2β + (s0 + n)(µ− δ)2

2σ2

)
dσ2

� Letting A = 2β + (s0 + n)(µ− δ)2 and making the

substitution z = A
2σ2 , so σ2 = A

2z and dσ2 = − A
2z2

dz , we

transform the integral for further simplification.
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A Model for Normal Data (Mean and Variance Both Unknown):

Marginal Posterior for µ

� After substitution, the marginal posterior for µ becomes:

p(µ|y) ∝
∫ ∞

0

(
A

2z

)−α− n
2
− 3

2 A

2z2
e−z dz

� Simplifying: p(µ|y) ∝
∫ ∞

0

(
A

2z

)−α− n
2
− 1

2 1

z
e−z dz

� Factor out terms that don’t depend on z :

∝ A−α− n
2
− 1

2

∫ ∞

0
zα+

n
2
+ 1

2
−1e−z dz

� The integrand is the kernel of a Gamma distribution, so the

integral is a constant.

� Thus, the marginal posterior for µ is proportional to:

p(µ|y) ∝ A−α− n
2
− 1

2 =
(
2β + (s0 + n)(µ− δ)2

)−α− n
2
− 1

2
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A Model for Normal Data (Mean and Variance Both Unknown):

Marginal Posterior for µ

� The marginal posterior for µ simplifies to:

p(µ|y) ∝
(
2β + (s0 + n)(µ− δ)2

)− 2α+n+1
2

� This can be rewritten as:

p(µ|y) ∝
[
1 +

(s0 + n)(µ− δ)2

2β

]− 2α+n+1
2

� This represents a (scaled) noncentral t-distribution kernel
with:

� Noncentrality parameter: δ

� Degrees of freedom: n + 2α
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Bayesian Analysis for Normal Data Model

Case Prior Posterior

σ2 known, µ ∼ N(δ, τ 2) µ|y ∼ N
(

δ/τ 2+nȳ/σ2

1/τ 2+n/σ2 ,
1

1/τ 2+n/σ2

)
µ unknown

µ known, σ2 ∼ IG(α, β) σ2|y ∼ IG
(
α+ n

2 , β + 1
2

∑
(yi − µ)2

)
σ2 unknown

µ and σ2 µ|σ2 ∼ N(δ, σ2/s0) σ2|y ∼ IG
(
α+ n−1

2 , β + 1
2

∑
(yi − ȳ)2

)
both σ2 ∼ IG(α, β) µ|σ2, y ∼ N

(
nȳ+s0δ
n+s0

, σ2

n+s0

)
unknown µ|y ∼ tnc(δ, n + 2α)

Table 1: Conjugacy Table for Normal Data Model
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Example 1: Midge Data

� Example 1: Y1, . . . ,Y9 represent a random sample of midge

wing lengths (in mm), assumed to be iid N(µ, σ2).

� Example 1(a): If σ2 = 0.01 is known, we aim to make

inference about µ. (See R example)

� The Bayesian point estimate for the population mean midge

wing length is the posterior mean: 1.806 mm.

� A 95% credible interval for µ is (1.741, 1.871), meaning

there is a 95% posterior probability that the population mean

midge wing length lies between 1.741 and 1.871 mm.
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Example 1: Midge Data (Part 1b)

� Example 1(b): Make inference about both µ and σ2, both

unknown. (See R example)

� This involves selecting the hyperparameters α and β for the

inverse gamma prior on σ2.

� The 95% credible interval for σ2 is (0.012, 0.028), with a

posterior median of 0.0188.

� To approximate the posterior distribution for µ:

� Randomly generate values from the posterior distribution of σ2.

� For each generated σ2, generate values from the posterior

distribution of µ|σ2.

� The 95% credible interval for µ is (1.727, 1.90), with a

posterior median of 1.81 mm.
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Example 2: Brain Data

� The textbook provides an example of Bayesian inference on

the mean hippocampal volume in a population of college

football players with a history of concussions.

� Example 2: Y1, . . . ,Y25 represent a random sample of

hippocampal volumes (in cm3) for these football players.

Assume the Yi ’s are iid N(µ, σ2).

� Example 2(a): If σ = 0.5 (i.e., σ2 = 0.25), we aim to make

inference about µ. We assume a prior distribution for

µ ∼ N(6.5, 0.42).

� The posterior mean is 5.78 cm3.

� With posterior probability 0.95, the mean hippocampal

volume of the population of concussed players is between 5.59

and 5.97 cm3.
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Prior Elicitation for Normal Priors (A Brief Yet Fascinating In-

terlude)

� A challenge is putting “expert opinion” into a form where it

can be used as a prior distribution.

Strategies:

� Requesting guesses for several quantiles (maybe {0.1, 0.25,
0.5, 0.75, 0.9}?) from a few experts.

� For a normal prior, note that a quantile q(α) is related to the

z-value Φ−1(α) by:

q(α) = mean + Φ−1(α)× (std. dev.)

� Via regression on the provided
[
q(α),Φ−1(α)

]
values, we can

get estimates for the mean and standard deviation of the

normal prior. See the relevant R code on Canvas.
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Extension to Location-Scale Family Priors

� Many distributions can be expressed as part of the

location-scale family, where a random variable X is modeled

as:

X = θ + τZ

� θ is the location parameter, τ is the scale parameter, and Z is

a standard distribution.

� Common examples include Normal, Cauchy, Laplace

(Double-Exponential), Exponential, and t-distributions.
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Eliciting Priors: A Quantile-Based Approach

� Similar to normal priors, we can ask experts for quantile

estimates at several probabilities α, such as

{0.1, 0.25, 0.5, 0.75, 0.9}.
� For location-scale distributions, the quantiles follow the

general form:

q(α) = θ + τ × F−1(α)

where F−1(α) is the quantile function of the standard version

of the distribution (e.g., standard normal, Cauchy, etc.).

� Use the elicited quantiles q(α) and known quantile functions

F−1(α) to perform regression on pairs
[
q(α),F−1(α)

]
.

� This allows estimation of the location parameter θ and scale

parameter τ .
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Prior Elicitation for Normal Priors (Cont.)

� Another strategy asks the expert to provide a “predictive

modal value” (most “likely” value) for the parameter.

� Then a rough 67% interval is requested from the expert.

� With a normal prior, the length of this interval is twice the

prior standard deviation and the modal value is the mean.

� For a prior on a Bernoulli probability, the “most likely”

probability of success is often “clear”.
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