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Introduction



Chapter 4 - The Bayesian Prior

e In Bayesian analysis, a prior distribution must be specified.

e The choice of prior can significantly influence posterior
conclusions, particularly with small sample sizes.

o Next, we will explore several key methods for determining
prior distributions.



Conjugate Priors

e Conjugacy refers to a prior and likelihood combination where
the posterior distribution maintains the same form as the
prior, with updated parameters.

e Examples of conjugate priors:

Bernoulli likelihood — Beta prior for p

Poisson likelihood — Gamma prior for A

Normal (with unknown 1) likelihood — Normal prior for p

Normal (with unknown o2) likelihood — Inverse Gamma prior

for o2



Conjugate Priors: Other Examples



Conjugate Priors: Other Examples

e Additional examples of conjugate priors:

e Multinomial(ps, p2, . .., pk) likelihood — Dirichlet prior for
P1, P2, Pk

e Negative Binomial(r, p) (with unknown p) likelihood — Beta
prior for p

e Uniform(0, #) likelihood — Pareto prior for the upper limit

e Exponential()) likelihood — Gamma prior for A

e Gamma(a, 8) (with unknown «) likelihood — Gamma prior for
a

e Pareto(S3, \) (with unknown ) likelihood — Gamma prior for

B
e Pareto(3, \) (with unknown ) likelihood — Pareto prior for A



Conjugate Priors: Exponential Family

e Consider the one-parameter exponential family of
distributions.

e This family includes any distribution whose pdf (or pmf) can

be written as:
f(x]0) = ™)) r(x)s(0)

where t(x) and r(x) do not depend on the parameter 6, and
u(0) and s(#) do not depend on x.

e This density can also be expressed as:

f(X|9) — et(x)u(0)+log r(x)+log s(6)



Conjugate Priors: Exponential Family

e For an i.i.d. sample Xi,..., X,, the joint density of the data

is:
f(x|0) = eU(0) Xima t(x)+2iy log rixi)+nlog s(6)

e Consider a prior for § (with prior parameters k and n) of the

form:
,D(9) — C(k, n)eku(9)+k log s(0)



Conjugate Priors: Exponential Family

e The posterior distribution is proportional to:
p(0]x) o< p(0)L(0]x)
o exp (u(e) 3" t(x:) + nlog s(0) + ku(0)n + k |ogs(9))
= exp (u(8) (Y t00) + kn) + (n+ k) log s(0))

— exp ((n + K)u() (W) +(n+ k) Iogs(0)>

e This simplifies to:
exp <(n + k)u(0) <Zt(x,)+k77> + (n+ k) log s(0)>
n+ k
e The posterior is of the same form as the prior, but with
updated parameters: kK — n+ k and n — W
e Thus, if data are i.i.d. from a one-parameter exponential

family, a conjugate prior will exist. 9



Conjugate Priors

e Conjugate priors are mathematically convenient.

e They can be flexible, depending on the choice of
hyperparameters.

e However, they reflect very specific prior knowledge, so caution
is advised when using them unless that prior knowledge is
actually available.
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Uninformative and Improper Priors
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Uninformative Priors

e Uninformative: Not providing particularly useful or
interesting information.

e Noninformative: Lack or absence of information.

e These priors are designed to provide minimal specific
information about the parameter(s).

e A classic uninformative prior is the uniform prior.
e A proper uniform prior integrates to a finite quantity.

e Example: For Bernoulli(#) data, a uniform prior on 6 is:
p(f)=1, 0<60<1

A uniform prior is proper when the parameter 6 has bounded
support.
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Uninformative Priors

e Example 2: For N(0,0?) data, it is “reasonable” to assume,
that, say 02 < 100, we could use the uniform prior:

0<02<100

(even though o2 is not intrinsically bounded).
e An improper uniform prior integrates to infinity.
e Example 3: For N(u,1) data with:

p(p) =1, —oo<pu<oo

An improper prior is okay as long as the resulting posterior is
proper.

e Caveat: Sometimes an improper prior can yield an improper
posterior. See 37630_S6_PriorFam Sup1l.pdf.
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Other Uninformative Priors

e Other methods for constructing uninformative priors include:

e Bernardo’s reference prior: A prior that maximizes the
discrepancy between the prior and the posterior, and minimizes
the discrepancy between the likelihood and the posterior (a
“dominant likelihood prior”).

e Improper prior: A prior where [4 p(0)d6 = oc.

e Highly diffuse proper prior: For example, for normal data
with p unknown, using N(0,1000000) as a prior for u—this is
very close to the improper prior p(u) o 1.
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Improper Priors: Why They Are Okay

e Improper Priors: These are priors that do not integrate to a
finite value over the parameter space.
e Why Use Improper Priors?
e They are often used to represent a "uninformative” or "vague”
prior when no strong prior information is available.
e Improper priors can still lead to valid, proper posteriors if the

data is sufficient to "regularize” the posterior.
e Examples include:

e p(u) o< 1 for a normal mean, representing no prior knowledge
about p.

e p(0) 5 with 6 > 0 for scale parameters, reflecting an
uninformative prior over scales.

e Key Point: As long as the posterior is proper (i.e., it
integrates to 1), using an improper prior is acceptable and can
simplify analyses by reflecting minimal prior knowledge.
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Invariance and Jeffrey's Prior
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Invariance Property

A limitation of the uniform prior is that its “lack of
information” is not invariant under transformation.

Example 1: Consider the odds of success, T = 1%06.

If the prior for 6 is p(f) = 1, the Jacobian is:

i T B 1
dr \1+7/)| (1+7)2

1
(1+7)2

] =

This gives p,(7) = for 0 < 7 < 0.
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Invariance Property: Prior on the Odds of Success

e A prior on the odds of success 7 transforms the uniform prior
into an “informative” prior for 7.
e Visual representation:

_
PO=GF

10

06 08

p(x)

00 02 04
L L L

Figure 1: A Prior on the Odds of Success: p,(7) for 0 < 7 < 10

e Despite p,(7) being an “informative” prior, note that:

PO<T<1l)=P(r>1)=05 s



Jeffreys Prior

e Jeffreys (1961) introduced a class of priors that are invariant
under transformation 7 = g(#).

e For a single parameter 6 and data with joint density f(x|6),
the Jeffreys prior is:

Py (0) o [ ( 8892 log f(X|0)>]1/2 = [1(6)]*/?

where /(0) is the Fisher information.

e For a parameter vector 6, the Jeffreys prior is:

o) o |- (55 108 f(xre))/ (55 voerxio))|

1/2
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Jeffreys Prior
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Jeffreys Prior
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Jeffreys Prior: Example 1

o Consider X1, Xa, ..., Xy 'S Bernoulli(d), with:
F(x|0) =0¥(1—0)"Y, 0<0<1

where y = 37 | ;.
e The log-likelihood is:

log f(x|0) = ylog(f) + (n — y) log(1 — 0)

e First derivative:

0 Yy n—y
%Iogf(x\e)—g 1 g

e Second derivative:
2

Y n—-y
502 log f(x|0) = —=5 —

02 (1-0)
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Jeffreys Prior: Example 1 (Continued)

e The expectation of the second derivative is:

0 ng n(l—0) n
(802 log f(x’9)> @202 " e1-9)

e The Jeffreys prior for 0 is:

PAQKES [9(1”_ 9)} -

e Simplifying, we get:

P (0) o< 072(1 — 9)Y/2 = g*/271(1 — )1/

23



Jeffreys Prior: Beta Distribution

Beta(1/2, 1/2) Distribution

p(8)

Figure 2: The Jeffreys prior for 0 is a Beta(1/2,1/2) distribution.

This prior reflects more uncertainty around the extreme values of
#, making it suitable for modeling a success probability.
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Jeffreys Prior: Invariance

e Invariance Property: If 6 ~ pg(Q), which is the Jeffreys prior
distribution for 6 (i.e. pj(6) oc 1(8)}/?), then the transformed
parameter 7 = g(#) has the distribution 7(7):

dé
o Ji—1 daeo
w(r) = pile (1) | 9

e It turns out that this is also equal to /(7)Y/? (which is the
Jeffreys prior distribution for 7).

e That is, if the (prior) distribution of 6 is Jeffreys prior, then
the (prior) distribution of the transformed parameter 7 = g(#)

is the Jeffreys prior for :
0~ py(0) < \/I(0) = 7~ pi(r)oc/I(r)

e Question: So, in what sense is Jeffreys prior invariant?

It is invariant under transformations of the parameter(s) with

respect to Fisher information. 25



Jeffreys Prior: Example 1 Revisited

e Example 1 Revisited: For X1, Xs,..., X, i Bernoulli(8),
recall that Jeffreys prior for 6 is:

1
0 ~ pg(0) o —
Py (0) 91— 0)
e The Jeffreys prior for the odds ratio 7 = g(f) = tZ5:
do 1
Jr—1 el
ol ) [ X ==

e See S7630_S6_PriorFam Sup2.pdf for the verification of the

invariance property of Jeffreys prior in this setting:
Pp(0) o \/1(0) = pl(r) o V/I(7)
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Examples
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Example 1: Quantile-Based Interval (Cabinet Duration)

e Suppose Xi,..., X, are the durations of cabinets for a sample
from Western European countries.

o We assume the X;'s follow an exponential distribution:

p(x|0) = e, x>0

The likelihood function is:

L(0]x) = 9ne 0%

Suppose the prior distribution for 0 is:

This reflects that larger values of @ are less likely a priori.
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Example 1: Quantile-Based Interval (Continued)

e The posterior distribution is:

p(0|x) X P(Q)L(Q‘X) X %Gne_ezxf = Hn_le_ezxi

e This is the kernel of a Gamma distribution with:
e ‘shape” parameter: n
e ‘rate” parameter: > I, X
e Including the normalizing constant, the posterior distribution
is:

p(0|x) = (%);i))né"le"zx", 9 >0
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Example 1: Quantile-Based Interval (Continued)

e Given the observed data xi, ..., x,, we can calculate any
quantiles of the Gamma distribution.

e The 0.05 and 0.95 quantiles provide a 90% credible interval

for 6.
o Note: Refer to S1ide6_RCode on Canvas for detailed
calculations.

e Question: What would the posterior be if the prior were
p(6) oc 6% for @ > 0 and k > n+ 17
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Example 1: Quantile-Based Interval (Noninformative Prior)

e Suppose we feel that p(6) = % is too subjective, favoring
small values of 6.

e Instead, consider the uninformative prior:

which favors all values of § equally.

e The posterior distribution is:
p(0]x) o< p(O)L(0]x) = (1)8"e 0 2X% = glntl)—1e=03 %

e This is a Gamma distribution with parameters (n+ 1) and
> Xi.

e We can find the equal-tail credible interval similarly.
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Informative Prior Forms: Power Priors

e Informative priors are typically based on expert opinion or
previous research regarding the parameter(s) of interest.
e Power Priors:

e Suppose we have access to previous data xq that is analogous
to the data we will gather.
e The “power prior” is given by:

p(0]x0, a0) o< p(A)[L(0]x0)]*

where p(0) is a standard prior, and ap € [0,1] is a parameter
that measures the influence of the previous data.
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Power Priors

As ag — 0, the influence of the previous data decreases.

As ag — 1, the influence of the previous data increases.

The posterior, given new data x, is:

pP(0]x, %0, a0) o< p(f]xo, a0)L(0]x)

To avoid specifying a single value for ag, we could place a
distribution on ag, such as a Beta distribution, and average
over values of agp:

1
) O</0 p(0)[L(01x0)]* p(a0) dao
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