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Chapter 4 - The Bayesian Prior

� In Bayesian analysis, a prior distribution must be specified.

� The choice of prior can significantly influence posterior

conclusions, particularly with small sample sizes.

� Next, we will explore several key methods for determining

prior distributions.
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Conjugate Priors

� Conjugacy refers to a prior and likelihood combination where

the posterior distribution maintains the same form as the

prior, with updated parameters.

� Examples of conjugate priors:

� Bernoulli likelihood → Beta prior for p

� Poisson likelihood → Gamma prior for λ

� Normal (with unknown µ) likelihood → Normal prior for µ

� Normal (with unknown σ2) likelihood → Inverse Gamma prior

for σ2

4



Outline

Introduction

Conjugate Priors: Other Examples

Uninformative and Improper Priors

Invariance and Jeffrey’s Prior

Examples

5



Conjugate Priors: Other Examples

� Additional examples of conjugate priors:

� Multinomial(p1, p2, . . . , pk) likelihood → Dirichlet prior for

p1, p2, . . . , pk
� Negative Binomial(r , p) (with unknown p) likelihood → Beta

prior for p

� Uniform(0, θ) likelihood → Pareto prior for the upper limit θ

� Exponential(λ) likelihood → Gamma prior for λ

� Gamma(α, β) (with unknown α) likelihood → Gamma prior for

α

� Pareto(β, λ) (with unknown β) likelihood → Gamma prior for

β

� Pareto(β, λ) (with unknown λ) likelihood → Pareto prior for λ
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Conjugate Priors: Exponential Family

� Consider the one-parameter exponential family of

distributions.

� This family includes any distribution whose pdf (or pmf) can

be written as:

f (x |θ) = et(x)u(θ)r(x)s(θ)

where t(x) and r(x) do not depend on the parameter θ, and

u(θ) and s(θ) do not depend on x .

� This density can also be expressed as:

f (x |θ) = et(x)u(θ)+log r(x)+log s(θ)
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Conjugate Priors: Exponential Family

� For an i.i.d. sample X1, . . . ,Xn, the joint density of the data

is:

f (x|θ) = eu(θ)
∑n

i=1 t(xi )+
∑n

i=1 log r(xi )+n log s(θ)

� Consider a prior for θ (with prior parameters k and η) of the

form:

p(θ) = c(k , η)eku(θ)+k log s(θ)
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Conjugate Priors: Exponential Family

� The posterior distribution is proportional to:

p(θ|x) ∝ p(θ)L(θ|x)

∝ exp
(
u(θ)

∑
t(xi ) + n log s(θ) + ku(θ)η + k log s(θ)

)
= exp

(
u(θ)

(∑
t(xi ) + kη

)
+ (n + k) log s(θ)

)
= exp

(
(n + k)u(θ)

(∑
t(xi ) + k

n + k

)
+ (n + k) log s(θ)

)
� This simplifies to:

exp

(
(n + k)u(θ)

(∑
t(xi ) + kη

n + k

)
+ (n + k) log s(θ)

)
� The posterior is of the same form as the prior, but with

updated parameters: k → n + k and η →
∑

t(xi )+kη
n+k

� Thus, if data are i.i.d. from a one-parameter exponential

family, a conjugate prior will exist. 9



Conjugate Priors

� Conjugate priors are mathematically convenient.

� They can be flexible, depending on the choice of

hyperparameters.

� However, they reflect very specific prior knowledge, so caution

is advised when using them unless that prior knowledge is

actually available.
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Uninformative Priors

� Uninformative: Not providing particularly useful or

interesting information.

� Noninformative: Lack or absence of information.

� These priors are designed to provide minimal specific

information about the parameter(s).

� A classic uninformative prior is the uniform prior.

� A proper uniform prior integrates to a finite quantity.

� Example: For Bernoulli(θ) data, a uniform prior on θ is:

p(θ) = 1, 0 ≤ θ ≤ 1

A uniform prior is proper when the parameter θ has bounded

support.
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Uninformative Priors

� Example 2: For N(0, σ2) data, it is “reasonable” to assume,

that, say σ2 < 100, we could use the uniform prior:

p(σ2) =
1

100
, 0 ≤ σ2 ≤ 100

(even though σ2 is not intrinsically bounded).

� An improper uniform prior integrates to infinity.

� Example 3: For N(µ, 1) data with:

p(µ) = 1, −∞ < µ < ∞

An improper prior is okay as long as the resulting posterior is

proper.

� Caveat: Sometimes an improper prior can yield an improper

posterior. See S7630 S6 PriorFam Sup1.pdf.
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Other Uninformative Priors

� Other methods for constructing uninformative priors include:

� Bernardo’s reference prior: A prior that maximizes the

discrepancy between the prior and the posterior, and minimizes

the discrepancy between the likelihood and the posterior (a

“dominant likelihood prior”).

� Improper prior: A prior where
∫
Θ
p(θ)dθ = ∞.

� Highly diffuse proper prior: For example, for normal data

with µ unknown, using N(0, 1000000) as a prior for µ—this is

very close to the improper prior p(µ) ∝ 1.
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Improper Priors: Why They Are Okay

� Improper Priors: These are priors that do not integrate to a

finite value over the parameter space.
� Why Use Improper Priors?

� They are often used to represent a ”uninformative” or ”vague”

prior when no strong prior information is available.

� Improper priors can still lead to valid, proper posteriors if the

data is sufficient to ”regularize” the posterior.

� Examples include:

� p(µ) ∝ 1 for a normal mean, representing no prior knowledge

about µ.

� p(θ) ∝ 1
θ
with θ > 0 for scale parameters, reflecting an

uninformative prior over scales.

� Key Point: As long as the posterior is proper (i.e., it

integrates to 1), using an improper prior is acceptable and can

simplify analyses by reflecting minimal prior knowledge.
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Invariance Property

� A limitation of the uniform prior is that its “lack of

information” is not invariant under transformation.

� Example 1: Consider the odds of success, τ = θ
1−θ .

� If the prior for θ is p(θ) = 1, the Jacobian is:

|J| =
∣∣∣∣ ddτ

(
τ

1 + τ

)∣∣∣∣ = 1

(1 + τ)2

� This gives pτ (τ) =
1

(1+τ)2
for 0 < τ < ∞.
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Invariance Property: Prior on the Odds of Success

� A prior on the odds of success τ transforms the uniform prior

into an “informative” prior for τ .

� Visual representation:

Figure 1: A Prior on the Odds of Success: pτ (τ) for 0 ≤ τ ≤ 10

� Despite pτ (τ) being an “informative” prior, note that:

P(0 < τ < 1) = P(τ > 1) = 0.5
18



Jeffreys Prior

� Jeffreys (1961) introduced a class of priors that are invariant

under transformation τ = g(θ).

� For a single parameter θ and data with joint density f (x|θ),
the Jeffreys prior is:

pJθ (θ) ∝
[
−E

(
∂2

∂θ2
log f (X|θ)

)]1/2
= [I (θ)]1/2

where I (θ) is the Fisher information.

� For a parameter vector θ, the Jeffreys prior is:

pJθ (θ) ∝
[
−E

(
∂

∂θ
log f (X|θ)

)′( ∂

∂θ
log f (X|θ)

)]1/2
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Jeffreys Prior
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Jeffreys Prior
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Jeffreys Prior: Example 1

� Consider X1,X2, . . . ,Xn
iid∼ Bernoulli(θ), with:

f (x|θ) = θy (1− θ)n−y , 0 ≤ θ ≤ 1

where y =
∑n

i=1 xi .

� The log-likelihood is:

log f (x|θ) = y log(θ) + (n − y) log(1− θ)

� First derivative:

∂

∂θ
log f (x|θ) = y

θ
− n − y

1− θ

� Second derivative:

∂2

∂θ2
log f (x|θ) = − y

θ2
− n − y

(1− θ)2

22



Jeffreys Prior: Example 1 (Continued)

� The expectation of the second derivative is:

−E

(
∂2

∂θ2
log f (X|θ)

)
=

nθ

θ2
+

n(1− θ)

(1− θ)2
=

n

θ(1− θ)

� The Jeffreys prior for θ is:

pJθ (θ) ∝
[

n

θ(1− θ)

]1/2
� Simplifying, we get:

pJθ (θ) ∝ θ−1/2(1− θ)−1/2 = θ1/2−1(1− θ)1/2−1
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Jeffreys Prior: Beta Distribution

Figure 2: The Jeffreys prior for θ is a Beta(1/2, 1/2) distribution.

This prior reflects more uncertainty around the extreme values of

θ, making it suitable for modeling a success probability.
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Jeffreys Prior: Invariance

� Invariance Property: If θ ∼ pJθ (θ), which is the Jeffreys prior

distribution for θ (i.e. pJθ (θ) ∝ I (θ)1/2), then the transformed

parameter τ = g(θ) has the distribution π(τ):

π(τ) = pJθ (g
−1(τ))

∣∣∣∣dθdτ
∣∣∣∣

� It turns out that this is also equal to I (τ)1/2 (which is the

Jeffreys prior distribution for τ).

� That is, if the (prior) distribution of θ is Jeffreys prior, then

the (prior) distribution of the transformed parameter τ = g(θ)

is the Jeffreys prior for τ :

θ ∼ pJθ (θ) ∝
√
I (θ) ⇒ τ ∼ pJτ (τ) ∝

√
I (τ)

� Question: So, in what sense is Jeffreys prior invariant?

It is invariant under transformations of the parameter(s) with

respect to Fisher information. 25



Jeffreys Prior: Example 1 Revisited

� Example 1 Revisited: For X1,X2, . . . ,Xn
iid∼ Bernoulli(θ),

recall that Jeffreys prior for θ is:

θ ∼ pJθ (θ) ∝
1√

θ(1− θ)

� The Jeffreys prior for the odds ratio τ = g(θ) = θ
1−θ :

τ ∼ pJτ (g
−1(τ))

∣∣∣∣dθdτ
∣∣∣∣ ∝ 1√

τ(1− τ)

� See S7630 S6 PriorFam Sup2.pdf for the verification of the

invariance property of Jeffreys prior in this setting:

pJθ (θ) ∝
√

I (θ) ⇒ pJτ (τ) ∝
√
I (τ)
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Example 1: Quantile-Based Interval (Cabinet Duration)

� Suppose X1, . . . ,Xn are the durations of cabinets for a sample

from Western European countries.

� We assume the Xi ’s follow an exponential distribution:

p(x |θ) = θe−θx , x > 0

� The likelihood function is:

L(θ|x) = θne−θ
∑n

i=1 xi

� Suppose the prior distribution for θ is:

p(θ) ∝ 1

θ
, θ > 0

� This reflects that larger values of θ are less likely a priori.
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Example 1: Quantile-Based Interval (Continued)

� The posterior distribution is:

p(θ|x) ∝ p(θ)L(θ|x) ∝ 1

θ
θne−θ

∑
xi = θn−1e−θ

∑
xi

� This is the kernel of a Gamma distribution with:

� “shape” parameter: n

� “rate” parameter:
∑n

i=1 xi

� Including the normalizing constant, the posterior distribution

is:

p(θ|x) = (
∑

xi )
n

Γ(n)
θn−1e−θ

∑
xi , θ > 0
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Example 1: Quantile-Based Interval (Continued)

� Given the observed data x1, . . . , xn, we can calculate any

quantiles of the Gamma distribution.

� The 0.05 and 0.95 quantiles provide a 90% credible interval

for θ.

� Note: Refer to Slide6 RCode on Canvas for detailed

calculations.

� Question: What would the posterior be if the prior were

p(θ) ∝ θk for θ > 0 and k > n + 1?
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Example 1: Quantile-Based Interval (Noninformative Prior)

� Suppose we feel that p(θ) = 1
θ is too subjective, favoring

small values of θ.

� Instead, consider the uninformative prior:

p(θ) = 1, θ > 0

which favors all values of θ equally.

� The posterior distribution is:

p(θ|x) ∝ p(θ)L(θ|x) = (1)θne−θ
∑

xi = θ(n+1)−1e−θ
∑

xi

� This is a Gamma distribution with parameters (n + 1) and∑
xi .

� We can find the equal-tail credible interval similarly.
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Informative Prior Forms: Power Priors

� Informative priors are typically based on expert opinion or

previous research regarding the parameter(s) of interest.

� Power Priors:

� Suppose we have access to previous data x0 that is analogous

to the data we will gather.

� The “power prior” is given by:

p(θ|x0, a0) ∝ p(θ)[L(θ|x0)]a0

where p(θ) is a standard prior, and a0 ∈ [0, 1] is a parameter

that measures the influence of the previous data.
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Power Priors

� As a0 → 0, the influence of the previous data decreases.

� As a0 → 1, the influence of the previous data increases.

� The posterior, given new data x, is:

p(θ|x, x0, a0) ∝ p(θ|x0, a0)L(θ|x)

� To avoid specifying a single value for a0, we could place a

distribution on a0, such as a Beta distribution, and average

over values of a0:

p(θ|x0) ∝
∫ 1

0
p(θ)[L(θ|x0)]a0p(a0) da0
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