

STAT7630: Bayesian Statistics

Lecture Slides # 7

Vague Prior for Normal Data & Bayesian Model for
Multivariate Normal

Elvan Ceyhan
Department of Mathematics & Statistics
Auburn University
Fall 2024,
Updated: September, 2024

Outline

Vague Priors for Normal Data

Bayesian Model for MVN Data

Vague Priors with Normal Data

- Conjugate priors often include **subjective** prior information.
- An alternative, more objective approach is to use uninformative or vague priors.
- Consider $X_1, \dots, X_n \stackrel{\text{iid}}{\sim} N(\mu, \sigma^2)$, with both μ and σ^2 unknown.
- We can use vague priors:

$$p(\mu) = 1, \quad -\infty < \mu < \infty \quad \text{and} \quad p(\sigma) = \frac{1}{\sigma}, \quad 0 < \sigma < \infty$$

- These priors are improper (they do not integrate to 1), but this is acceptable as long as the resulting posterior distributions are proper densities.

Vague Priors with Normal Data: Joint Posterior for μ and σ

- The joint posterior for μ and σ is:

$$p(\mu, \sigma | \mathbf{x}) \propto p(\mu)p(\sigma)L(\mu, \sigma | \mathbf{x})$$

- The likelihood is:

$$\begin{aligned} L(\mu, \sigma | \mathbf{x}) &= (2\pi\sigma^2)^{-\frac{n}{2}} e^{\left(-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2\right)} \\ &= (2\pi\sigma^2)^{-\frac{n}{2}} e^{\left(-\frac{1}{2\sigma^2} \sum_{i=1}^n [(x_i - \bar{x}) - (\mu - \bar{x})]^2\right)} \\ &= (2\pi\sigma^2)^{-\frac{n}{2}} e^{\left(-\frac{1}{2\sigma^2} (\sum (x_i - \bar{x})^2 - 2 \sum (x_i\mu - x_i\bar{x} - \bar{x}\mu + \bar{x}^2) + n(\bar{x} - \mu)^2)\right)} \\ &\propto \sigma^{-n} e^{\left(-\frac{1}{2\sigma^2} [(n-1)s^2 + n(\bar{x} - \mu)^2]\right)} \end{aligned}$$

- Combining with the prior $p(\mu) \propto 1$ and $p(\sigma) \propto \frac{1}{\sigma}$:

$$p(\mu, \sigma | \mathbf{x}) \propto \sigma^{-(n+1)} e^{-\frac{1}{2\sigma^2} [(n-1)s^2 + n(\mu - \bar{x})^2]}$$

Vague Priors with Normal Data: Marginal Posterior for μ

- To get the marginal posterior for μ , integrate out σ :

$$p(\mu | \mathbf{x}) = \int_0^\infty p(\mu, \sigma | \mathbf{x}) d\sigma$$

- Letting $u^2 = \sigma^2$, $b = n$, and $a = \frac{1}{2} [(n-1)s^2 + n(\mu - \bar{x})^2]$, we get

$$p(\mu | \mathbf{x}) = \int_0^\infty u^{-(b+1)} e^{-\frac{a}{u^2}} du \propto \frac{1}{2} a^{-\frac{b}{2}} \Gamma\left(\frac{b}{2}\right)$$

- So, the marginal posterior for μ is:

$$\begin{aligned} p(\mu | \mathbf{x}) &\propto \frac{1}{2} \left(\frac{1}{2} [(n-1)s^2 + n(\mu - \bar{x})^2] \right)^{-\frac{n}{2}} \Gamma\left(\frac{n}{2}\right) \\ &= \frac{1}{2[(n-1)s^2]^{n/2}} \left(1 + \frac{n(\mu - \bar{x})^2}{(n-1)s^2} \right)^{-\frac{n}{2}} \Gamma\left(\frac{n}{2}\right) \\ &\propto \left(\frac{\Gamma\left(\frac{n}{2}\right)}{\Gamma\left(\frac{n-1}{2}\right)} \right) \left(\frac{n/s^2}{(n-1)} \right)^{-1/2} \left(1 + \frac{1}{n-1} \left(\frac{\mu - \bar{x}}{s/\sqrt{n}} \right)^2 \right)^{-\frac{n}{2}} \end{aligned}$$

Vague Priors with Normal Data: t -Distribution Transformation

- Make the transformation: $t = \frac{\mu - \bar{x}}{s/\sqrt{n}}$ with the Jacobian:

$$|J| = \frac{s}{\sqrt{n}}$$

- The posterior becomes:

$$p(t|\mathbf{x}) = \frac{\Gamma\left(\frac{n-1+1}{2}\right)}{\Gamma\left(\frac{n-1}{2}\right)} \frac{1}{[(n-1)\pi]^{1/2}} \left(1 + \frac{t^2}{n-1}\right)^{-\left(\frac{n-1+1}{2}\right)}$$

- This is clearly a t -distribution with $n - 1$ degrees of freedom, t_{n-1} .

Vague Priors with Normal Data: Marginal Distribution of σ^2

- To get the marginal distribution of σ^2 , note that:

$$\begin{aligned} p(\sigma | \mathbf{x}) &= \int_{-\infty}^{\infty} p(\mu, \sigma | \mathbf{x}) d\mu \\ &\propto \sigma^{-(n+1)} e^{\left(-\frac{1}{2\sigma^2}(n-1)s^2\right)} \int_{-\infty}^{\infty} e^{\left(-\frac{1}{2\sigma^2}n(\mu-\bar{x})^2\right)} d\mu \\ &= \sigma^{-(n+1)} e^{\left(-\frac{1}{2\sigma^2}(n-1)s^2\right)} \sqrt{\frac{2\pi\sigma^2}{n}} \end{aligned}$$

- Including the Jacobian of the transformation from σ to σ^2 , we get:

$$\begin{aligned} p(\sigma^2 | \mathbf{x}) &\propto (\sigma^2)^{-\frac{n+1}{2}} \exp\left(-\frac{(n-1)s^2}{2\sigma^2}\right) \sigma \left|\frac{1}{2\sigma}\right| \\ &\propto (\sigma^2)^{-\left(\frac{n-1}{2}+1\right)} \exp\left(-\frac{(n-1)s^2}{2\sigma^2}\right) \end{aligned}$$

- Thus, $\sigma^2 | \mathbf{x} \sim \text{Inverse Gamma}\left(\frac{n-1}{2}, \frac{(n-1)s^2}{2}\right)$.

Vague Priors with Normal Data: Summary

- Both posterior distributions (for μ and σ^2) are proper.
- Compared to posteriors from conjugate analyses, these posteriors are more diffuse (spread out).
- The increased diffuseness is due to the vague prior information used.
- For large sample sizes, there is little difference between results from conjugate analysis and "uninformative" analysis.
- **Example 1(a):** Midge data revisited.

Outline

Vague Priors for Normal Data

Bayesian Model for MVN Data

Bayesian Model for Multivariate Normal Distribution

- **Setup:** Each individual has q variables observed, forming q -dimensional random vectors $\mathbf{X}_1, \dots, \mathbf{X}_n$.
- **Assumption:** These vectors are i.i.d. multivariate normal:

$$\mathbf{X}_i \sim \text{MVN}(\boldsymbol{\mu}, \boldsymbol{\Sigma}) \quad \text{both } \boldsymbol{\mu}, \boldsymbol{\Sigma} \text{ are unknown}$$

where:

- $\boldsymbol{\mu}$ is the q -dimensional mean vector,
- $\boldsymbol{\Sigma}$ is the $q \times q$ variance-covariance matrix.

- **Prior Distributions** for the parameters:

$$\boldsymbol{\mu} \mid \boldsymbol{\Sigma} \sim \text{MVN} \left(\boldsymbol{\delta}, \frac{1}{n_0} \boldsymbol{\Sigma} \right) \text{ and } \boldsymbol{\Sigma}^{-1} \sim \text{Wishart}(\nu_0, \mathbf{S}_0)$$

where:

- $\boldsymbol{\delta}$ is the prior mean for $\boldsymbol{\mu}$,
- n_0 is a scalar reflecting the strength of prior information,
- ν_0 and \mathbf{S}_0 are the degrees of freedom and scale matrix of the Wishart prior.

Posterior Distributions in Bayesian Multivariate Normal Model

- Posterior for the Mean Vector:

$$\mu \mid \Sigma, \mathbf{X} \sim \text{MVN} \left(\frac{n_0 \delta + n \bar{x}}{n_0 + n}, \frac{1}{n_0 + n} \Sigma \right)$$

- The posterior mean is a weighted average of the prior mean (δ) and the sample mean (\bar{x}).
- The posterior covariance decreases with increasing sample size (n), reducing uncertainty about μ .

- Posterior for the Covariance Matrix:

$$\Sigma^{-1} \mid \mathbf{X} \sim \text{Wishart}(\nu_0 + n, \mathbf{S}_0 + \mathbf{S}_x)$$

where \mathbf{S}_x being the sample covariance.

- Model Flexibility:

- The model incorporates prior beliefs about both μ and Σ .
- As the sample size increases, the posterior distribution relies more heavily on the observed data.