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Vague Priors for Normal Data



Vague Priors with Normal Data

e Conjugate priors often include subjective prior information.

e An alternative, more objective approach is to use
uninformative or vague priors.
. iid :
e Consider X1, ..., X, ~ N(u,c?), with both 11 and o

unknown.

e We can use vague priors:
1
p(u) =1, —oco<p<oo and p(o)==, 0<0o<o0
o

e These priors are improper (they do not integrate to 1), but
this is acceptable as long as the resulting posterior
distributions are proper densities.



Vague Priors with Normal Data: Joint Posterior for i and o

e The joint posterior for p and o is:
p(u, olx) o< p(p)p(o)L(p, o[x)
e The likelihood is:
L(p,o | x) = (27Tcr2)_g e<_2cf%2’n:1(x"_“)2>
-3 (3 ZLil-0)-(u-2))

= (27r02)
— (2n0?) 3 (22 (SR 2 St ) (i)
o o—ne(— a1t tn(z-n)?])

e Combining with the prior p(x) oc 1 and p(o) o< L:

p(u, olx) o o—(n+1) g= 552 [(=1)s*+n(u—%)?]



Vague Priors with Normal Data: Marginal Posterior for

e To get the marginal posterior for j, integrate out o:
oo
plu | X) =/0 b, | x) dor
e Letting > =02, b=n,and a= 3 [(n—1)s> + n(p — X)?],

we get

p(ulx):/ () e~ B gy o 2o ’z’r<b>
0 2 2

e So, the marginal posterior for p is:

p(u | x) % <; [(n —1)s® + n(p — >_<)2}>_g r (g)

n(u — x)? ~2 n
:2[(,,_11)52]n/z<1+,f_1)5)2> "(3)




Vague Priors with Normal Data: t-Distribution Transformation

- X with the Jacobian:

e Make the transformation: t = a

s/\/n
s
J=—
=
e The posterior becomes:
(t’X) r (nfé+1) 1 <1 N 2 >—(”§+1)
p = e —
r(21L) [(n—1)m]t/2 n—1

e This is clearly a t-distribution with n — 1 degrees of freedom,

th—1.



Vague Priors with Normal Data: Marginal Distribution of o2

e To get the marginal distribution of o2, note that:

p(ax>=/°° Pl | x) dp

— 00

x o~ (n+1) (_%("_1)52> /OO e(_ﬁ”(u—if) du

—00

S-(nt1) o(~522 (n-1)s?) [27m0°
n

e Including the Jacobian of the transformation from o to o2, we

get:
p(02 | x) o< (62)~ "2 exp( (,7;‘12)52>U %

_ 2
e Thus, 0?|x ~ Inverse Gamma ("51, (n 21)5 ) 7




Vague Priors with Normal Data: Summary

e Both posterior distributions (for ;z and o) are proper.

e Compared to posteriors from conjugate analyses, these
posteriors are more diffuse (spread out).

e The increased diffuseness is due to the vague prior information
used.

e For large sample sizes, there is little difference between results
from conjugate analysis and "uninformative” analysis.

e Example 1(a): Midge data revisited.



Bayesian Model for MVN Data



Bayesian Model for Multivariate Normal Distribution

e Setup: Each individual has g variables observed, forming
g-dimensional random vectors Xi,...,X,.
e Assumption: These vectors are i.i.d. multivariate normal:

Xi ~ MVN(u, X) both p, X are unknown

where:
e 1 is the g-dimensional mean vector,
e X is the g x g variance-covariance matrix.

e Prior Distributions for the parameters:
1
p| X~ MVN (5, n}:) and X~ ~ Wishart(vp, So)
0

where:
e § is the prior mean for p,
e ng is a scalar reflecting the strength of prior information,
e 15 and Sg are the degrees of freedom and scale matrix of the

Wishart prior. 10



Posterior Distributions in Bayesian Multivariate Normal Model

e Posterior for the Mean Vector:
5 _
nod + nx7 1 Z)
nop+n "~ng+n

uZ,XwMVN(

e The posterior mean is a weighted average of the prior mean
(9) and the sample mean (x).

e The posterior covariance decreases with increasing sample size
(n), reducing uncertainty about p.

e Posterior for the Covariance Matrix:
T | X ~ Wishart(vy + n, So + Sx)

where S, being the sample covariance.
e Model Flexibility:
e The model incorporates prior beliefs about both v and X.
e As the sample size increases, the posterior distribution relies

more heavily on the observed data. "
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