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Vague Priors with Normal Data

� Conjugate priors often include subjective prior information.

� An alternative, more objective approach is to use

uninformative or vague priors.

� Consider X1, . . . ,Xn
iid∼ N(µ, σ2), with both µ and σ2

unknown.

� We can use vague priors:

p(µ) = 1, −∞ < µ < ∞ and p(σ) =
1

σ
, 0 < σ < ∞

� These priors are improper (they do not integrate to 1), but

this is acceptable as long as the resulting posterior

distributions are proper densities.
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Vague Priors with Normal Data: Joint Posterior for µ and σ

� The joint posterior for µ and σ is:

p(µ, σ|x) ∝ p(µ)p(σ)L(µ, σ|x)

� The likelihood is:

L(µ, σ | x) =
(
2πσ2

)− n
2 e

(
− 1

2σ2

∑n
i=1(xi−µ)2

)

=
(
2πσ2

)− n
2 e

(
− 1

2σ2

∑n
i=1[(xi−x̄)−(µ−x̄)]2

)

=
(
2πσ2

)− n
2 e

(
− 1

2σ2 (
∑

(xi−x̄)2−2
∑

(xiµ−xi x̄−x̄µ+x̄2)+n(x̄−µ)2)
)

∝ σ−ne

(
− 1

2σ2 [(n−1)s2+n(x̄−µ)2]
)

� Combining with the prior p(µ) ∝ 1 and p(σ) ∝ 1
σ :

p(µ, σ|x) ∝ σ−(n+1)e−
1

2σ2 [(n−1)s2+n(µ−x̄)2]
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Vague Priors with Normal Data: Marginal Posterior for µ

� To get the marginal posterior for µ, integrate out σ:

p(µ | x) =
∫ ∞

0
p(µ, σ | x) dσ

� Letting u2 = σ2, b = n, and a = 1
2

[
(n − 1)s2 + n(µ− x̄)2

]
,

we get

p(µ | x) =
∫ ∞

0
u−(b+1)e−

a
u2 du ∝ 1

2
a−

b
2 Γ

(
b

2

)
� So, the marginal posterior for µ is:

p(µ | x) ∝ 1

2

(
1

2

[
(n − 1)s2 + n(µ− x̄)2

])− n
2

Γ
(n
2

)
=

1

2 [(n − 1)s2]n/2

(
1 +

n(µ− x̄)2

(n − 1)s2

)− n
2

Γ
(n
2

)
∝

(
Γ
(
n
2

)
Γ
(
n−1
2

))( n/s2

(n − 1)

)−1/2
(
1 +

1

n − 1

(
µ− x̄

s/
√
n

)2
)− n

2
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Vague Priors with Normal Data: t-Distribution Transformation

� Make the transformation: t =
µ− x̄

s/
√
n

with the Jacobian:

|J| = s√
n

� The posterior becomes:

p(t|x) =
Γ
(
n−1+1

2

)
Γ
(
n−1
2

) 1

[(n − 1)π]1/2

(
1 +

t2

n − 1

)−( n−1+1
2 )

� This is clearly a t-distribution with n − 1 degrees of freedom,

tn−1.
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Vague Priors with Normal Data: Marginal Distribution of σ2

� To get the marginal distribution of σ2, note that:

p(σ | x) =
∫ ∞

−∞
p(µ, σ | x) dµ

∝ σ−(n+1)e

(
− 1

2σ2 (n−1)s2
) ∫ ∞

−∞
e

(
− 1

2σ2 n(µ−x̄)2
)
dµ

= σ−(n+1)e

(
− 1

2σ2 (n−1)s2
)√

2πσ2

n

� Including the Jacobian of the transformation from σ to σ2, we

get:

p(σ2 | x) ∝ (σ2)−
n+1
2 exp

(
−(n − 1)s2

2σ2

)
σ

∣∣∣∣ 12σ
∣∣∣∣

∝ (σ2)−(
n−1
2

+1) exp

(
−(n − 1)s2

2σ2

)
� Thus, σ2|x ∼ Inverse Gamma

(
n−1
2 , (n−1)s2

2

)
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Vague Priors with Normal Data: Summary

� Both posterior distributions (for µ and σ2) are proper.

� Compared to posteriors from conjugate analyses, these

posteriors are more diffuse (spread out).

� The increased diffuseness is due to the vague prior information

used.

� For large sample sizes, there is little difference between results

from conjugate analysis and ”uninformative” analysis.

� Example 1(a): Midge data revisited.
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Bayesian Model for Multivariate Normal Distribution

� Setup: Each individual has q variables observed, forming

q-dimensional random vectors X1, . . . ,Xn.

� Assumption: These vectors are i.i.d. multivariate normal:

Xi ∼ MVN(µ,Σ) both µ,Σ are unknown

where:
� µ is the q-dimensional mean vector,

� Σ is the q × q variance-covariance matrix.

� Prior Distributions for the parameters:

µ | Σ ∼ MVN

(
δ,

1

n0
Σ

)
and Σ−1 ∼ Wishart(ν0,S0)

where:
� δ is the prior mean for µ,

� n0 is a scalar reflecting the strength of prior information,

� ν0 and S0 are the degrees of freedom and scale matrix of the

Wishart prior.

� Interpretation of n0: n0 acts as a prior sample size, with

larger n0/n indicating stronger confidence in the prior.
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Posterior Distributions in Bayesian Multivariate Normal Model

� Posterior for the Mean Vector:

µ | Σ,X ∼ MVN

(
n0δ + nx̄

n0 + n
,

1

n0 + n
Σ

)
� The posterior mean is a weighted average of the prior mean

(δ) and the sample mean (x̄).

� The posterior covariance decreases with increasing sample size

(n), reducing uncertainty about µ.

� Posterior for the Covariance Matrix:

Σ−1 | X ∼ Wishart(ν0 + n,S0 + Sx)

where Sx being the sample covariance.
� Model Flexibility:

� The model incorporates prior beliefs about both µ and Σ.

� As the sample size increases, the posterior distribution relies

more heavily on the observed data.
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