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The Monte Carlo Method

� The Monte Carlo method studies a distribution (e.g., a

posterior) by generating many random samples from that

distribution.

� Let θ(1), . . . , θ(N) be independent and identically distributed

samples from p(θ|y). The empirical distribution of{
θ(1), . . . , θ(N)

}
approximates the posterior as N becomes

large.

� By the law of large numbers (LLN):

1

N

N∑
i=1

g(θ(i)) → E[g(θ)|y]

as N → ∞.
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The Monte Carlo Method

� Letting Gi = g(θ(i)), we have

� By the law of large numbers (LLN):

Ḡ =
1

N

N∑
i=1

g(θ(i)) → E[g(θ)|y] =
∫
Θ
g(θ)p(θ|y)dθ

as N → ∞, where Θ is the parameter space.

� When E[G 2
i |y] < ∞, the rate of convergence above is O(

√
N)

and asymptotic variance is

Var(Ḡ ) =
1

N

∫
Θ
(g(θ)− E[g(θ)|y])2 p(θ|y)dθ,

� which can also be estimated from the sample θ(1), . . . , θ(N) as

1

N2

N∑
i=1

(
g(θ(i))− Ḡ

)2
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The Monte Carlo Method

� As N → ∞, the following approximations hold:

� θ̄ =
1

N

N∑
i=1

θ(i) → posterior mean, E[θ|y]

�

1

N − 1

N∑
i=1

(θ(i) − θ̄)2 → posterior variance, Var[θ|y]

�

#
{
θ(i) ≤ c

}
N

→ P[θ ≤ c |y], which is the posterior cdf Fθ|y(c)

� median
{
θ(1), . . . , θ(N)

}
→ posterior median, F−1

θ|y (0.5)

� And similarly for any posterior quantile.
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The Monte Carlo Method

� If the posterior follows a “common” distribution, as in many

conjugate analyses, we can draw samples from the posterior

using R functions.

Example 1: General Social Survey

� Sample 1: Number of children for women age 40+, without

a bachelor’s degree.

� Sample 2: Number of children for women age 40+, with a

bachelor’s degree or higher.

� Assume Poisson(θ1) and Poisson(θ2) models for the data.

� Use Gamma(2,1) priors for θ1 and θ2.
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The Monte Carlo Method: Example 1 (Continued)

� Data: n1 = 111,
∑

i yi1 = 217

� Data: n2 = 44,
∑

i yi2 = 66

� Posterior for θ1 is Gamma(219, 112).

� Posterior for θ2 is Gamma(68, 45).

� Find P(θ1 > θ2|y1, y2).
� Find the posterior distribution of the ratio θ1

θ2
.

� See the R example using the Monte Carlo method on Canvas.
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Introduction

� We will explore simulation techniques such as MCMC for

approximating complex posterior models.

� Key elements in posterior analysis:

� Posterior estimation

� Hypothesis testing

� Prediction
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From Simple to Complex Bayesian Models

� Chapters 1-5 introduced simple models with easy-to-specify

posteriors.

� More complex models (e.g., Michelle’s election chances)

involve many parameters:

p(θ|y) ∝ p(θ)L(θ|y)

� Analytical computation of the posterior becomes intractable

as the model complexity increases.
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Simulation Techniques: Grid Approximation and MCMC

� When the posterior is too complex to specify, we approximate

it.

� Two key simulation techniques:

� Grid Approximation

� Markov Chain Monte Carlo (MCMC)

� Both produce a sample of parameter values θ that reflect the

posterior distribution.
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Grid Approximation

� Often, the posterior distribution does not have a simple,

recognizable form, making it difficult to sample using built-in

R functions (e.g., rgamma).

� We can approximate the posterior using simulation techniques

such as grid approximation or Markov chain Monte Carlo

(MCMC).

� We will first discuss the simpler approach: grid

approximation.

Example: The Gamma-Poisson Model

� Let’s begin with an example where we know the true posterior

distribution.
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Grid Approximation with the Gamma-Poisson Model

� The book provides an example with Poisson data and n = 2

observations: Y1 = 2 and Y2 = 8. We choose a Gamma(3, 1)

prior for the parameter of interest, λ.

� The posterior distribution can be derived analytically as

Gamma(13, 3) (Exercise: Verify this).

� Suppose we didn’t know the posterior; we could use grid

approximation instead.

� We simulate a grid of values for λ, which can take values

between 0 and ∞. However, realistically, it is likely to lie

between 0 and 15 (see Gamma(3, 1) prior plot).

� Generate 501 equally spaced values of λ between 0 and 15.

� Plug these values into the prior p(λ) and likelihood L(λ|y) to
approximate the posterior.
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Plot of Gamma(3, 1) Prior

Figure 1: A Gamma(3, 1) prior pdf for λ
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General Steps for Grid Approximation

� Given a prior p(θ) and a likelihood L(θ|y), the following steps

approximate the posterior:

1. Generate a grid of θ values over its range of possible (or

realistic) values.

2. Evaluate p(θ) and L(θ|y) at each θ value in the grid.

3. Multiply p(θ)× L(θ|y) for each θ value.

4. Normalize these products by dividing each by the sum of the

products to ensure they sum to 1. This gives the posterior

probabilities for each θ value.

5. Randomly sample from the grid of θ values based on their

normalized posterior probabilities.

� Fortunately, this process can be implemented quickly in R.
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Grid Approximation in R with the Gamma-Poisson Model

� Recall the example with Poisson data: n = 2 observations,

Y1 = 2 and Y2 = 8, with a Gamma(3, 1) prior for λ.

� Generate 501 equally spaced values of λ between 0 and 15.

� Plug these values into the prior p(λ) and likelihood L(λ|y)
(this is straightforward in R).

� Normalize the posterior probabilities and sample λ values

based on these probabilities (easily done in R).

� Refer to the R code and plots to observe how closely the

approximated posterior matches the true posterior.

� Use Monte Carlo methods to obtain posterior summary

statistics (e.g., mean, median, variance).
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Example: Beta-Binomial Model

� Suppose we model the number of successes Y in 10 trials as:

Y |π ∼ Binomial(10, π), π ∼ Beta(2, 2)

� After observing 9 successes, the posterior is:

π|Y = 9 ∼ Beta(11, 3)

� We approximate this posterior using grid approximation.
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Limitations of Grid Approximation

� Grid approximation becomes computationally expensive as the

number of parameters increases.

� It suffers from the “curse of dimensionality.”

� MCMC offers a more flexible alternative for approximating

high-dimensional posteriors.
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MCMC Methods

� Grid approximation can become inefficient when the prior

and/or likelihood are complex, or when there are multiple

parameters of interest.

� For practical problems, Markov chain Monte Carlo

(MCMC) sampling methods are commonly used.

� A Markov chain is a stochastic process where each random

variable in the sequence depends probabilistically only on the

preceding variable.
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Introduction to MCMC and its Origins

� MCMC: Markov Chain Monte Carlo

� Origins:

� Markov Chains: Named after Andrey Markov

� Monte Carlo: Originated from Los Alamos nuclear weapons

project (Ulam, von Neumann)

� MCMC simulates probability models and scales up for more

complex Bayesian models.
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MCMC Methods: The Markovian Property

� For a Markov chain
{
θ[0], θ[1], θ[2], . . .

}
, the process satisfies

the Markovian property:

P
(
θ[t] ∈ A|θ[0], θ[1], . . . , θ[t−1]

)
= P

(
θ[t] ∈ A|θ[t−1]

)
� This means that θ[t] is conditionally independent of all

earlier values, except for the immediately preceding value,

θ[t−1].

� The values in a Markov chain are not fully independent, but

they are “almost independent.”

� Chain growth: Each sample depends on the previous sample.
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