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The Monte Carlo Method



The Monte Carlo Method

e The Monte Carlo method studies a distribution (e.g., a
posterior) by generating many random samples from that
distribution.

o Let 01 ... #N) be independent and identically distributed
samples from p(f|y). The empirical distribution of
{9(1), ey G(N)} approximates the posterior as N becomes

large.

e By the law of large numbers (LLN):
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The Monte Carlo Method

e Letting G; = g(0()), we have
e By the law of large numbers (LLN):
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as N — oo, where © is the parameter space.
e When E[G?|y] < oo, the rate of convergence above is O(v/N)
and asymptotic variance is

= 1
Var(6) = 7 [ (£(6) ~ Ele(O)Iv)? p(Oly) .
e which can also be estimated from the sample (1), ... (V) a5

1 ¢ o _ &)’
W;(g( )— )



The Monte Carlo Method

o As N — o0, the following approximations hold:

N
_ 1 .
o 0= N ;:1 0() — posterior mean, E[0]y]

N
1 . _
* N_1 2(9(') — #)? — posterior variance, Var[fy]
i=1
o) <
° M — P[0 < cly], which is the posterior cdf Fy)y(c)

e median {6 . .,G(N)} — posterior median, Fe_‘yl(O.S)
e And similarly for any posterior quantile.



The Monte Carlo Method

e If the posterior follows a “common™ distribution, as in many
conjugate analyses, we can draw samples from the posterior
using R functions.

Example 1: General Social Survey

e Sample 1: Number of children for women age 40+, without
a bachelor’s degree.

e Sample 2: Number of children for women age 40+, with a
bachelor’'s degree or higher.

e Assume Poisson(f1) and Poisson(f2) models for the data.

e Use Gamma(2,1) priors for 61 and 0.



The Monte Carlo Method: Example 1 (Continued)

e Data: ny =111, .y =217

e Data: n, =44, yi» = 66

e Posterior for #; is Gamma(219,112).
e Posterior for #; is Gamma(68, 45).

e Find P(61 > ba]y1,y2).
e Find the posterior distribution of the ratio %'

e See the R example using the Monte Carlo method on Canvas.



Approximating the Posterior
Grid Approximation
Markov Chain Monte Carlo (MCMC)



Introduction

e We will explore simulation techniques such as MCMC for
approximating complex posterior models.
o Key elements in posterior analysis:

e Posterior estimation
e Hypothesis testing
e Prediction



From Simple to Complex Bayesian Models

e Chapters 1-5 introduced simple models with easy-to-specify

posteriors.

e More complex models (e.g., Michelle's election chances)
involve many parameters:

p(Bly) o< p(8)L(0]y)

e Analytical computation of the posterior becomes intractable
as the model complexity increases.
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Simulation Techniques: Grid Approximation and MCMC

e When the posterior is too complex to specify, we approximate
it.

e Two key simulation techniques:

e Grid Approximation
e Markov Chain Monte Carlo (MCMC)

e Both produce a sample of parameter values # that reflect the
posterior distribution.
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The Monte Carlo Method

Approximating the Posterior

Grid Approximation
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Grid Approximation

e Often, the posterior distribution does not have a simple,
recognizable form, making it difficult to sample using built-in
R functions (e.g., rgamma).

e We can approximate the posterior using simulation techniques
such as grid approximation or Markov chain Monte Carlo
(MCMCQ).

e We will first discuss the simpler approach: grid
approximation.

Example: The Gamma-Poisson Model

e Let's begin with an example where we know the true posterior
distribution.
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Grid Approximation with the Gamma-Poisson Model

e The book provides an example with Poisson data and n =2
observations: Y7 =2 and Y, = 8. We choose a Gamma(3,1)
prior for the parameter of interest, A.

e The posterior distribution can be derived analytically as
Gamma(13, 3) (Exercise: Verify this).

e Suppose we didn't know the posterior; we could use grid
approximation instead.

e We simulate a grid of values for A, which can take values
between 0 and co. However, realistically, it is likely to lie
between 0 and 15 (see Gamma(3, 1) prior plot).

o Generate 501 equally spaced values of A between 0 and 15.

e Plug these values into the prior p(\) and likelihood L(A]y) to
approximate the posterior.
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Plot of Gamma(3,1) Prior
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General Steps for Grid Approximation

e Given a prior p(f) and a likelihood L(f]y), the following steps
approximate the posterior:

1. Generate a grid of 0 values over its range of possible (or
realistic) values.

2. Evaluate p(f) and L(f|y) at each 6 value in the grid.

3. Multiply p(6) x L(0|y) for each 6 value.

4. Normalize these products by dividing each by the sum of the
products to ensure they sum to 1. This gives the posterior
probabilities for each 6 value.

5. Randomly sample from the grid of 6 values based on their
normalized posterior probabilities.

e Fortunately, this process can be implemented quickly in R.
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Grid Approximation in R with the Gamma-Poisson Model

e Recall the example with Poisson data: n = 2 observations,
Y1 =2 and Y2 = 8, with a Gamma(3, 1) prior for \.

e Generate 501 equally spaced values of A between 0 and 15.

e Plug these values into the prior p(\) and likelihood L(Aly)
(this is straightforward in R).

e Normalize the posterior probabilities and sample A values
based on these probabilities (easily done in R).

o Refer to the R code and plots to observe how closely the

approximated posterior matches the true posterior.

e Use Monte Carlo methods to obtain posterior summary
statistics (e.g., mean, median, variance).
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Example: Beta-Binomial Model

e Suppose we model the number of successes Y in 10 trials as:
Y|m ~ Binomial(10,7), 7 ~ Beta(2,2)
e After observing 9 successes, the posterior is:
m|Y =9 ~ Beta(11,3)

e We approximate this posterior using grid approximation.
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Limitations of Grid Approximation

o Grid approximation becomes computationally expensive as the
number of parameters increases.

e It suffers from the “curse of dimensionality.”

o MCMC offers a more flexible alternative for approximating
high-dimensional posteriors.
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The Monte Carlo Method

Approximating the Posterior

Markov Chain Monte Carlo (MCMC)
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MCMC Methods

e Grid approximation can become inefficient when the prior
and/or likelihood are complex, or when there are multiple
parameters of interest.

e For practical problems, Markov chain Monte Carlo
(MCMC) sampling methods are commonly used.

o A Markov chain is a stochastic process where each random
variable in the sequence depends probabilistically only on the
preceding variable.
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Introduction to MCMC and its Origins

¢ MCMC: Markov Chain Monte Carlo
e Origins:
e Markov Chains: Named after Andrey Markov
e Monte Carlo: Originated from Los Alamos nuclear weapons
project (Ulam, von Neumann)
o MCMC simulates probability models and scales up for more

complex Bayesian models.
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MCMC Methods: The Markovian Property

e For a Markov chain {9[0], ol gl2 } the process satisfies
the Markovian property:

P (0“1 e Al gl ,elf—ll) —p (9“] € A|9[f—11)

e This means that 6!t is conditionally independent of all

earlier values, except for the immediately preceding value,
o1,

e The values in a Markov chain are not fully independent, but
they are “almost independent.”

e Chain growth: Each sample depends on the previous sample.
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