

STAT7630: Bayesian Statistics

Lecture Slides # 8

Chapter 6 Approximating the Posterior

Elvan Ceyhan
Department of Mathematics & Statistics
Auburn University
Fall 2024,
Updated: October, 2024

Outline

The Monte Carlo Method

Approximating the Posterior

Grid Approximation

Markov Chain Monte Carlo (MCMC)

The Monte Carlo Method

- The **Monte Carlo method** studies a distribution (e.g., a posterior) by generating many random samples from that distribution.
- Let $\theta^{(1)}, \dots, \theta^{(N)}$ be independent and identically distributed samples from $p(\theta|\mathbf{y})$. The empirical distribution of $\{\theta^{(1)}, \dots, \theta^{(N)}\}$ approximates the posterior as N becomes large.
- By the **law of large numbers (LLN)**:

$$\frac{1}{N} \sum_{i=1}^N g(\theta^{(i)}) \rightarrow \mathbf{E}[g(\theta)|\mathbf{y}]$$

as $N \rightarrow \infty$.

The Monte Carlo Method

- Letting $G_i = g(\theta^{(i)})$, we have
- By the **law of large numbers (LLN)**:

$$\bar{G} = \frac{1}{N} \sum_{i=1}^N g(\theta^{(i)}) \rightarrow \mathbf{E}[g(\theta)|\mathbf{y}] = \int_{\Theta} g(\theta) p(\theta|\mathbf{y}) d\theta$$

as $N \rightarrow \infty$, where Θ is the parameter space.

- When $\mathbf{E}[G_i^2|\mathbf{y}] < \infty$, the rate of convergence above is $O(\sqrt{N})$ and asymptotic variance is

$$\text{Var}(\bar{G}) = \frac{1}{N} \int_{\Theta} (g(\theta) - \mathbf{E}[g(\theta)|\mathbf{y}])^2 p(\theta|\mathbf{y}) d\theta,$$

- which can also be estimated from the sample $\theta^{(1)}, \dots, \theta^{(N)}$ as

$$\frac{1}{N^2} \sum_{i=1}^N (g(\theta^{(i)}) - \bar{G})^2$$

The Monte Carlo Method

- As $N \rightarrow \infty$, the following approximations hold:

- $\bar{\theta} = \frac{1}{N} \sum_{i=1}^N \theta^{(i)} \rightarrow$ posterior mean, $\mathbf{E}[\theta|\mathbf{y}]$
- $\frac{1}{N-1} \sum_{i=1}^N (\theta^{(i)} - \bar{\theta})^2 \rightarrow$ posterior variance, $\text{Var}[\theta|\mathbf{y}]$
- $\frac{\#\{\theta^{(i)} \leq c\}}{N} \rightarrow P[\theta \leq c|\mathbf{y}],$ which is the posterior cdf $F_{\theta|\mathbf{y}}(c)$
- median $\left\{ \theta^{(1)}, \dots, \theta^{(N)} \right\} \rightarrow$ posterior median, $F_{\theta|\mathbf{y}}^{-1}(0.5)$
- And similarly for **any** posterior quantile.

The Monte Carlo Method

- If the posterior follows a “common” distribution, as in many conjugate analyses, we can draw samples from the posterior using R functions.

Example 1: General Social Survey

- **Sample 1:** Number of children for women age 40+, without a bachelor's degree.
- **Sample 2:** Number of children for women age 40+, with a bachelor's degree or higher.
- Assume $\text{Poisson}(\theta_1)$ and $\text{Poisson}(\theta_2)$ models for the data.
- Use $\text{Gamma}(2,1)$ priors for θ_1 and θ_2 .

The Monte Carlo Method: Example 1 (Continued)

- **Data:** $n_1 = 111$, $\sum_i y_{i1} = 217$
- **Data:** $n_2 = 44$, $\sum_i y_{i2} = 66$
- Posterior for θ_1 is $\text{Gamma}(219, 112)$.
- Posterior for θ_2 is $\text{Gamma}(68, 45)$.
- Find $P(\theta_1 > \theta_2 | \mathbf{y}_1, \mathbf{y}_2)$.
- Find the posterior distribution of the ratio $\frac{\theta_1}{\theta_2}$.
- See the R example using the Monte Carlo method on Canvas.

Outline

The Monte Carlo Method

Approximating the Posterior

Grid Approximation

Markov Chain Monte Carlo (MCMC)

Introduction

- We will explore simulation techniques such as MCMC for approximating complex posterior models.
- Key elements in posterior analysis:
 - Posterior estimation
 - Hypothesis testing
 - Prediction

From Simple to Complex Bayesian Models

- Chapters 1-5 introduced simple models with easy-to-specify posteriors.
- More complex models (e.g., Michelle's election chances) involve many parameters:

$$p(\theta|\mathbf{y}) \propto p(\theta)L(\theta|\mathbf{y})$$

- Analytical computation of the posterior becomes intractable as the model complexity increases.

Simulation Techniques: Grid Approximation and MCMC

- When the posterior is too complex to specify, we approximate it.
- Two key simulation techniques:
 - Grid Approximation
 - Markov Chain Monte Carlo (MCMC)
- Both produce a sample of parameter values θ that reflect the posterior distribution.

Outline

The Monte Carlo Method

Approximating the Posterior

Grid Approximation

Markov Chain Monte Carlo (MCMC)

Grid Approximation

- Often, the posterior distribution does not have a simple, recognizable form, making it difficult to sample using built-in R functions (e.g., `rgamma`).
- We can approximate the posterior using simulation techniques such as grid approximation or Markov chain Monte Carlo (MCMC).
- We will first discuss the simpler approach: **grid approximation**.

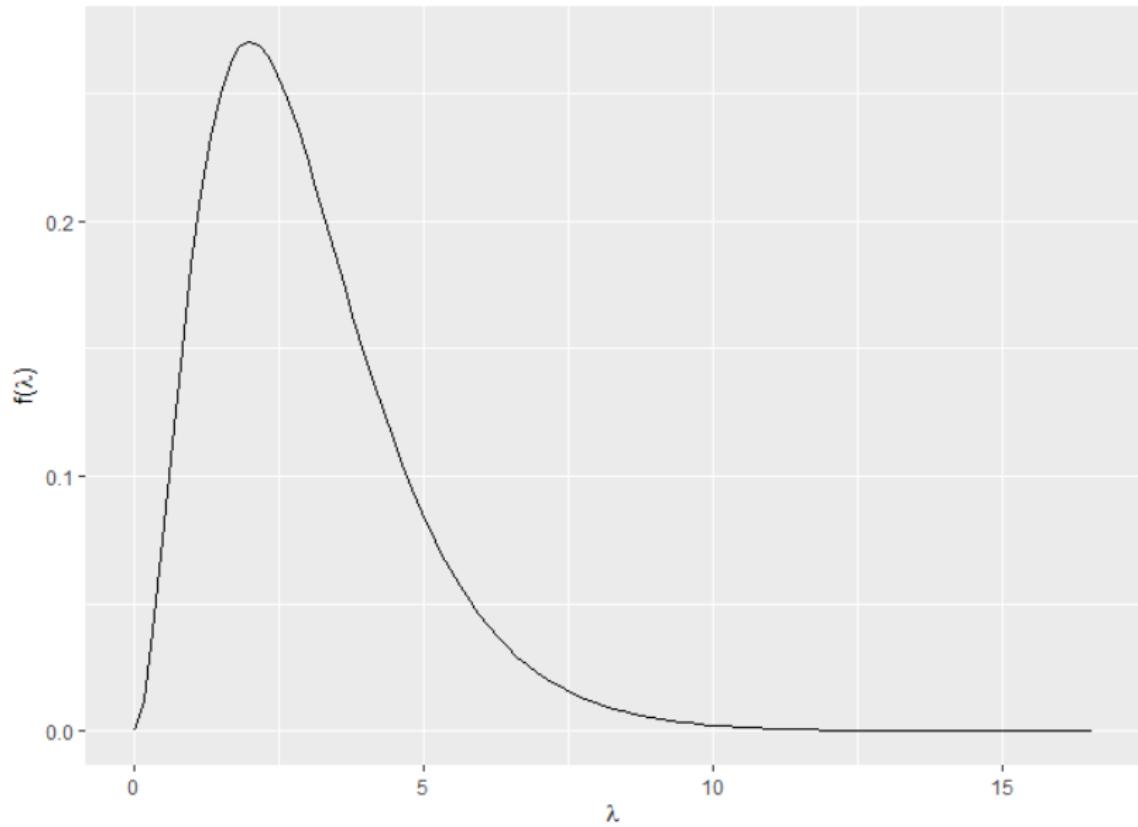
Example: The Gamma-Poisson Model

- Let's begin with an example where we know the true posterior distribution.

Grid Approximation with the Gamma-Poisson Model

- The book provides an example with Poisson data and $n = 2$ observations: $Y_1 = 2$ and $Y_2 = 8$. We choose a $\text{Gamma}(3, 1)$ prior for the parameter of interest, λ .
- The posterior distribution can be derived analytically as $\text{Gamma}(13, 3)$ (Exercise: Verify this).
- Suppose we didn't know the posterior; we could use grid approximation instead.
- We simulate a grid of values for λ , which can take values between 0 and ∞ . However, realistically, it is likely to lie between 0 and 15 (see $\text{Gamma}(3, 1)$ prior plot).
- Generate 501 equally spaced values of λ between 0 and 15.
- Plug these values into the prior $p(\lambda)$ and likelihood $L(\lambda|\mathbf{y})$ to approximate the posterior.

Plot of Gamma(3, 1) Prior



General Steps for Grid Approximation

- Given a prior $p(\theta)$ and a likelihood $L(\theta|\mathbf{y})$, the following steps approximate the posterior:

 1. Generate a grid of θ values over its range of possible (or realistic) values.
 2. Evaluate $p(\theta)$ and $L(\theta|\mathbf{y})$ at each θ value in the grid.
 3. Multiply $p(\theta) \times L(\theta|\mathbf{y})$ for each θ value.
 4. Normalize these products by dividing each by the sum of the products to ensure they sum to 1. This gives the posterior probabilities for each θ value.
 5. Randomly sample from the grid of θ values based on their normalized posterior probabilities.

- Fortunately, this process can be implemented quickly in R.

Grid Approximation in R with the Gamma-Poisson Model

- Recall the example with Poisson data: $n = 2$ observations, $Y_1 = 2$ and $Y_2 = 8$, with a $\text{Gamma}(3, 1)$ prior for λ .
- Generate 501 equally spaced values of λ between 0 and 15.
- Plug these values into the prior $p(\lambda)$ and likelihood $L(\lambda|\mathbf{y})$ (this is straightforward in R).
- Normalize the posterior probabilities and sample λ values based on these probabilities (easily done in R).
- Refer to the R code and plots to observe how closely the approximated posterior matches the true posterior.
- Use Monte Carlo methods to obtain posterior summary statistics (e.g., mean, median, variance).

Example: Beta-Binomial Model

- Suppose we model the number of successes Y in 10 trials as:

$$Y|\pi \sim \text{Binomial}(10, \pi), \quad \pi \sim \text{Beta}(2, 2)$$

- After observing 9 successes, the posterior is:

$$\pi|Y = 9 \sim \text{Beta}(11, 3)$$

- We approximate this posterior using grid approximation.

Limitations of Grid Approximation

- Grid approximation becomes computationally expensive as the number of parameters increases.
- It suffers from the “curse of dimensionality.”
- MCMC offers a more flexible alternative for approximating high-dimensional posteriors.

Outline

The Monte Carlo Method

Approximating the Posterior

Grid Approximation

Markov Chain Monte Carlo (MCMC)

- Grid approximation can become inefficient when the prior and/or likelihood are complex, or when there are multiple parameters of interest.
- For practical problems, **Markov chain Monte Carlo (MCMC)** sampling methods are commonly used.
- A **Markov chain** is a stochastic process where each random variable in the sequence depends probabilistically only on the preceding variable.

Introduction to MCMC and its Origins

- MCMC: Markov Chain Monte Carlo
- Origins:
 - Markov Chains: Named after Andrey Markov
 - Monte Carlo: Originated from Los Alamos nuclear weapons project (Ulam, von Neumann)
- MCMC simulates probability models and scales up for more complex Bayesian models.

MCMC Methods: The Markovian Property

- For a Markov chain $\{\theta^{[0]}, \theta^{[1]}, \theta^{[2]}, \dots\}$, the process satisfies the **Markovian** property:

$$P\left(\theta^{[t]} \in A | \theta^{[0]}, \theta^{[1]}, \dots, \theta^{[t-1]}\right) = P\left(\theta^{[t]} \in A | \theta^{[t-1]}\right)$$

- This means that $\theta^{[t]}$ is **conditionally independent** of all earlier values, **except** for the immediately preceding value, $\theta^{[t-1]}$.
- The values in a Markov chain are not fully independent, but they are “almost independent.”
- Chain growth: Each sample depends on the previous sample.