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Markov Chain Monte Carlo (MCMC) Algorithms

Metropolis-Hastings Algorithm



Metropolis-Hastings Algorithm

e The Metropolis-Hastings Algorithm is an MCMC algorithm
that approximates the joint distribution of k random variables
by sampling from the joint distribution.

e The M-H Algorithm generates a Markov chain whose values
approximate a sample from the posterior distribution.
e Requirements for the algorithm:

e The form of the posterior p(:|y) for 6 (up to a normalizing
constant).

e A proposal (or instrumental) distribution g(-|-) that is easy to
sample from.



Metropolis-Hastings Algorithm: Algorithm Steps

e The M-H Algorithm starts with an initial value for 8, say 6.

After iteration t, suppose the most recently drawn value is 0[],

Sample a candidate value #* from the proposal distribution
q(67[611).
The (t + 1)-st value in the chain is determined as:

ple+1] _ 6*  with probability p; = min {a (6*,0t) |1}
o1l with probability 1 — p;

where a(#*,61) is the acceptance ratio:

p(0*ly) q(61]6%)
p(6ldly) q(6*|0ld)

a(0*, 6l =




Metropolis-Hastings Algorithm: Practical Implementation

e The M-H Algorithm will move to a higher density point w.p.
1, but can also move to a lower density w.p. p; (can also stay
at the current point w.p. 1 — p;).

e The target function p(fly) is fully known (up to a normalizing
constant).

e p(f]y) can be analytically complicated or unwieldy.

e In practice, we sample Ultl ~ Uniform(0, 1) and choose
oLt = g+ if Ul < a(0*, 6lt)).
e Otherwise, set gltT1 = gltl,



Metropolis-Hastings Algorithm: Practical Implementation

Implementation in log-scale (to avoid under- and over-flow):

e |t is possible that p or g is extremely large or extremely small
(so, e.g., R can not handle it). To avoid this, we work in the

log-scale.

e We compute the log-acceptance ratio:

log a(6*, 01) = log p(0*|y) — log p(0!*y)+
log q(61)6") — log q(6*|0!"])

e We sample UMl ~ Uniform(0, 1) and choose Alt+1 = ¢* if
log UMt < log a(6*, 611).

e Otherwise, set 9t = gltl,



Metropolis-Hastings Algorithm: Properties

e If the proposal density g(-|-) is symmetric, i.e.,
q(0[t16%) = g(6*|0!t)), then the acceptance ratio simplifies to:

o gy — 21
p(01y)
e If the proposal density g(:|-) is independent, i.e.,

q(ulv) = g(u), then the acceptance ratio simplifies to:
p(0*ly) q(61)

p(01]y)  q(6%)

e The proposal function g(-|-) needs to be easy to sample from

a(*, 0l =

e The target function p(fly) is fully known (up to a normalizing
constant).

e On the other hand, EM algorithm will always move to a
higher-density point, so EM is a mode finder,

e but M-H is a sampling method from a target distribution.



Metropolis-Hastings Algorithm: Technical Aside - |

e Billera & Diaconis (2001) show that M-H algorithm is optimal in a
“natural class of related algorithms” (including Gibbs sampler).

e The M-H algorithm operates based on the following two-part transition
kernel:

p(0)7(0,0") = p(6')m(0',0) forall 0,0 € © (RC)
Here, 7(a, b) represents the probability of transitioning from state a to
state b. This condition is also known as the reversibility condition (RC)
or detailed balance.

e Robert & Casella (2004): show that under very general conditions, any
distribution over the appropriate support can be used as a proposal
distribution q(6’|0), and the M-H algorithm will converge to p(0) if
Equation (RC) holds. (That is, the right thing will happen if you run the
chain long enough!).

e The RC ensures that p(0) is invariant under the transition kernel,
implying the MC converges to this distribution.

e Metropolis (1953) only required symmetry instead of Condition (RC).
But Hastings (1970) showed that symmetry is not strictly necessary and
reversibility is sufficient. 9



Metropolis-Hastings Algorithm: Technical Details - I

Derivation of the Metropolis-Hastings Algorithm:
e Let the transition kernel (jump function) be denoted by
w(0,0") = q(0'10) - d(6,0"), where:
e g(¢']0) is the proposal distribution, which suggests new values
0’ based on the current state 0, and
e d(6,0") is the acceptance probability of moving from 6 to 6.

Similarly, the reverse transition is given by:
7r(0,7 0) = Q(9|9/) ’ d(0/7 6)

The decision to accept or reject a jump is based on d(6,6"), which

satisfies the detailed balance condition:
p(0)q(0'16)d(8,6") = p(6')q(8]6")d(6',6)

This implies the following relationship for the acceptance ratio:

d(0,0") _ p(0')a(6'|0)
d(e’,0)  p(6)a(0]¢")
Therefore, an appropriate acceptance ratio is:
, : p(6)q(0'19) }
a(0’,0) =minq 1, — >~ 10
(¢.) = min {1, 20T




Metropolis-Hastings Algorithm: Technical Aside - 11l

Existence and Uniqueness of the Limit (Stationary Distribution):

e Existence:
e The existence of a stationary distribution is guaranteed by the
detailed balance condition:

p(0)q(0'10)d(0,6") = p(0')a(6]6")d(0', 0)
e This condition ensures that each transition is reversible,
leading to a stationary distribution.
e Uniqueness:
e Uniqueness is ensured by the ergodicity of the Markov process,
which requires:
e Aperiodicity: The system does not return to the same state
at fixed, regular intervals, avoiding periodic behavior.
e Positive Recurrence: The expected number of steps to return
to a given state is finite, ensuring the process revisits states

sufficiently often.
11



Metropolis-Hastings Algorithm: Example 0

Example: Suppose we want to sample (approximately) from the
standard normal distribution 6 ~ N(0,1).

e Start with an initial value 6[% = 0.
e Use a uniform proposal distribution
q(6*|6M1) = Uniform (011 — 1,60t 4 1), which suggests new
values from a symmetric uniform interval.
e At each step:
1. Propose a new value 6* ~ Uniform(6lt] — 1, 0[] + 1),
2. Compute the acceptance ratio:
« iy P(OY)
a0, o't = o(019)
where p(0) is the normal density N(0, 1).
3. Accept 6* with probability min(1, a(6*, 6lt])); otherwise, stay
at oltl.
See the R code on Canvas. 12




Metropolis-Hastings Example: Sparrow Data

Example 1: Sparrow Data

e Data collected from a sample of 52 sparrows:
e X;: Age of the sparrow (in years)
e Y;: Number of offspring in that season

e We hypothesize that the number of offspring follows a
quadratic trend with age:

e |Initially, the number of offspring increases with age.
o After reaching a certain age, the number of offspring decreases.

e The number of offspring at a given age x is modeled as:
Y |x ~ Pois(fix)

where 1, represents the expected number of offspring at age
X.

13



Metropolis-Hastings Example: Sparrow Data (Continued)

e Since px must be positive, we model the expected number of
offspring as:
E[Y|X] = px = eﬁo+ﬁ1X+52X2

e This ensures that i, > 0 for all values of x.

e This Poisson regression model is a form of a generalized linear
model (GLM) with a log link function.

e The parameter of interest is the vector 8 = (So, f1, 52).
e Note that for non-normal GLMs, conjugate priors do not exist.

e As a result, we apply the Metropolis-Hastings algorithm to
sample from the posterior distribution of 3.

14



Poisson Regression - |: Model Setup

Poisson Regression Model

e Poisson regression is used for modeling count data, where the
response variable Y; represents the number of events (e.g.,
counts of occurrences).

e Assume the response variable Y; follows a Poisson distribution:

Yi|x; ~ Pois(p;)

where p; is the expected count for observation /i, and
xj = (Xj1, Xi2, - - . , Xjp) are the covariates associated with i-th
observation.

e The expected value p; is related to the covariates through the
log-linear model: E[Yj|x;] = 1j = € # where the exponential
function ensures that u; > 0.

e The parameter of interest is the vector 3 = (fo, 51, .-, 5p),

which includes the regression coefficients. 15



Poisson Regression - |l: Frequentist Approach

Frequentist Approach to Poisson Regression
e In the frequentist framework, the parameters (3 are estimated
using Maximum Likelihood Estimation (MLE).
e The likelihood function for a single observation i is given by:

Yi o= i
Hi'€ T
L(Blyi,xi) = =——, i =€"
Yi:
where ; is the expected count for observation /.
e For n independent observations, the full likelihood function
n T ) XTﬁ
. ey
becomes: L(B|y,x) = H o

i=1
e Taking the log of the likelihood, the log-likelihood function

simplifies to: ¢(8) = Z (y;xiT,B _ X B Iog(y,-!)) where
i=1
the term log(y;!) does not depend on 3, simplifying the

optimization process. 16



Poisson Regression - Ill: MLE Theory

e The Maximum Likelihood Estimate (MLE) {3 is found by
solving the score equations, which are the first derivatives of

. H(B) ot T3
the log-likelihood: ——— = : i — N =0
e log:ikelihood: =57 ;le, (y e )

e The second derivative (Hessian matrix) provides information
about the curvature of the likelihood function:

826
= e%i x x
seost =
e The Fisher information matrix is defined as:

') = € (5535

e Under regularity conditions, the MLE ,[Ai is:
e Consistent: ﬁ % 3, meaning the estimate converges in

probability to the true value as the sample size increases.
e Asymptotically normal: 3“2 N(3,171(3)), i.e. the MLE
is approximately normally distributed for large sample sizes. 17



Metropolis-Hastings Example: Sparrow Data (Priors and Pro-

posal)

e Let the prior on 3 (the parameter vector) be a multivariate
normal distribution with independent components:

B~MVN(,Y), ¥ =100x 1k

where [3 is the 3-dimensional identity matrix, and the prior
expresses prior uncertainty with large variance.

e For the proposal density, we choose a multivariate normal
distribution centered at the current value of ﬂ[t] at step t
(i.e., the current iteration value of the chain):

q(8°18") = MVN(BU, V)
where V is the covariance matrix of the proposal distribution.

18



Metropolis-Hastings Example: Sparrow Data (Priors and Pro-

posal)

e The covariance matrix V' is a tuning parameter that controls

the step size of the proposal. We choose it to be:
V =53(X'X)"!, where 6% = Var{log(y1+0.5), ..., log(y,+0.5)}

Here, X is the design matrix and &2 is an estimate of the
variance of the log-transformed responses.
The proposal’s step size (i.e., the tuning parameter) can be
adjusted if the acceptance rate (the proportion of times you
accept the proposed) is too high (indicating small steps) or
too low (indicating large steps).
A desirable acceptance rate typically falls between 20% and
50%, allowing for efficient exploration of the posterior
distribution.
19



Metropolis-Hastings Example: Acceptance Ratio

e Since the proposal density is symmetric, the acceptance ratio
simplifies to:

p(BYX,y)  L(BY|X,y)p(B)

e Specifically:

TT71 fooi (yil exp(x” B) TT;-y #(5710, 10°)
[T fooilyil exp(xT B T, 6(817)0,102)
where fo0i(x|)\) is the Poisson()) pmf and ¢(x|u, o?) is the

N(u,0?) pdf.
e In R notation:

a(p*, gl =

17, dpois(y;, exp(x;” B*)) H?:l dnorm(f3;, 0, 10)
[17_, dpois(y:, exp(x] Bl)) [T2_; dnorm (51, 0, 10)

e See the R example with the sparrow data (in log-scale).

a(s*, ) =

20



Other Metropolis-Hastings Considerations

e |t is recommended to monitor the acceptance rate—the
proportion of proposed 3* values that are accepted.
e Check the serial correlation of the {Bj[t]} values using an

autocorrelation plot.

o If the values do not appear independent, we can reduce
correlation by thinning the chain (selecting every kth value as

the posterior sample).

e A trace plot displays sampled parameter values over the
algorithm’s iterations. This helps assess if the algorithm has
converged and is sampling from the posterior distribution.

o |deally, a well-converged trace plot looks like a “hairy
caterpillar” after sufficient iterations.

21



Markov Chain Monte Carlo (MCMC) Algorithms

Gibbs Sampling Algorithm

22



Gibbs Sampling

The Gibbs Sampler is an MCMC algorithm that approximates the
joint distribution of k random variables by sampling from each full

conditional distribution sequentially.

Gibbs Sampling Algorithm:

(1) Choose initial values 61 = (9%0],9?], . .,9,[?]).

(2) Cycle through each full conditional distribution and sample:

o1 ~ p(oyjol 1, ol
0 ~ p(6,)01 61 gl

-1 -1
o1 ~ (o1t .. ot el Yy
ol ~ p(6, o 61, ol )

(3) Repeat step (2) until convergence. 23



Gibbs Sampling (Continued)

e To use the Gibbs Sampler, we must be able to sample from
each of the full conditional distributions.

e In each step, the most recent value of each ; is conditioned
on.

e After many cycles, the sampled values of (61,...,0x) will
approximate random draws from the joint distribution of
(01,...,0¢).

e Once we have the samples, we can summarize a posterior
distribution of interest, just as we did before.

e Note: Gibbs sampling is a special case of M-H algorithm with
a(f’,0) =1, i.e., always accept)

e But Gibbs is M-H with full conditionals being required, thus,
more restrictive than M-H.

e When the full conditionals for each parameter are difficult to
obtain, use M-H or some hybrid of Gibbs and M-H. 24



Gibbs Sampling Algorithm: Example 0

Suppose we want to sample from a BVN distribution:

Z=(X,Y)" ~ N(u,X), where o = (1x, ity) " is the mean vector
and X is the covariance matrix, is given by:

1 1 (x = p1x)?
f(x,y) = exp | — { +
() 2moxoyy/1 — p? ( 2(1-p?) 0%

(v —my)®  20(x = )y — uy)D

2
oy Ox0Oy

where
e L and p, are the means of X and Y.

e 02 and 0}2, are the variances of X and Y.
e p is the correlation coefficient between X and Y, with

2
s _ ( o5 paxay>
= 5]
poxoy 0, -



Gibbs Sampling Algorithm: Example 0

We first need to find the conditionals:

XY =y~ N(ux+p- (v = ny), 0%(1 = p?))

YIX = x~ Ny +p- (x = i), 05(1 = p%))
where piy, pt,, and oy, 0, are the means and standard deviations of
X and Y, and p is the correlation between X and Y.

Steps:

(1) Choose initial values X[, Y10l

(2) At each iteration t:
X N+ p- (YT — ), 03(1 = p?))
Y~ Ny +p- (X = 1), 03(1 = %)

(3) Repeat this process for many iterations until convergence.

See the R code on Canvas.
26



A Simple Gibbs Example: Flu Shot Effectiveness

Example 2: Testing the effectiveness of a seasonal flu shot

e 20 individuals received a flu shot at the start of winter.

o At the end of winter, follow up to see whether they contracted
the flu.

Let

1 if shot effective (no flu)
[ ] X, fr—

0 if ineffective (contracted flu)

e The 20th individual was unavailable for follow-up.

e Define Y = 3212, X; (the number of effective shots among 19
individuals).

27



A Simple Gibbs Example (Continued)

e Let 0 be the probability that the flu shot is effective. The

probability mass function (pmf), which also serves as the
likelihood for Y, is:

p(y[0) = <1y9> Y (1 — )19y

e If we had complete data (for Y and the status of the 20th
individual, Xag), assuming a Uniform(0,1) prior for 6, the
posterior distribution of 6 would be:

20
Ay, xo0) o<
ploly. o) (20
x 9)’+X20(1 _ 9)20—)/—X20

) 9)’+X20(1 _ 9)20—Y—X2o

where Xpq is a Bernoulli random variable indicating whether
the flu shot was effective for the 20th individual.

28



A Simple Gibbs Example (Final Steps)

e To handle the missing data for X5, we can use a Gibbs
sampling approach. At each iteration, we draw temporary (or
“latent”) values:

0| X530,y ~ Beta(y + X350 +1,20 — y — X5 + 1)
Xooly, 0" ~ Bernoulli(6*)

where 0* is the current value of # in the Gibbs sampler, and
X35 s the current imputed value of Xa.

e Repeatedly sample from the “full conditional” distributions to
eventually obtain a sample from the joint distribution of
(0, X20).

e This process allows us to approximate the posterior
distribution of # and Xyg.

e Refer to the R example with data for further illustration.
29



Gibbs Sampling Algorithm for 6 and X

Gibbs Sampling Steps: Flu Shot Effectiveness Example

e Initialize 81 (initial value of #) and Xz[gl (initial value of Xa0).
e For each iteration t =1,2,..., T:
1. Sample 01 from its full conditional distribution:

0[t1|X2[6_1]ay ~ Beta (y 4 X2[6—1] $1,20—y — X2[6—1] 4 1)

2. Sample Xz[f)] from its full conditional distribution:
X161y ~ Bernoulli(o!)

e Repeat this process for a large number of iterations to obtain
samples from the joint posterior distribution of # and Xpg.

e Discard the initial “burn-in" period and use the remaining
samples to estimate the posterior distribution.

e This iterative approach allows us to handle missing data for

Xoo and estimate the effectiveness of the flu shot (). 20



A More Complicated Gibbs Example: Changepoint Detection

Example 3: Coal Mining Disasters

e Data: Yearly counts of British coal mine disasters from 1851
to 1962.

e Observed pattern: Large counts in the early years, smaller
counts in the later years.

e Question: When did the mean of the process change?
Model:

e Early data: Yi,..., Yi|A ~ Pois()\), for i=1,... k

e Later data: Yy 1,..., Ys|¢p ~ Pois(¢), fori=k+1,...,n

e Estimate the Poisson means, A and ¢, as well as the
“changepoint” k.

31



A More Complicated Gibbs Example: Priors for Changepoint

(independent) Priors for the model:

e )\~ Gamma(a, )
e ¢ ~ Gamma(v,d)
e k ~ Discrete Uniform on {1,2,...,n}

Hyperparameters:

o |If we believe the mean annual disaster count for early years is
approximately 4, and for later years approximately 0.5, set:

a=4p=1 andy=1,6§=2

32



A More Complicated Gibbs Example: Posterior for Changepoint

Model

Posterior Distribution:

p(X; ¢, kly) oc p(A)p(d)p(k) L(X, ¢, kly)

() ) C) 157 (1,557)

Simplified:

o e kAN Yig=(1=k)9 p 30 yiya—1 g =B 4y=1 =60

— et y,—1e—(/a+k),\¢7+zf":k+l Yi—1g=(6+n—k)$

So, the full conditionals are

e Ao, k ~ Gamma (a + Zf;l vi, B+ k)
o ¢[\ k~Gamma (y+ Y7 1 i 0+ n— k)

33



A More Complicated Gibbs Example: Full Conditional for

Changepoint k

To get the full conditional for k, note the joint density of the data

f[) e\ ( ﬁ e—¢¢yi>
1 i
i=1 Yi: i—k+1 T

1 Ny [ TT | [ Hec®”
(i) e ) 82

i=k+1

=11 f?) O (Afg)

= f(y, )g(ylk, A, ¢)

34



A More Complicated Gibbs Example: Full Conditional for k

e By Bayes' Law, for any specific value k*:

f(y, ®)g(ylk*, A, ¢)p(k*)
> oue1 F(y, 0)g(ylk, A, 0)p(k)

e Since p(k) = % (constant), this simplifies to:

g(ylk*, A, ¢)
>ore1 8(ylk, A, ¢)

e This is the full conditional for k.

p(k*ly, A, ¢) =

p(K*ly; A, @) o

e This ratio defines a probability vector for k, which is used at
each iteration to sample a value of k from {1,2,...,n}.

e See R example with coal mining data for practical
implementation.

35



Another Gibbs Example: Normal Mixture

Example 4: Monkey Eye Data

e Data: A random sample of peak sensitivity wavelength
measurements from a monkey's eyes (Bowmaker et al., 1985),
Xl, e 7X48-

e The data are assumed to come from a mixture of two normal

distributions:
X; indep N(MT,-,T_l) and T; ~ Bernoulli(p)

where T; € {1, 2} indicates the true group of the i-th
observation.

e 111 = mean of group 1, up = mean of group 2, and 7 =
common precision parameter (inverse of variance).

e For computational purposes, we impose the constraint

11 < po and define the mean shift 6 = up — p1, where § > 0.
36



Another Gibbs Example: Normal Mixture

Priors and Model Details

e Independent, noninformative priors used:
e p~ Beta(1,1)
e 0~ N(,771 =10%)-/(6 > 0) (mean shift, with 0® = 10°)
e 11 ~ N(0,771 = 10°)
e 7 ~ Gamma(0.001,0.001) (precision)
e Conduct the analysis in rstan:
e 1000-draw burn-in phase

e 10,000 additional draws for inference

e Check convergence diagnostics.

37



Markov Chain Monte Carlo (MCMC) Algorithms

MCMC with rstan

38



rstan and MCMC Simulation

e MCMC simulation in R using the ‘rstan' package.
e Two essential steps:

e Define the Bayesian model structure in rstan.
e Simulate the posterior using the ‘stan()' function.

39



Example: Recall the Beta-Binomial Model in Slide8

e Suppose we model the number of successes Y in 10 trials as:
Y|m ~ Binomial(10,7), 7 ~ Beta(2,2)
e After observing 9 successes, the posterior is:
m|Y =9 ~ Beta(11,3)

e We approximated this posterior using grid approximation.

40



Example: Beta-Binomial Model in rstan

e Model definition (Step 1):

bb_model <- "
data {
int<lower = 0, upper = 10> Y;
}
parameters {
real<lower = 0, upper = 1> pi;

}

model {
Y ~ binomial (10, pi);
pi ~ beta(2, 2);

} n

e Posterior simulation (Step 2):

bb_sim <- stan(model_code = bb_model, data = list(Y = 9),
chains = 4, iter = 10000, seed = 84735) 41



Burn-in and Trace Plots

e Burn-in: Discard initial samples to avoid bias.
e Markov Chain Trace plots show the evolution of the chain

values over time.
e Example trace plot for 7:
Hﬂ ”l
W! e

W WWW Mﬁﬂ L ’iTw

Figure 1: Trace plots of four parallel chains.

W

000 5000




Gamma-Poisson Model Example

e Recall the example with Poisson data: n = 2 observations,
Y1 =2 and Y2 = 8, with a Gamma(3, 1) prior for .
e Data: Observed events Y = (2,8)
e Model definition:
gp-model <- "
data {
int<lower = 0>Y[2];
}
parameters {
real<lower = O0>lambda;
}
model {
Y “poisson(lambda);
lambda ~gamma(3, 1);

}n

43



Posterior Simulation for Gamma-Poisson

e Posterior simulation (Step 2):

gp-sim <- stan(model_code = gp_model,
data = 1list(Y = c(2, 8)), chains = 4,
iter = 10000, seed = 84735)

e Trace plots, histograms, and density plots can be used to
visualize the Markov chains and posterior approximations.

44



e MCMC methods like those implemented in ‘rstan’ allow for
efficient simulation of complex Bayesian models.

e Dependent samples require careful diagnostics, such as trace

plots, to ensure convergence.

e Burn-in helps remove early, unstable samples from the chain.

45



Markov Chain Monte Carlo (MCMC) Algorithms

MCMC Diagnostics

46



Markov Chain Diagnostics Overview

e MCMC simulations approximate Bayesian posteriors.

e Diagnostics are essential to assess the quality of MCMC
results.
e Key questions:
e What does a good Markov chain look like?
e How to assess if the Markov chain approximates the posterior
well?
e How large should the chain sample size be?
e Diagnostics combine visual tools (e.g., trace plots) and
numerical measures (e.g., effective sample size,
autocorrelation).

47



Trace Plots: Visualizing Markov Chain Behavior

Trace plots help assess the stability and randomness of
Markov chains.

A “good” trace plot looks like random white noise with no
discernible trends.

Example of bad trace plots:

e Chain A: exhibits a downward trend, slow mixing.
e Chain B: shows plateaus, indicating the chain gets stuck.

Density plots can help verify if the Markov chain approximates
the posterior correctly.

48



Example of bad trace plots

Chain A: trace plot Chain A: density plot
0 1000 2000 3000 4000 5000 10
iteration
Chain B: trace plot Chain B: density plot
1000 2000 3000 4000 5000 1.0

iteration

Figure 2: Trace plots (left) and corresponding density plots (right) of

two hypothetical Markov chains. These provide examples of what “bad”
Markov chains might look like. The superimposed black lines (right)

represent the target Beta(11,3) posterior pdf. 49



Parallel Chains: Consistency Across Chains

e Running multiple chains allows assessment of consistency
across chains.
e Chains should exhibit similar randomness and posterior
approximations.
e Example:
e Four parallel chains run for 10,000 iterations each.
e Consistent density plots across chains indicate stability.
e Short chains can lead to discrepancies and unstable posterior

approximations.

50



Effective Sample Size & Autocorrelation

Effective sample size quantifies the number of independent

samples equivalent to the Markov chain.

Autocorrelation measures dependence between chain values.

Markov chain is more effective when:

e Effective sample size ratio is large.
e Autocorrelation decreases quickly with lag.

Example: Effective sample size ratio = 0.34, implying 20,000

samples behave like 6,800 independent samples.

51



Autocorrelation Plots
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Figure 3: A trace plot (left) and autocorrelation plot (right) for a single
Markov chain from the bb_sim analysis (top). and a trace plot (left) and
autocorrelation plot (right) for a slow mixing Markov chain of 7

(bottom). 5



R-hat (R): Split-Chain Diagnostics

e R-hat compares variability within and across chains.

’Q ~ Va lcomb
Varithin

e |deal R-hat is close to 1, indicating chain stability.
e If R-hat > 1.05, it suggests potential instability in the Markov

chains.

e Example: R-hat = 1 for the Beta-Binomial model, indicating
stable and consistent chains.

53



Split-Chain Diagnostics

AW

Figure 4: Simulation results for bb_sim (top row) and a hypothetical
alternative (bottom row). Included are trace plots of the four parallel
chains (left), density plots for each individual chain (middle), and a
density plot of the combined chains (right).
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