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Metropolis-Hastings Algorithm

� The Metropolis-Hastings Algorithm is an MCMC algorithm

that approximates the joint distribution of k random variables

by sampling from the joint distribution.

� The M-H Algorithm generates a Markov chain whose values

approximate a sample from the posterior distribution.

� Requirements for the algorithm:

� The form of the posterior p(·|y) for θ (up to a normalizing

constant).

� A proposal (or instrumental) distribution q(·|·) that is easy to

sample from.
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Metropolis-Hastings Algorithm: Algorithm Steps

� The M-H Algorithm starts with an initial value for θ, say θ[0].

� After iteration t, suppose the most recently drawn value is θ[t].

� Sample a candidate value θ∗ from the proposal distribution

q(θ∗|θ[t]).
� The (t + 1)-st value in the chain is determined as:

θ[t+1] =

θ∗ with probability pj = min
{
a
(
θ∗, θ[t]

)
, 1
}

θ[t] with probability 1− pj

� where a(θ∗, θ[t]) is the acceptance ratio:

a(θ∗, θ[t]) =
p(θ∗|y)
p(θ[t]|y)

· q(θ
[t]|θ∗)

q(θ∗|θ[t])
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Metropolis-Hastings Algorithm: Practical Implementation

� The M-H Algorithm will move to a higher density point w.p.

1, but can also move to a lower density w.p. pj (can also stay

at the current point w.p. 1− pj).

� The target function p(θ|y) is fully known (up to a normalizing

constant).

� p(θ|y) can be analytically complicated or unwieldy.

� In practice, we sample U [t] ∼ Uniform(0, 1) and choose

θ[t+1] = θ∗ if U [t] < a(θ∗, θ[t]).

� Otherwise, set θ[t+1] = θ[t].
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Metropolis-Hastings Algorithm: Practical Implementation

Implementation in log-scale (to avoid under- and over-flow):

� It is possible that p or q is extremely large or extremely small

(so, e.g., R can not handle it). To avoid this, we work in the

log-scale.

� We compute the log-acceptance ratio:

log a(θ∗, θ[t]) = log p(θ∗|y)− log p(θ[t]|y)+
log q(θ[t]|θ∗)− log q(θ∗|θ[t])

� We sample U [t] ∼ Uniform(0, 1) and choose θ[t+1] = θ∗ if

logU [t] < log a(θ∗, θ[t]).

� Otherwise, set θ[t+1] = θ[t].
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Metropolis-Hastings Algorithm: Properties

� If the proposal density q(·|·) is symmetric, i.e.,

q(θ[t]|θ∗) = q(θ∗|θ[t]), then the acceptance ratio simplifies to:

a(θ∗, θ[t]) =
p(θ∗|y)
p(θ[t]|y)

� If the proposal density q(·|·) is independent, i.e.,
q(u|v) = q(u), then the acceptance ratio simplifies to:

a(θ∗, θ[t]) =
p(θ∗|y)
p(θ[t]|y)

· q(θ
[t])

q(θ∗)

� The proposal function q(·|·) needs to be easy to sample from

� The target function p(θ|y) is fully known (up to a normalizing

constant).

� On the other hand, EM algorithm will always move to a

higher-density point, so EM is a mode finder,

� but M-H is a sampling method from a target distribution.
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Metropolis-Hastings Algorithm: Technical Aside - I

� Billera & Diaconis (2001) show that M-H algorithm is optimal in a

“natural class of related algorithms” (including Gibbs sampler).

� The M-H algorithm operates based on the following two-part transition

kernel:

p(θ)π(θ, θ′) = p(θ′)π(θ′, θ) for all θ, θ′ ∈ Θ (RC)

Here, π(a, b) represents the probability of transitioning from state a to

state b. This condition is also known as the reversibility condition (RC)

or detailed balance.

� Robert & Casella (2004): show that under very general conditions, any

distribution over the appropriate support can be used as a proposal

distribution q(θ′|θ), and the M-H algorithm will converge to p(θ) if

Equation (RC) holds. (That is, the right thing will happen if you run the

chain long enough!).

� The RC ensures that p(θ) is invariant under the transition kernel,

implying the MC converges to this distribution.

� Metropolis (1953) only required symmetry instead of Condition (RC).

But Hastings (1970) showed that symmetry is not strictly necessary and

reversibility is sufficient. 9



Metropolis-Hastings Algorithm: Technical Details - II

Derivation of the Metropolis-Hastings Algorithm:

� Let the transition kernel (jump function) be denoted by

π(θ, θ′) = q(θ′|θ) · d(θ, θ′), where:
� q(θ′|θ) is the proposal distribution, which suggests new values

θ′ based on the current state θ, and

� d(θ, θ′) is the acceptance probability of moving from θ to θ′.

� Similarly, the reverse transition is given by:

π(θ′, θ) = q(θ|θ′) · d(θ′, θ)

� The decision to accept or reject a jump is based on d(θ, θ′), which

satisfies the detailed balance condition:

p(θ)q(θ′|θ)d(θ, θ′) = p(θ′)q(θ|θ′)d(θ′, θ)

� This implies the following relationship for the acceptance ratio:

d(θ, θ′)

d(θ′, θ)
=

p(θ′)q(θ′|θ)
p(θ)q(θ|θ′)

� Therefore, an appropriate acceptance ratio is:

a(θ′, θ) = min

{
1,

p(θ′)q(θ′|θ)
p(θ)q(θ|θ′)

}
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Metropolis-Hastings Algorithm: Technical Aside - III

Existence and Uniqueness of the Limit (Stationary Distribution):

� Existence:

� The existence of a stationary distribution is guaranteed by the

detailed balance condition:

p(θ)q(θ′|θ)d(θ, θ′) = p(θ′)q(θ|θ′)d(θ′, θ)

� This condition ensures that each transition is reversible,

leading to a stationary distribution.

� Uniqueness:

� Uniqueness is ensured by the ergodicity of the Markov process,

which requires:

� Aperiodicity: The system does not return to the same state

at fixed, regular intervals, avoiding periodic behavior.

� Positive Recurrence: The expected number of steps to return

to a given state is finite, ensuring the process revisits states

sufficiently often.
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Metropolis-Hastings Algorithm: Example 0

Example: Suppose we want to sample (approximately) from the

standard normal distribution θ ∼ N(0, 1).

� Start with an initial value θ[0] = 0.

� Use a uniform proposal distribution

q(θ∗|θ[t]) = Uniform(θ[t] − 1, θ[t] + 1), which suggests new

values from a symmetric uniform interval.
� At each step:

1. Propose a new value θ∗ ∼ Uniform(θ[t] − 1, θ[t] + 1).

2. Compute the acceptance ratio:

a(θ∗, θ[t]) =
p(θ∗)

p(θ[t])

where p(θ) is the normal density N(0, 1).

3. Accept θ∗ with probability min(1, a(θ∗, θ[t])); otherwise, stay

at θ[t].

See the R code on Canvas. 12



Metropolis-Hastings Example: Sparrow Data

Example 1: Sparrow Data

� Data collected from a sample of 52 sparrows:

� Xi : Age of the sparrow (in years)

� Yi : Number of offspring in that season

� We hypothesize that the number of offspring follows a
quadratic trend with age:

� Initially, the number of offspring increases with age.

� After reaching a certain age, the number of offspring decreases.

� The number of offspring at a given age x is modeled as:

Y |x ∼ Pois(µx)

where µx represents the expected number of offspring at age

x .
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Metropolis-Hastings Example: Sparrow Data (Continued)

� Since µx must be positive, we model the expected number of

offspring as:

E[Y |x ] = µx = eβ0+β1x+β2x2

� This ensures that µx > 0 for all values of x .

� This Poisson regression model is a form of a generalized linear

model (GLM) with a log link function.

� The parameter of interest is the vector β = (β0, β1, β2).

� Note that for non-normal GLMs, conjugate priors do not exist.

� As a result, we apply the Metropolis-Hastings algorithm to

sample from the posterior distribution of β.
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Poisson Regression - I: Model Setup

Poisson Regression Model

� Poisson regression is used for modeling count data, where the

response variable Yi represents the number of events (e.g.,

counts of occurrences).

� Assume the response variable Yi follows a Poisson distribution:

Yi |xi ∼ Pois(µi )

where µi is the expected count for observation i , and

xi = (xi1, xi2, . . . , xip) are the covariates associated with i-th

observation.

� The expected value µi is related to the covariates through the

log-linear model: E[Yi |xi ] = µi = ex
⊤
i β where the exponential

function ensures that µi > 0.

� The parameter of interest is the vector β = (β0, β1, . . . , βp),

which includes the regression coefficients. 15



Poisson Regression - II: Frequentist Approach

Frequentist Approach to Poisson Regression

� In the frequentist framework, the parameters β are estimated

using Maximum Likelihood Estimation (MLE).

� The likelihood function for a single observation i is given by:

L(β|yi , xi ) =
µyi
i e

−µi

yi !
, µi = ex

⊤
i β

where µi is the expected count for observation i .

� For n independent observations, the full likelihood function

becomes: L(β|y, x) =
n∏

i=1

(ex
⊤
i β)yi e−ex

⊤
i β

yi !

� Taking the log of the likelihood, the log-likelihood function

simplifies to: ℓ(β) =
n∑

i=1

(
yix

⊤
i β − ex

⊤
i β − log(yi !)

)
where

the term log(yi !) does not depend on β, simplifying the

optimization process. 16



Poisson Regression - III: MLE Theory

� The Maximum Likelihood Estimate (MLE) β̂ is found by

solving the score equations, which are the first derivatives of

the log-likelihood:
∂ℓ(β)

∂β
=

n∑
i=1

x⊤i

(
yi − ex

⊤
i β
)
= 0

� The second derivative (Hessian matrix) provides information

about the curvature of the likelihood function:

∂2ℓ(β)

∂β∂β⊤ = −
n∑

i=1

ex
⊤
i βxix

⊤
i

� The Fisher information matrix is defined as:

I (β) = −E
[

∂2ℓ(β)

∂β∂β⊤

]
� Under regularity conditions, the MLE β̂ is:

� Consistent: β̂
p→ β, meaning the estimate converges in

probability to the true value as the sample size increases.

� Asymptotically normal: β̂
approx∼ N(β, I−1(β)), i.e. the MLE

is approximately normally distributed for large sample sizes. 17



Metropolis-Hastings Example: Sparrow Data (Priors and Pro-

posal)

� Let the prior on β (the parameter vector) be a multivariate

normal distribution with independent components:

β ∼ MVN(0,Σ), Σ = 100× I3

where I3 is the 3-dimensional identity matrix, and the prior

expresses prior uncertainty with large variance.

� For the proposal density, we choose a multivariate normal

distribution centered at the current value of β[t] at step t

(i.e., the current iteration value of the chain):

q(β∗|β[t]) = MVN(β[t],V )

where V is the covariance matrix of the proposal distribution.
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Metropolis-Hastings Example: Sparrow Data (Priors and Pro-

posal)

� The covariance matrix V is a tuning parameter that controls

the step size of the proposal. We choose it to be:

V = σ̂2(X ′X )−1, where σ̂2 = Var{log(y1+0.5), . . . , log(yn+0.5)}

Here, X is the design matrix and σ̂2 is an estimate of the

variance of the log-transformed responses.

� The proposal’s step size (i.e., the tuning parameter) can be

adjusted if the acceptance rate (the proportion of times you

accept the proposed) is too high (indicating small steps) or

too low (indicating large steps).

� A desirable acceptance rate typically falls between 20% and

50%, allowing for efficient exploration of the posterior

distribution.
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Metropolis-Hastings Example: Acceptance Ratio

� Since the proposal density is symmetric, the acceptance ratio

simplifies to:

a(β∗, β[t]) =
p(β∗|X , y)

p(β[t]|X , y)
=

L(β∗|X , y)p(β∗)

L(β[t]|X , y)p(β[t])

� Specifically:

a(β∗, β[t]) =

∏n
i=1 fpoi(yi | exp(xTi β∗))

∏3
j=1 ϕ(β

∗
j |0, 102)∏n

i=1 fpoi(yi | exp(xTi β[t]))
∏3

j=1 ϕ(β
[t]
j |0, 102)

where fpoi(x |λ) is the Poisson(λ) pmf and ϕ(x |µ, σ2) is the

N(µ, σ2) pdf.

� In R notation:

a(β∗, β[t]) =

∏n
i=1 dpois(yi , exp(x

T
i β∗))

∏3
j=1 dnorm(β∗

j , 0, 10)∏n
i=1 dpois(yi , exp(x

T
i β[t]))

∏3
j=1 dnorm(β

[t]
j , 0, 10)

� See the R example with the sparrow data (in log-scale).
20



Other Metropolis-Hastings Considerations

� It is recommended to monitor the acceptance rate—the

proportion of proposed β∗ values that are accepted.

� Check the serial correlation of the
{
β
[t]
j

}
values using an

autocorrelation plot.

� If the values do not appear independent, we can reduce

correlation by thinning the chain (selecting every kth value as

the posterior sample).

� A trace plot displays sampled parameter values over the

algorithm’s iterations. This helps assess if the algorithm has

converged and is sampling from the posterior distribution.

� Ideally, a well-converged trace plot looks like a “hairy

caterpillar” after sufficient iterations.
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Gibbs Sampling

The Gibbs Sampler is an MCMC algorithm that approximates the

joint distribution of k random variables by sampling from each full

conditional distribution sequentially.

Gibbs Sampling Algorithm:

(1) Choose initial values θ[0] = (θ
[0]
1 , θ

[0]
2 , . . . , θ

[0]
k ).

(2) Cycle through each full conditional distribution and sample:

θ
[t]
1 ∼ p(θ1|θ[t−1]

2 , . . . , θ
[t−1]
k )

θ
[t]
2 ∼ p(θ2|θ[t]1 , θ

[t−1]
3 , . . . , θ

[t−1]
k )

. . .

θ
[t]
j ∼ p(θj |θ

[t]
1 , . . . , θ

[t]
j−1, θ

[t−1]
j+1 , . . . , θ

[t−1]
k )

. . .

θ
[t]
k ∼ p(θk |θ

[t]
1 , θ

[t]
2 , . . . , θ

[t]
k−1)

(3) Repeat step (2) until convergence. 23



Gibbs Sampling (Continued)

� To use the Gibbs Sampler, we must be able to sample from

each of the full conditional distributions.

� In each step, the most recent value of each θj is conditioned

on.

� After many cycles, the sampled values of (θ1, . . . , θk) will

approximate random draws from the joint distribution of

(θ1, . . . , θk).

� Once we have the samples, we can summarize a posterior

distribution of interest, just as we did before.

� Note: Gibbs sampling is a special case of M-H algorithm with

a(θ′, θ) = 1, i.e., always accept)

� But Gibbs is M-H with full conditionals being required, thus,

more restrictive than M-H.

� When the full conditionals for each parameter are difficult to

obtain, use M-H or some hybrid of Gibbs and M-H. 24



Gibbs Sampling Algorithm: Example 0

Suppose we want to sample from a BVN distribution:

Z = (X ,Y )⊤ ∼ N(µ,Σ), where µ = (µx , µy )
⊤ is the mean vector

and Σ is the covariance matrix, is given by:

f (x , y) =
1

2πσxσy
√

1− ρ2
exp

(
− 1

2(1− ρ2)

[(x − µx)
2

σ2
x

+

(y − µy )
2

σ2
y

− 2ρ(x − µx)(y − µy )

σxσy

])
where

� µx and µy are the means of X and Y .

� σ2
x and σ2

y are the variances of X and Y .

� ρ is the correlation coefficient between X and Y , with

Σ =

(
σ2
x ρσxσy

ρσxσy σ2
y

)
.

25



Gibbs Sampling Algorithm: Example 0

We first need to find the conditionals:

X |Y = y ∼ N(µx + ρ · (y − µy ), σ
2
x(1− ρ2))

Y |X = x ∼ N(µy + ρ · (x − µx), σ
2
y (1− ρ2))

where µx , µy , and σx , σy are the means and standard deviations of

X and Y , and ρ is the correlation between X and Y .

Steps:

(1) Choose initial values X [0],Y [0].

(2) At each iteration t:

X [t] ∼ N(µx + ρ · (Y [t−1] − µy ), σ
2
x(1− ρ2))

Y [t] ∼ N(µy + ρ · (X [t] − µx), σ
2
y (1− ρ2))

(3) Repeat this process for many iterations until convergence.

See the R code on Canvas.
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A Simple Gibbs Example: Flu Shot Effectiveness

Example 2: Testing the effectiveness of a seasonal flu shot

� 20 individuals received a flu shot at the start of winter.

� At the end of winter, follow up to see whether they contracted

the flu.

Let

� Xi =

1 if shot effective (no flu)

0 if ineffective (contracted flu)

� The 20th individual was unavailable for follow-up.

� Define Y =
∑19

i=1 Xi (the number of effective shots among 19

individuals).
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A Simple Gibbs Example (Continued)

� Let θ be the probability that the flu shot is effective. The

probability mass function (pmf), which also serves as the

likelihood for Y , is:

p(y |θ) =
(
19

y

)
θy (1− θ)19−y

� If we had complete data (for Y and the status of the 20th

individual, X20), assuming a Uniform(0,1) prior for θ, the

posterior distribution of θ would be:

p(θ|y , x20) ∝
(

20

y + x20

)
θy+x20(1− θ)20−y−x20

∝ θy+x20(1− θ)20−y−x20

where X20 is a Bernoulli random variable indicating whether

the flu shot was effective for the 20th individual.

28



A Simple Gibbs Example (Final Steps)

� To handle the missing data for X20, we can use a Gibbs

sampling approach. At each iteration, we draw temporary (or

“latent”) values:

θ|X ∗
20, y ∼ Beta(y + X ∗

20 + 1, 20− y − X ∗
20 + 1)

X20|y , θ∗ ∼ Bernoulli(θ∗)

where θ∗ is the current value of θ in the Gibbs sampler, and

X ∗
20 is the current imputed value of X20.

� Repeatedly sample from the “full conditional” distributions to

eventually obtain a sample from the joint distribution of

(θ,X20).

� This process allows us to approximate the posterior

distribution of θ and X20.

� Refer to the R example with data for further illustration.
29



Gibbs Sampling Algorithm for θ and X20

Gibbs Sampling Steps: Flu Shot Effectiveness Example

� Initialize θ[0] (initial value of θ) and X
[0]
20 (initial value of X20).

� For each iteration t = 1, 2, . . . ,T :
1. Sample θ[t] from its full conditional distribution:

θ[t]|X [t−1]
20 , y ∼ Beta

(
y + X

[t−1]
20 + 1, 20− y − X

[t−1]
20 + 1

)
2. Sample X

[t]
20 from its full conditional distribution:

X
[t]
20 |θ

[t], y ∼ Bernoulli(θ[t])

� Repeat this process for a large number of iterations to obtain

samples from the joint posterior distribution of θ and X20.

� Discard the initial “burn-in” period and use the remaining

samples to estimate the posterior distribution.

� This iterative approach allows us to handle missing data for

X20 and estimate the effectiveness of the flu shot (θ).
30



A More Complicated Gibbs Example: Changepoint Detection

Example 3: Coal Mining Disasters

� Data: Yearly counts of British coal mine disasters from 1851

to 1962.

� Observed pattern: Large counts in the early years, smaller

counts in the later years.

� Question: When did the mean of the process change?

Model:

� Early data: Y1, . . . ,Yk |λ ∼ Pois(λ), for i = 1, . . . , k

� Later data: Yk+1, . . . ,Yn|ϕ ∼ Pois(ϕ), for i = k + 1, . . . , n

� Estimate the Poisson means, λ and ϕ, as well as the

“changepoint” k.
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A More Complicated Gibbs Example: Priors for Changepoint

(independent) Priors for the model:

� λ ∼ Gamma(α, β)

� ϕ ∼ Gamma(γ, δ)

� k ∼ Discrete Uniform on {1, 2, . . . , n}

Hyperparameters:

� If we believe the mean annual disaster count for early years is

approximately 4, and for later years approximately 0.5, set:

α = 4, β = 1, and γ = 1, δ = 2
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A More Complicated Gibbs Example: Posterior for Changepoint

Model

Posterior Distribution:

p(λ, ϕ, k |y) ∝ p(λ)p(ϕ)p(k) L(λ, ϕ, k|y)

=

(
βα

Γ(α)
λα−1e−βλ

)(
δγ

Γ(γ)
ϕγ−1e−δϕ

)(
1

n

)( k∏
i=1

e−λλyi

yi !

)(
n∏

i=k+1

e−ϕϕyi

yi !

)
Simplified:

∝ e−kλλ
∑k

i=1 yi e−(n−k)ϕϕ
∑n

k+1 yiλα−1e−βλϕγ−1e−δϕ

= λα+
∑k

i=1 yi−1e−(β+k)λϕγ+
∑n

i=k+1 yi−1e−(δ+n−k)ϕ

So, the full conditionals are

� λ|ϕ, k ∼ Gamma
(
α+

∑k
i=1 yi , β + k

)
� ϕ|λ, k ∼ Gamma

(
γ +

∑n
i=k+1 yi , δ + n − k

)
33



A More Complicated Gibbs Example: Full Conditional for

Changepoint k

To get the full conditional for k, note the joint density of the data

is:

p(y|k , λ, ϕ) =

(
k∏

i=1

)
e−λλyi

yi !

(
n∏

i=k+1

e−ϕϕyi

yi !

)

=

(
n∏

i=1

1

yi !

)
· ek(ϕ−λ)e−nϕλ

∑k
i=1 yi

(
n∏

i=k+1

ϕyi

)(∏n
i=k ϕ

yi

ϕ
∑k

i=1 yi

)

=

(
n∏

i=1

e−ϕϕyi

yi !

)
ek(ϕ−λ)(λ/ϕ)

∑k
i=1 yi

= f (y, ϕ)g(y|k, λ, ϕ)
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A More Complicated Gibbs Example: Full Conditional for k

� By Bayes’ Law, for any specific value k∗:

p(k∗|y, λ, ϕ) = f (y, ϕ)g(y|k∗, λ, ϕ)p(k∗)∑n
k=1 f (y, ϕ)g(y|k , λ, ϕ)p(k)

� Since p(k) = 1
n (constant), this simplifies to:

p(k∗|y, λ, ϕ) ∝ g(y|k∗, λ, ϕ)∑n
k=1 g(y|k , λ, ϕ)

� This is the full conditional for k .

� This ratio defines a probability vector for k, which is used at

each iteration to sample a value of k from {1, 2, . . . , n}.
� See R example with coal mining data for practical

implementation.
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Another Gibbs Example: Normal Mixture

Example 4: Monkey Eye Data

� Data: A random sample of peak sensitivity wavelength

measurements from a monkey’s eyes (Bowmaker et al., 1985),

X1, . . . ,X48.

� The data are assumed to come from a mixture of two normal

distributions:

Xi
indep∼ N(µTi

, τ−1) and Ti ∼ Bernoulli(p)

where Ti ∈ {1, 2} indicates the true group of the i-th

observation.

� µ1 = mean of group 1, µ2 = mean of group 2, and τ =

common precision parameter (inverse of variance).

� For computational purposes, we impose the constraint

µ1 < µ2 and define the mean shift δ = µ2 − µ1, where δ > 0.
36



Another Gibbs Example: Normal Mixture

Priors and Model Details

� Independent, noninformative priors used:

� p ∼ Beta(1, 1)

� δ ∼ N(0, τ−1 = 106) · I (δ > 0) (mean shift, with σ2 = 106)

� µ1 ∼ N(0, τ−1 = 106)

� τ ∼ Gamma(0.001, 0.001) (precision)

� Conduct the analysis in rstan:

� 1000-draw burn-in phase

� 10,000 additional draws for inference

� Check convergence diagnostics.
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rstan and MCMC Simulation

� MCMC simulation in R using the ‘rstan‘ package.

� Two essential steps:

� Define the Bayesian model structure in rstan.

� Simulate the posterior using the ‘stan()‘ function.

39



Example: Recall the Beta-Binomial Model in Slide8

� Suppose we model the number of successes Y in 10 trials as:

Y |π ∼ Binomial(10, π), π ∼ Beta(2, 2)

� After observing 9 successes, the posterior is:

π|Y = 9 ∼ Beta(11, 3)

� We approximated this posterior using grid approximation.
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Example: Beta-Binomial Model in rstan

� Model definition (Step 1):

bb_model <- "

data {

int<lower = 0, upper = 10> Y;

}

parameters {

real<lower = 0, upper = 1> pi;

}

model {

Y ~ binomial(10, pi);

pi ~ beta(2, 2);

} "

� Posterior simulation (Step 2):

bb_sim <- stan(model_code = bb_model, data = list(Y = 9),

chains = 4, iter = 10000, seed = 84735) 41



Burn-in and Trace Plots

� Burn-in: Discard initial samples to avoid bias.

� Markov Chain Trace plots show the evolution of the chain

values over time.

� Example trace plot for π:

Figure 1: Trace plots of four parallel chains.
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Gamma-Poisson Model Example

� Recall the example with Poisson data: n = 2 observations,

Y1 = 2 and Y2 = 8, with a Gamma(3, 1) prior for λ.

� Data: Observed events Y = (2, 8)

� Model definition:

gp model <- "

data {
int<lower = 0>Y[2];

}
parameters {

real<lower = 0>lambda;

}
model {

Y ~poisson(lambda);

lambda ~gamma(3, 1);

} " 43



Posterior Simulation for Gamma-Poisson

� Posterior simulation (Step 2):

gp sim <- stan(model code = gp model,

data = list(Y = c(2, 8)), chains = 4,

iter = 10000, seed = 84735)

� Trace plots, histograms, and density plots can be used to

visualize the Markov chains and posterior approximations.
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Summary

� MCMC methods like those implemented in ‘rstan‘ allow for

efficient simulation of complex Bayesian models.

� Dependent samples require careful diagnostics, such as trace

plots, to ensure convergence.

� Burn-in helps remove early, unstable samples from the chain.
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Markov Chain Diagnostics Overview

� MCMC simulations approximate Bayesian posteriors.

� Diagnostics are essential to assess the quality of MCMC

results.

� Key questions:

� What does a good Markov chain look like?

� How to assess if the Markov chain approximates the posterior

well?

� How large should the chain sample size be?

� Diagnostics combine visual tools (e.g., trace plots) and

numerical measures (e.g., effective sample size,

autocorrelation).
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Trace Plots: Visualizing Markov Chain Behavior

� Trace plots help assess the stability and randomness of

Markov chains.

� A “good” trace plot looks like random white noise with no

discernible trends.

� Example of bad trace plots:

� Chain A: exhibits a downward trend, slow mixing.

� Chain B: shows plateaus, indicating the chain gets stuck.

� Density plots can help verify if the Markov chain approximates

the posterior correctly.
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Example of bad trace plots

Figure 2: Trace plots (left) and corresponding density plots (right) of

two hypothetical Markov chains. These provide examples of what “bad”

Markov chains might look like. The superimposed black lines (right)

represent the target Beta(11,3) posterior pdf. 49



Parallel Chains: Consistency Across Chains

� Running multiple chains allows assessment of consistency

across chains.

� Chains should exhibit similar randomness and posterior

approximations.

� Example:

� Four parallel chains run for 10,000 iterations each.

� Consistent density plots across chains indicate stability.

� Short chains can lead to discrepancies and unstable posterior

approximations.
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Effective Sample Size & Autocorrelation

� Effective sample size quantifies the number of independent

samples equivalent to the Markov chain.

� Autocorrelation measures dependence between chain values.

� Markov chain is more effective when:

� Effective sample size ratio is large.

� Autocorrelation decreases quickly with lag.

� Example: Effective sample size ratio = 0.34, implying 20,000

samples behave like 6,800 independent samples.
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Autocorrelation Plots

Figure 3: A trace plot (left) and autocorrelation plot (right) for a single

Markov chain from the bb sim analysis (top). and a trace plot (left) and

autocorrelation plot (right) for a slow mixing Markov chain of π

(bottom).
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R-hat (R̂): Split-Chain Diagnostics

� R-hat compares variability within and across chains.

R̂ ≈

√
Varcomb

Varwithin

� Ideal R-hat is close to 1, indicating chain stability.

� If R-hat > 1.05, it suggests potential instability in the Markov

chains.

� Example: R-hat = 1 for the Beta-Binomial model, indicating

stable and consistent chains.
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Split-Chain Diagnostics

Figure 4: Simulation results for bb sim (top row) and a hypothetical

alternative (bottom row). Included are trace plots of the four parallel

chains (left), density plots for each individual chain (middle), and a

density plot of the combined chains (right).
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