AUBURN UNIVERSITY

Stat 7650 - Computational Statistics
In-Class Component - Final Exam May 5, 2025
Duration: 120 minutes

Instructions:

1. This is the in-class component of the final exam. If you want to ask a question, please
raise your hand, but no answer is guaranteed unless there is an ambiguity or typo in
the question.

2. Calculators are permitted but must be supplied by you.

3. Work all the problems. Please submit only the solutions you want to be grade (i.e., do
not submit any scratch work).

4. You need to start each problem on a new page. Clearly label each problem and write
your name at top right of each page.

5. You must always explain your answers and show your work to receive full credit
or proper partial credit. If necessary, you can use both sides of the sheets, but make
sure you have indicated doing so.

6. There are 6 questions. Please make sure you have the pages with all 6 questions.



QUESTIONS

Q1. Use Laplace’s method to approximate the expression in (2:) as n — 00.
Hint: Recall the approximation we derived for the factorial using Laplace’s method in class.

Q2. Consider the Weibull distributions defined below.

(a) Consider first the standard Weibull distribution with probability density function

fo(zo) = 59[;5*1@*‘”5, 29>0, >0

and cumulative distribution function

Fo(l’(]) =1- ef"pg.

Explain how the inversion method can be used to generate samples from the standard
Weibull distribution f;.

(b) Now consider the general Weibull distribution with density function

B—1
f(ﬂ?)zé(;) e @V 2 =0, >0, \> 0.

Show that if 2y ~ fy, then the transformation x = Axy has the general Weibull density
f(z). Discuss how this result can be used to generate random variables from the general
Weibull distribution.

Q3. Consider a triangular distribution with the density function
f@)=1—s], @el-1,1].

(a) Propose an accept-reject procedure to simulate a random variable X having the triangular
distribution described above. (Hint: Keep it simple in choosing your envelope density!
Don'’t forget to write the full algorithm with steps.)

(b) What is the acceptance probability for your proposed method?

(¢) Show how to simulate directly from the triangular distribution using the inverse cumulative
distribution function (cdf) method. (Again, don’t forget to write the full algorithm with
steps.)



Q4. Let Xq,..., X, beiid. from a mixture density

By(w) = 0f(x) + (1 = 0)g(x), ¢ €l0,1],

where f and g are known density functions, i.e., # is the only unknown parameter. Derive the
EM algorithm to find the maximum likelihood estimator of 0. (Hint: You need to introduce
“missing data”—we’ve done this in class and in homework.)

Q5. Variance Reduction via Importance Sampling

Suppose we are interested in estimating the following integral:

(a)

(b)

Rewrite the integral pu as an expectation with respect to the uniform distribution on
0, 1], and describe how a Monte Carlo estimator fiy¢ can be constructed using n i.i.d.
samples from Uniform(0, 1).

Define an importance sampling estimator ji;g for this same integral using the proposal

density

g(x) = ;(1 —2%), ze|0,1].

Show the expression for the importance weights and write the full estimator.

Explain in a few sentences why this choice of g(z) can lead to significant variance
reduction compared to uniform sampling. What property of g(z) makes it efficient in
this context?

Briefly define the concept of Effective Sample Size (ESS) in the context of importance
sampling. What does a high ESS value indicate about the quality of the proposal
distribution?



Q6. Gibbs Sampling and Conditional Distributions

Consider the following hierarchical normal model:
e Data: X; ~ N (0;,1), independently for i =1,... n,
e Prior: 0; | 0% ~ N(0,0?),

2

e Hyperprior: 0~ ~ Gamma(a, b), where this is the rate parameterization of the Gamma

distribution.
The probability density functions (pdfs) are given by:

e Normal distribution with mean p and variance o

1 _ 2
flz | p,o?) = Wexp (—%), zeR

e Gamma distribution with shape a > 0 and rate b > 0:

f(z|a,b) = mxafle’bx, x>0

(a) Derive the full conditional distribution of 6; | x;, 02, and explain why it has a normal
form.

(b) Derive the full conditional distribution of 72 | x,0, and explain why it follows a
Gamma distribution.

(c) Write pseudo-code (not actual R code) for implementing the Gibbs sampler for this
model, clearly indicating the steps for updating each parameter.

d) Suppose the goal is to estimate ||@]]> = > . 2. Describe how you would use the Gibbs
(

i=1"7"
sampler output to estimate this quantity. Also describe and discuss how to implement
and the benefit of Rao-Blackwellization in this context.



AUBURN UNIVERSITY

Stat 7650 - Computational Statistics
Take-Home Component - Final Exam May 5 2025

Due 12 pm on May 7, 2025

Instructions:

. This is the take-home exam component of the Final exam. If you want to ask a question,
please email me, but no answer is guaranteed unless it is to clarify the question.

2. Work all the problems. Please submit only the solutions you want me to grade (i.e., do
not submit any scratch work).

3. You need to start each problem on a new page. Clearly label each problem and write your
name at top right of each page.

4. You must always explain your answers and show your work to receive full credit or
proper partial credit. If necessary, you can use both sides of the sheets, but make sure
you have indicated doing so.

5. There are 4 questions in this part. Please make sure you have the sheet with the 2 questions.

6. Include clear, well-documented code, output, and concise but informative written expla-
nations.



QUESTIONS

Q1. (Bayesian Inference and Hypothesis Testing for the Weibull Model)
Let Xi,..., X, be an ii.d. sample from a Weibull(\, k) distribution with pdf:

et =5 G o (- G)). 2>

Assume the following prior on (A, k):

(A k) oc e” e b=l for constants b > 0 and ¢ > 0.

Note: For this problem, use simulated data of size n = 20 from a Weibull distribution with
parameters A = 1.5, k = 2) using set.seed(123).

(a)

(b)

Derive the unnormalized posterior density 7(\, | X) up to a proportionality constant,
given a sample x = (z1,...,x,).

Implement the Metropolis-Hastings algorithm in a programming language of your
choice (e.g., R or Python) to sample from the posterior of (A, k). You may use expo-
nential proposal distributions as discussed in class. Report and interpret the posterior
mean and a 95% credible interval for both A and k. Also provide a trace plot and
autocorrelation plots to assess convergence.

Use your MCMC samples to estimate the marginal posterior distribution of x, and
produce a histogram (with density overlay) of this distribution.

Based on your posterior samples, conduct an informal Bayesian test of the hypothesis
Hy : k=1 (i.e., that the underlying distribution is exponential). State your conclusion
and support it with a numerical and graphical summary.

Reflect on the impact of the prior parameters b and ¢ on the posterior results. Briefly
discuss how your findings might change under different choices for b and c.



Q2. Let (X,Y) have a uniform distribution on the unit disc D = {(z,y) : 2>+ y* < 1}, i.e.,
the joint density function is given by:

o y) = {%, if (z,y) €D

0, otherwise

Write down a Gibbs sampler algorithm to simulate from the joint distribution specified
above; in particular, provide the full conditional distributions.

Suggest another strategy to carry out this simulation using another region that contains
D. (Hint: Remember the “Fundamental Theorem of Simulation™.)

Use an Al-based tool to visualize the uniform distribution on the unit disc. Analyze the
distribution’s symmetry and uniformity by plotting a large number of simulated points
(X,Y). Reflect on how the visual representation helps in understanding the distribution
characteristics and the challenges of simulating from D.

Q3. Let X and Y be independent N(0,1) random variables, and suppose that the goal is
to approximate P(X/Y <), where t is a fixed number.

(a)
(b)

()

Describe a simple or naive Monte Carlo approach to estimate P(X/Y <t).

Propose a more sophisticated Monte Carlo approach based on Rao-Blackwellization. Dis-
cuss in what sense this estimator is better than the one described in Part (a).

The method based on Rao-Blackwellization described in part(b) is effective, yet an exact
formula can provide a more precise solution. Consider the random variables X and Y,
both independently distributed as N(0, 1).

(i) Derive the exact formula for the density function of the ratio X/Y

OR
(ii) Derive the cumulative distribution function (cdf) for X/Y.

(Note that you need to do only (i) or (ii), but not both here.)

Use an Al tool to generate a large number of samples for X and Y, compute the ratio
X/Y for each pair, and estimate P(X/Y < t) using the empirical distribution of these
ratios. Compare your simulation results with the theoretical results obtained in part (c).
Discuss the effectiveness of the Al tool in enhancing understanding and accuracy of the
simulation.



Q4. (Comparative Study of Monte Carlo and Importance Sampling Estimators)
In this question, you will compare the performance of naive Monte Carlo and importance
sampling estimators for estimating the integral

(a)

= /01 sin (r2/2) dz = 2/7.

Naive Monte Carlo: Generate n = 10,000 i.i.d. samples from the Uniform(0,1)
distribution. Construct the standard Monte Carlo estimator

1 n
m [ E 1 S(Z. 2 ,
HUMC n - Sin (’/l / )

and report the estimate, estimated standard error, and a 95% confidence interval for
1.

Importance Sampling: Recall that we used the proposal density g(z) = 3(1 —
1

2?), 1 €0,1] for estimating the integral [ cos(7z/2) dz in class. How would you

0
obtain a good proposal density by modifying the above g(x)? Using your new proposal
density, generate n = 10,000 samples from this distribution (you may use rejection
sampling if needed). Construct the importance sampling estimator

IS .
s = — h(X;), where f(x) =1 and h(x) = sin (7x/2),
" Zl e (X3) (z) ( /2)
and report the estimate, estimated standard error, and a 95% confidence interval for
L.

Comparison: Compare the performance of the two estimators in terms of: (i) Accu-
racy (closeness to true value 2/7), (ii) Precision (standard error and confidence interval
width), (iii) Stability (based on variability across runs). Comment on the variance re-
duction achieved.

Effective Sample Size (ESS): Compute the effective sample size (ESS) for the
importance sampling estimator:

n
where s2 is the sample variance of the weights w; =

N = ——, .
T 1 9(X,)

Interpret your result: is g(z) an efficient proposal?
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