
STAT 7650 – Computational Statistics
Final Exam Practice Questions

1. Root-Finding and Optimization

(a) Describe the key differences between root-finding and optimization problems in
statistical computing.

(b) Implement Newton’s method for minimizing a smooth univariate function of your
choice in R.

(c) Plot the convergence of the function values and discuss the impact of initial values
and stopping criteria.

2. EM Algorithm

(a) Explain how the EM algorithm can be applied in problems involving latent vari-
ables.

(b) Generate synthetic data for a two-component Gaussian mixture and implement
one full EM iteration in R.

(c) Analyze how the log-likelihood evolves across iterations and assess convergence
numerically.

3. Numerical Integration

(a) Discuss the tradeoffs among different numerical integration methods, especially
in terms of error and computational complexity.

(b) Write R functions to approximate a definite integral using both trapezoid and
Gaussian quadrature.

(c) Compare their performance for various integrands and integration intervals.

4. Simulation of Random Variables

(a) Identify the main challenges in simulating random variables from non-standard
distributions.

(b) Implement at least two different methods to simulate from a skewed or heavy-
tailed distribution (e.g., Cauchy, Beta).

(c) Evaluate and compare the empirical distributions using plots and summary statis-
tics.

5. Basic Monte Carlo Methods

(a) Define the Monte Carlo method for approximating expectations and explain its
statistical justification.

(b) Use R to estimate an integral using Monte Carlo simulation and construct a con-
fidence interval.
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(c) Compare your result to that obtained using a built-in numerical integration func-
tion.

6. Importance Sampling

(a) Explain the motivation and formulation of importance sampling in computational
statistics.

(b) Use R to implement importance sampling for estimating a probability involving a
tail event.

(c) Compare the variance of this estimator to that of a basic Monte Carlo estimator.

7. Markov Chain Monte Carlo (MCMC)

(a) Describe the idea of a Markov chain and its role in MCMC.

(b) Implement a simple random walk Metropolis sampler in R for a posterior density
you define.

(c) Examine convergence diagnostics such as trace plots, autocorrelations, and run-
ning averages.

8. Gibbs Sampling

(a) Summarize the key steps of the Gibbs sampler and contrast it with Metropolis-
Hastings.

(b) Construct a bivariate distribution with known conditionals and implement the
Gibbs sampler in R.

(c) Visualize the joint samples and marginal histograms, and comment on mixing
behavior.

9. Stochastic Approximation

(a) Discuss the rationale and application of stochastic approximation in computa-
tional optimization.

(b) Implement a basic Robbins-Monro type algorithm in R for estimating a quantile.

(c) Evaluate the stability and convergence rate through repeated trials and trajectory
plots.

10. Simulated Annealing

(a) Identify use cases for simulated annealing and describe its conceptual foundation.

(b) Implement simulated annealing in R for a univariate function with multiple local
maxima.

(c) Compare the optimization result to that of deterministic methods like optim or
grid search.
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Practice Questions for Final Exam
Based on Givens & Hoeting (Chapters 2–8)

1. Chapter 2: Problem 2.1

2. Chapter 2: Problem 2.5

3. Chapter 3: Problem 3.2 (only do the below parts instead of the parts in the book)

(a) Implement the Simulated Annealing algorithm for a given combinatorial problem.

(b) Vary the cooling schedule and discuss solution quality.

(c) Visualize solution path and energy levels over iterations.

4. Chapter 4: Problem 4.3

5. Chapter 5: Problem 5.3

6. Chapter 6: Problem 6.2

7. Chapter 7: Problem 7.1
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