
STAT 7650 - Computational Statistics

Lecture Slides

Introduction

Elvan Ceyhan

Updated: January, 2025

AU

Acknowledgement:

Some of the content in this course is inspired by the lecture notes of Prof Ryan Martin of NCSU.

1

Outline

Review of Statistical Inference

Introduction to R

Basics

R Session

R Graphics

Programming in R

Data Entry

Math & Stat Tools

Probability Stuff

Statistical Methods

Linear Algebra - Matrix Operations in R

2

Introduction

� Based on parts of: Dalgaard’s ISwR book, Chapter 1 in

Givens & Hoeting (Computational Statistics), and Chapter 7

of Lange (Numerical Analysis for Statisticians).

� For more information: See the Course website under Canvas

3

What to compute?

� STAT 7650 is a course about computational statistics.

� It is important first to discuss what we want to compute in

statistical problems.

� Concerned primarily with two problems:

1. Maximizing the likelihood function.

2. Integrating a “posterior distribution” (this includes sampling

from the posterior too).

� The former should be familiar from Stat 7600/7610

(maximum likelihood or MLE).

� The latter, related to Bayesian statistics, may be new (unless

you’ve taken STAT 7630).

� Next: A brief introduction to these concepts with an

illustration.

4

Maximum Likelihood

� Consider n independent observations y1, . . . , yn, from a

density/mass function pθ depending on an unknown

parameter (vector) θ.

� The likelihood and log-likelihood functions are defined as:

L(θ) =
n∏

i=1

pθ(yi)

ℓ(θ) =
n∑

i=1

log pθ(yi)

� The Maximum Likelihood Estimator (MLE) θ̂ of θ, which

maximizes the likelihood, is given by:

θ̂ = argmax
θ

L(θ) or ℓ′(θ̂) = 0

� This requires optimization and/or finding roots of functions.
5

Maximum Likelihood (cont’d)

� Besides estimating the unknown parameter, it’s important to

assess its uncertainty.

� Under certain conditions, for large sample sizes (n), the

distribution of θ̂ is approximately normal with mean θ and

(co)variance I (θ)−1, where I (θ) is the Fisher information

matrix:

I (θ) = Eθ

[
ℓ′(θ)ℓ′(θ)⊤

]
= −Eθ

[
ℓ′′(θ)

]
� An approximate 95% confidence interval for θj is:

θ̂j ± 1.96×
√
[I (θ̂)−1]jj , j = 1, . . . , d

� This highlights the importance of computing derivatives and

inverting matrices.

6

Bayesian Approach

� The Bayesian approach utilizes the rules of probability for

inference.

� It begins with a prior distribution for θ, denoted as π(θ) -

essentially a weight function.

� This leads to a conditional distribution for θ, given Y = y,

called the ‘posterior’ distribution, expressed as:

π(θ|y) = π(θ)L(θ)∫
π(θ)L(θ) dθ

∝ π(θ)L(θ)

� The focus is on π(θ|y), with the aim to derive or estimate

summaries like mean, variance, quantiles, probabilities, etc.

� Therefore, integrating functions or sampling from distributions

is a crucial aspect of this approach.

7

Example: Probit Regression

� Observations Y1, . . . ,Yn are independent (not iid) binary

observations.

� Specifically, Yi ∼ Ber(Φ(x⊤i θ)), for i = 1, . . . , n, where:

� “Ber” denotes a Bernoulli distribution.

� x1, . . . , xn are fixed d-dimensional covariates.

� θ is a d-dimensional parameter vector.

� Φ is the standard normal distribution function1.

� Exercise:

1. Write out the log-likelihood function.

2. Find MLE of θ.

3. Calculate the Fisher information matrix, I (θ).

1Note: Other cdfs can be used, but then the model isn’t referred to as

“probit”.

8

Remarks

� The course focuses on solving optimization and integration

problems in statistical applications.

� A background in general numerical methods will be necessary.

� Software plays a crucial role; R will be used extensively.

� The course content ranges from simple to more challenging

topics.

� The primary goal is to equip students with the knowledge to

read current papers using computational statistics and

implement their methods.

9

Outline

Review of Statistical Inference

Introduction to R

Basics

R Session

R Graphics

Programming in R

Data Entry

Math & Stat Tools

Probability Stuff

Statistical Methods

Linear Algebra - Matrix Operations in R

10

Outline

Review of Statistical Inference

Introduction to R

Basics

R Session

R Graphics

Programming in R

Data Entry

Math & Stat Tools

Probability Stuff

Statistical Methods

Linear Algebra - Matrix Operations in R

11

Main Features of R

� R is a free and open-source software platform, originally

derived from S, with S-PLUS (a commercial version) now

discontinued.

� Available for download across major operating systems

(Windows, macOS, Linux) from

https://cran.r-project.org.

� Provides an interactive environment for computation, while

supporting script-based workflows for batch execution and

reproducibility.

� Seamlessly integrates with lower-level programming languages

such as C, C++, and FORTRAN to optimize computational

performance.

� Renowned for its versatility, R enables users to define custom

functions, extend existing packages, and adapt functionality to

specific requirements. 12

https://cran.r-project.org

Arithmetic in R

� R can perform arithmetic operations similar to a calculator.

� Basic binary (arithmetic) operations include:

� + : Addition

� − : Subtraction

� ∗ : Multiplication

� / : Division

� ̂or ∗∗ : Exponentiation

� %/% : Integer division

� %% : Modulus (remainder)

13

Variables and Assignments in R

� R enables storage of intermediate values by assigning them to

variables.

� Assignment syntax:

� x <- 7: Assigns the value 7 to the variable x.

� The assignment operator <- is recommended and should be

viewed as a single ”left arrow” symbol.

� The equal sign (=) can also be used for assignment but is less

commonly recommended for clarity.

� Rules for variable names:

� Variable names may include letters, numbers, underscores (),

or periods (.).

� Examples: pred.value, pred value.

� Variable names cannot:

� Start with a number or special character (other than a dot).

� Contain spaces.

14

Expressions and Objects in R

� In R, user-entered expressions are evaluated by the system to

produce output.

� These expressions are versatile, capable of generating

formulas, graphs, datasets, and more.

� Expressions operate on objects, which are entities that can be

assigned to variables.

� Syntax varies depending on the type of expression or object

being used.

� This lecture will explore key types of expressions and objects

in R.

� To examine the internal structure of an object X, use the

command:

str(X)

15

Functions and Arguments in R

� Functions in R serve diverse purposes, including:
� Mathematical operations, e.g., log(x).

� Non-mathematical tasks, e.g., plot(x, y, pch=2).

� Functions are called with parentheses enclosing arguments.
� Types of arguments:

� Positional: Recognized by their order in the argument list.

� Named: Recognized by their name, making the order

irrelevant.

� Functions may:
� Have no arguments.

� Include default arguments.

� Accept arbitrary numbers of arguments.

� R includes a comprehensive set of built-in functions for various

applications.

� Users can easily define custom functions using R’s intuitive

function syntax, which the same as ordinary R syntax. 16

Vectors

� Numeric vectors are fundamental in R and widely used.

� In addition to numeric vectors, two other key types of vectors
are commonly utilized2:

� Character Vectors: Composed of character strings.

Example: names <- c(‘Small’, ‘Medium’, ‘Large’)

� Logical Vectors: Contain elements TRUE or FALSE, very

useful for indexing data sets.

Example:

gpa <- c(3.0, 2.8, 3.4, 3.7, 3.9, 3.3)

gpa > 3.5

[1] FALSE FALSE FALSE TRUE TRUE FALSE

2Complex vectors are also supported in R.

17

Vectors (Continued)

� Key functions to create vectors in R:

� c(): Concatenates elements into a vector.

� seq(): Generates a patterned sequence.

� rep(): Repeats elements a specified number of times.

� Vectors in R must contain elements of the same data type.

� When combining variables of different types:

� Elements are coerced into a common type, following a

hierarchy: Logical → Integer → Numeric (Double) →
Complex → Character → Factor → List3.

� Examples of coercion:

� c(FALSE, 7) produces [1] 0 7 (logical coerced to numeric).

� c(11.7, "abc") produces [1] "11.7" "abc" (numeric

coerced to character).
3The ‘raw’ type, representing raw bytes, is rarely used in standard data

analysis.

18

Vectors (Continued)

� An interesting feature of R is that it supports vectorized
arithmetic, applying operations element-wise across vectors:

� Example:

x <- c(7, 10, 11)

y <- seq(5, 3, by = -1)

x + y # Results in: [1] 12 14 14

� Handling vectors of different lengths:
� The shorter vector is recycled to match the length of the

longer vector.

� An warning occurs if the length of the longer vector is not a

multiple of the shorter vector.

� When defining custom functions, be mindful of

vectorization and ensure assumptions align with your data

structure.

19

Matrices and Arrays in R

� A matrix in R extends a vector by adding a double index (row
and column).

� Example: M <- matrix(1:6, nrow = 3, ncol = 2)

� Matrices are generally treated as vectors in R4.

� Appending matrices:

� Use rbind() to append rows.

� Use cbind() to append columns.

� Assign row and column names using rownames() and

colnames().

� R also supports arrays (generalizations of vectors with n

dimensions), though they are less common and harder to

interpret visually.
4Linear algebra operations, such as matrix multiplication, are exceptions where

matrices are treated differently.

20

Data Frames in R

� A data frame is R’s representation of a data matrix or
dataset:

� Columns correspond to variables, and rows correspond to cases

(observations).

� Unlike matrices, data frames can hold mixed data types,

including numeric, character, and logical variables.

� Creating a data frame:

� Syntax: D <- data.frame(list of variables)

� Reading external files into a data frame will be covered in

later discussions.

� Data frames are central to R, with many statistical routines

(e.g., linear regression) designed to operate directly on them.

21

Lists in R

� A list in R is a collection of objects, potentially of different

types.

� Lists can include various object types such as vectors,

matrices, functions, and even other lists.

� Syntax for creating a list:

� mylist <- list(list of objects)

� Example:

M <- matrix(c(2, 5, 7, 7), nrow = 2)

f <- function(x) log(x) + x^2

mylist <- list(mymat = M, myfun = f)

mylist$myfun(mylist$mymat)

Applies the function myfun to the matrix mymat.

22

Indexing in R

� Indexing is essential for accessing specific elements in vectors,

matrices, arrays, data frames, and lists.
� Key indexing rules:

� For a matrix M, M[i, j] retrieves the element at the i-th row

and j-th column.

� M[, j] returns the j-th column of M as a vector.

� Data frames are indexed similarly to matrices.

� Vectors are treated as one-dimensional matrices for indexing.

� List elements are accessed using the $ operator, e.g.,

mylist$mymat.
� Examples:

� mylist$mymat[2, 2]: Accesses the element in the second

row and second column of mymat.

� mymat[-1,]: Excludes the first row of mymat, returning all

remaining rows.
23

Subsetting in R

� Subsetting extends indexing by using logical variables to select

specific parts of an object.

� Example: Using logical vectors for matrix subsetting:

row.log <- (1:nrow(M)) == 1

col.log <- (1:ncol(M)) == 2

M[row.log, col.log] # Equivalent to M[1, 2]

� Logical variables allow more complex subsetting:
� Example with a data frame:

� Suppose data frame D has a variable age.

� To select rows for adults (age > 19): D[D$age > 19,]

� Generalizing row/column indexing:

x <- seq(5, 25, by = 5)

x[c(2, 3)]

[1] 10 15
24

Explicit Loops in R

� Explicit loops are used in R to perform repetitive tasks

manually over elements of vectors, lists, or matrices.
� Common looping constructs in R:

� for(): Iterates over a sequence or elements.

� while(): Executes as long as a condition is TRUE.

� repeat: Executes indefinitely until stopped with break.

� Syntax examples:
� for loop: for (i in 1:5) { print(i^2) }: Prints squares

of numbers 1 through 5.

� while loop (Prints numbers 1 through 5):

� i <- 1

� while (i <= 5) { print(i); i <- i + 1 }.
� repeat loop (Prints numbers 1 through 5):

� i <- 1

� repeat { print(i); i <- i + 1; if (i > 5) break }.

� Explicit loops are often less efficient than implicit loops and

vectorized operations in R.
25

Implicit Loops in R

� Implicit loops simplify operations over rows/columns of

matrices, data frames, or elements of lists.

� Common R functions for implicit loops:

� lapply() and sapply() operate on lists.

� apply() works on matrices or data frames.

� Syntax examples:

� Suppose x and y are numeric vectors:

� mylist <- list(var1 = x, var2 = y)

� lapply(mylist, mean): Returns a list of means.

� sapply(mylist, mean): Returns a vector of means.

� Suppose mymat is a matrix:

� mymat <- cbind(var1 = x, var2 = y)

� apply(mymat, 2, mean, na.rm = TRUE): Computes column

means while ignoring NA values.

26

Sorting in R

� Sorting a single vector is straightforward using sort():

� Example: sorted x <- sort(x)

� Sorting rows of a matrix or data frame by a specific column:

� To sort the rows of a data frame D by the first column:

� D sorted <- D[order(D[, 1]),]

� To sort by the first column and then by the second column:

� D sorted <- D[order(D[, 1], D[, 2]),]

� Use decreasing = TRUE within order() or sort() to sort
in descending order:

� Example: D sorted <- D[order(D[, 1], decreasing =

TRUE),]

� Sorting can handle complex criteria, ensuring flexibility for

data manipulation tasks.

27

Outline

Review of Statistical Inference

Introduction to R

Basics

R Session

R Graphics

Programming in R

Data Entry

Math & Stat Tools

Probability Stuff

Statistical Methods

Linear Algebra - Matrix Operations in R

28

Workspace and Directories in R

� Working Directory:

� View the current directory with getwd().

� Change the working directory using setwd("mydir").

� Workspace Management:

� View all objects in the workspace with ls().

� Remove specific objects from the workspace using

rm(object name).

� Best Practices:

� Use save.image("myworkspace.RData") to save the current

workspace.

� Reload a saved workspace with

load("myworkspace.RData").

29

Workspace and Directories (Continued)

� Saving the Workspace:

� Use save.image() to save all objects in the current

workspace.

� The default saved file is .RData, but a custom filename can be

specified.

� Example: Save specific objects (x , y , z) using:

save(x, y, z, file = "myfile.RData")

� Loading a Saved Workspace:

� Reload a saved workspace using:

load(file = "myfile.RData")

� Key Note: Saving the workspace preserves objects but does

not save output from the console.

30

Why is Saving the Workspace a Good Practice in R?

� Use save.image() to save the entire workspace to a .RData

file.

� Reload the workspace with load("myworkspace.RData").

� Benefits:

� Preservation: Safeguards all objects for future use.

� Efficiency: Avoids re-computation or re-importing of data.

� Organization: Maintains the session state for multi-session

projects.

� Reproducibility: Ensures consistent analysis across sessions or

with collaborators.

� Convenience: Simplifies saving with a single command.

� Combine workspace saving with script-based workflows for

transparency and reproducibility.

31

Saving Input and Output in R

� Saving R Input (Commands):

� Store commands in a script file, e.g., myscript.R.

� Execute the script using: source("myscript.R")

� Redirecting Output to a File:

� Redirect output to a file, e.g., myfile, by using:

sink("myfile")

� All evaluated output will be stored in myfile instead of being

displayed in the console.

� Stop redirecting output with: sink()

� Note: The save() command preserves workspace objects but

does not save input or output from the R console.

32

Getting Help in R

� Accessing Function Documentation:

� Use help(mean) or ?mean to get help for the mean function.

� Comprehensive Help:

� Use help("mean") to open a detailed help file. In RStudio,

this opens the documentation in a dedicated help window.

� Online Resources:

� Google and/or ChatGPT searches often provide quick solutions

and examples.

� Extensive Documentation:

� Explore built-in guides like Introduction to R and Writing R

Extensions for detailed learning.

33

Packages in R

� Extensive Package Ecosystem:
� Thousands of packages provide specialized functions, tools,

and datasets.

� Many packages leverage compiled code (e.g., C or Fortran) for

enhanced performance.

� Discovering Packages:
� Browse the CRAN repository for a comprehensive list and

package descriptions.

� Installing a Package:
� Use install.packages("pkg") and follow the prompts.

� Using a Package:
� Load an installed package with library(pkg) to access its

functions and datasets.

� Pro Tip: Check the package documentation or vignettes for

usage examples and detailed instructions.

34

Outline

Review of Statistical Inference

Introduction to R

Basics

R Session

R Graphics

Programming in R

Data Entry

Math & Stat Tools

Probability Stuff

Statistical Methods

Linear Algebra - Matrix Operations in R

35

Introduction to Graphics in R

� R is widely recognized for its powerful and extensive graphical

capabilities.

� Includes numerous built-in graphical functions while

supporting user-defined customizations.

� This section explores various graphical tools and annotation

techniques.

� R can directly generate high-quality PDF or Postscript

graphics, ideal for LaTeX document integration.

36

Scatterplots in Base R

� Scatterplots are a fundamental graphical tool in R, offering

extensive customization options.

� Example Code:

x <- runif(50, 0, 2); y <- runif(50, 0, 2)

plot(x, y, xlab = ’x-label’, ylab = ’y-label’,

main = ’Main Title’, sub = ’subtitle’)

text(0.6, 0.6, ’text at (0.6, 0.6)’)

abline(h = 0.6, v = 0.6, lty = 2)

for(s in 1:4)

mtext(-1:4, side = s, at = 0.7, line = -1:4)

mtext(paste(’side’, 1:4), side = 1:4, line = -1,

font = 2)

� The example demonstrates: Adding custom text (text());

Drawing reference lines (abline()); Annotating plot sides

with margins (mtext()).
37

Scatterplots with ggplot2

� ggplot2 is a versatile package for creating elegant and

customizable plots in R.

� The below example demonstrates:

� Adding custom text (annotate());

� Drawing reference lines (geom hline(), geom vline());

� Customizing titles and labels (labs()).

38

Scatterplots with ggplot2

Example Code:

library(ggplot2)

Generate random data

set.seed(123) # For reproducibility

x <- runif(50, 0, 2)

y <- runif(50, 0, 2)

data <- data.frame(x, y)

Create scatterplot

ggplot(data, aes(x = x, y = y)) +

geom_point(color = "blue") +

geom_hline(yintercept = 0.6, linetype = "dashed", color = "red") +

geom_vline(xintercept = 0.6, linetype = "dashed", color = "red") +

annotate("text", x = 0.6, y = 0.6,

label = "text at (0.6, 0.6)", hjust = -0.2) +

labs(title = "Main Title", subtitle = "Subtitle",

x = "x-label", y = "y-label"

) +

theme_minimal()
39

Histograms in Base R

� Creating histograms in R is simple and highly customizable.

� Basic command: hist(X), where X is the dataset or variable.

� Customization options include:

� Adding density curves: curve(dnorm(x, mean, sd), add =

TRUE).

� Overlaying legends: legend("topright", legend =

c("Mean", "Median"), lty = 1:2).

� Example: Using the mean.med.hist function:

� Annotates the histogram with mean and median lines for

better visualization.

� Code available in the R script on Canvas.

� Pro Tip: Adjust parameters such as breaks, col, and main

for enhanced visuals.

40

Histograms with ggplot2

� Histograms in ggplot2 offer powerful customization and visual

appeal.

� The below example demonstrates:

� Adds a density curve (stat function()) with mean and SD.

� Annotates the plot with mean (solid line) and median (dotted

line).

� Enhances readability with customized labs() and

theme minimal().

41

Histograms with ggplot2

Example Code:
library(ggplot2)

Generate random data

set.seed(123) # For reproducibility

data <- data.frame(X = rnorm(100, mean = 5, sd = 2))

Create histogram

ggplot(data, aes(x = X)) +

geom_histogram(aes(y = ..density..),

bins = 20, fill = "lightblue", color = "black"

) +

stat_function(fun = dnorm,

args = list(mean = mean(data$X), sd = sd(data$X)),

color = "red", linetype = "dashed"

) +

geom_vline(aes(xintercept = mean(X)),

color = "blue", linetype = "solid", linewidth = 1

) +

labs(title = "Histogram with Density Curve",

subtitle = "Mean Annotation",

x = "Values", y = "Density"

) +

theme_minimal() + theme(legend.position = "none")
42

Boxplots in Base R

� Boxplots are a powerful tool for visualizing the location,

spread, and potential outliers in distributions.

� Ideal for comparing multiple distributions side by side.

� Basic syntax: boxplot(X), where X can be:

� A numeric vector for a single boxplot.

� A list or data frame of numeric vectors for grouped boxplots.

� Customization options include:

� Adding titles: main = "Title".

� Customizing colors: col = "lightblue".

� Adding notches for median comparison: notch = TRUE.

� Example: The mean med comp function annotates boxplots

with mean and median markers for enhanced comparison. See

the R script on Canvas.

43

Boxplots with ggplot2

� Boxplots in ggplot2 offer advanced customization and

aesthetic appeal.

� The below example demonstrates:

� Visualizes multiple distributions side by side with grouping by

group.

� Adds notches (notch = TRUE) to compare medians.

� Includes mean annotations (stat summary()) with a custom

symbol.

� Clean aesthetics with theme minimal() and color-coded

groups.

44

Boxplots with ggplot2

Example Code:
library(ggplot2)

Generate random data

set.seed(123) # For reproducibility

data <- data.frame(

group = rep(c("A", "B", "C"), each = 50),

values = c(rnorm(50, mean = 5, sd = 1),

rnorm(50, mean = 6, sd = 1.5),

rnorm(50, mean = 7, sd = 2)))

Create boxplot

ggplot(data, aes(x = group, y = values, fill = group)) +

geom_boxplot(notch = TRUE, outlier.color = "red", outlier.shape = 19) +

stat_summary(

fun = mean, geom = "point", shape = 4, size = 3, color = "blue"

) +

labs(

title = "Boxplot of Distributions by Group",

subtitle = "Notched Boxplot with Mean Annotation",

x = "Group", y = "Values"

) +

theme_minimal()
45

Outline

Review of Statistical Inference

Introduction to R

Basics

R Session

R Graphics

Programming in R

Data Entry

Math & Stat Tools

Probability Stuff

Statistical Methods

Linear Algebra - Matrix Operations in R

46

Flow Control in R: if-else

� Conditional Execution: The if-else structure controls the

flow of commands based on conditions.

� Basic Syntax:

if (condition1) {

Do something

} else if (condition2) {

Do something else

} else {

Do another thing

}

� Conditions evaluate to TRUE or FALSE.
� Logical operators for combining conditions:

� &: AND, |: OR, !: NOT.

� Comparison operators:
� Equal: ==, Not equal: !=. 47

Flow Control in R: Loops

� Major Looping Structures: for(), while(), and

repeat().
� Example: Computing the square root of a non-negative
number (y):

� Using while():
y <- 12345 # Initialize

x <- y / 2 # Initial guess

while (abs(x^2 - y) > 1e-10) {

x <- (x + y / x) / 2

}

print(x)

� Using repeat():

x <- y / 2 # Initial guess

repeat {

x <- (x + y / x) / 2

if (abs(x^2 - y) < 1e-10) break

}

print(x)
48

Flow Control in R: Loops

� Validation:

sqrt(y) # Built-in square root function

� Highlights:

� while(): Continues as long as the condition is TRUE.

� repeat(): Executes indefinitely until explicitly break.

� Both loops ensure precision using abs() for error tolerance.

49

Flow Control in R: for() Loops (cont’d)

� The for() loop is one of the most widely used looping

structures in R.
� Basic Syntax:

� for (i in sequence) { # Do something }
� Example: Generating Polynomial Curves

x <- seq(0, 1, by = 0.05)

plot(x, x, type = "l", main = "Polynomial Curves")

for (j in 2:5) {

lines(x, x^j, col = j)

}

� Variations:
� Iterating over numeric sequences: for(i in (1:10)^4)

� Iterating over specific values: for (j in c(2, 5, 7))

� Iterating over object names: for (var in names(data))

� Iterating over functions: for (f in c(sin, cos, tan))
50

Avoiding Loops in R

� Loops in R are easy to use but can be inefficient for large

datasets.

� Vectorized functions, like apply, are often faster and cleaner.
� Example: Finding the maximum value in each column of
a matrix X :

� Efficient Approach (with apply):

max.X <- apply(X, 2, max)

� Inefficient Approach (with a loop):

max.X <- rep(NA, ncol(X)) # Initialize

for (j in 1:ncol(X)) { max.X[j] <- max(X[, j]) }

� The apply function is:

� Cleaner and more concise.

� Optimized for performance, especially on large datasets.

� Pro Tip: Explore related functions like lapply, sapply, and

vapply for different use cases.

51

Outline

Review of Statistical Inference

Introduction to R

Basics

R Session

R Graphics

Programming in R

Data Entry

Math & Stat Tools

Probability Stuff

Statistical Methods

Linear Algebra - Matrix Operations in R

52

Reading Data: scan

scan is a simple way to read numeric or character vectors.

� Reading Data into a Vector:

X <- scan(file = "file.dat")

#Reads file.dat into vector X

� Reading Lists:

� Lists can be read, but the syntax is more complex.

� Refer to: help(scan).

� Alternative for Tabular Data:

� Use read.table() or read.csv() for data frames.

data <- read.table("file.dat", header = TRUE)

data <- read.csv("file.csv")

53

Reading Data: read.table

read.table is ideal for importing tabular data as a data frame.

� Default Behavior:

� Assumes columns separated by spaces; missing values

represented as NA.

� Customize with sep, header, and other arguments.

� Example: Reading Comma-Separated Files:

data <- read.table(file = "data.dat", header = TRUE,

sep = ",")

� Recommended Alternatives:

� read.csv(): Simplified wrapper for CSV files.

� readr::read csv(): Faster and more robust import from the

tidyverse.

library(readr)

data <- read_csv("data.csv")

54

The tidyverse Ecosystem

� The most comprehensive package for the tidyverse ecosystem

in R is the tidyverse package itself. When installed, it loads

a collection of core packages designed for data manipulation,

visualization, and functional programming.

� Core Packages in tidyverse: ggplot2 – Data

visualization; dplyr – Data manipulation; tidyr – Data

tidying; readr – Data import (CSV, TSV, etc.); purrr –

Functional programming; tibble – Modern data frames;

stringr – String manipulation; forcats – Factor handling

� Other tidyverse-Compatible Packages: lubridate –

Works with date-time data; sf – Spatial data analysis; haven

– Read SPSS, Stata, and SAS files; httr, rvest, xml2 – Web

scraping & APIs; modelr, broom – Modeling/tidying results

� For more functionalities: tidymodels - Machine learning,

dbplyr - Database connections, and reprex - Reproducibility 55

Advanced Considerations for read.table

� Key Arguments:

� header: Presence of a header row (TRUE/FALSE).

� sep: Separator/delimiter (e.g., ",", "�").

� na.strings: Handling missing values.

� quote: Quotes for character text.

� comment.char: Ignoring comments in the file.

� Shortcut Functions:

� read.csv(): For comma-separated files.

� read.delim(): For tab-delimited files.

� Pro Tip: For large datasets:

� Use data.table::fread() for optimal performance.

� For more details, see help(read.table).

56

Writing Data to a File in R

� Exporting data from R is often required for use in other software or for

sharing results.

� Basic Command: write.table

� Writes a ”rectangular” data object X (e.g., a data frame or matrix)

to a text file.

write.table(X, file = "output.txt", row.names = FALSE,

col.names = TRUE)

� Automatically converts X into a data frame format with optional

headers.

� Alternative Commands for Common Formats:

� write.csv: For exporting data as a CSV file.

write.csv(X, file = "output.csv", row.names = FALSE)

� readr::write csv: Faster and more robust CSV writing from the

tidyverse.

library(readr)

write_csv(X, "output.csv")

� Pro Tip: Use the quote = FALSE argument to exclude quotes around

character fields for cleaner output. 57

Outline

Review of Statistical Inference

Introduction to R

Basics

R Session

R Graphics

Programming in R

Data Entry

Math & Stat Tools

Probability Stuff

Statistical Methods

Linear Algebra - Matrix Operations in R

58

Outline

Review of Statistical Inference

Introduction to R

Basics

R Session

R Graphics

Programming in R

Data Entry

Math & Stat Tools

Probability Stuff

Statistical Methods

Linear Algebra - Matrix Operations in R

59

Combinatorics in R

� Key Functions for Counting Problems:
� factorial(x): Computes x! (factorial of x).

� choose(n, k): Calculates
(
n
k

)
(combinations).

� Related Functions:
� gamma(x): Computes Γ(x), the gamma function.

� lgamma(x): Returns log(Γ(x)), useful for large values of x .

� digamma(x): Computes the derivative of log(Γ(x)) (digamma

function).

� Examples:

factorial(5) # 5! = 120

choose(10, 3) # 10 choose 3 = 120

gamma(5) # Gamma(5) = 4! = 24

lgamma(10) # Log of Gamma(10)

digamma(5) # Digamma function at x = 5

� Applications: Useful in probability, combinatorics, and

statistical modeling.
60

Random Sampling in R

� The sample() Function:
� Used for random sampling from a finite set.

� sample(x): Generates a random permutation of elements in x .

� For integer n: sample(n) is equivalent to sample(1:n).

� Options for Sampling:
� size = k: Specifies the number of elements to sample.

� replace = TRUE: Allows sampling with replacement.

� prob: Assigns probabilities to each element in X .

� Example: Random Column Selection

A 10x10 matrix

X <- matrix(1:100, nrow = 10, ncol = 10)

Matrix with 7 randomly selected columns

X[, sample(10, size = 7)]

� Applications:
� Useful in bootstrapping, randomization tests, and simulations.

� Probabilistic selection for modeling and data analysis. 61

Probability Distributions in R

� R provides functions for probability calculations across

many distributions.

� Supported Distributions: Normal, binomial, Poisson,

exponential, gamma, uniform, hypergeometric, and more.
� Functions for a Distribution dist:

� ddist: Probability density (pdf) or mass function (pmf).

� pdist: Cumulative distribution function (cdf).

� qdist: Quantile function (inverse cdf).

� rdist: Generate random variables.

� Examples:

dnorm(0, mean = 0, sd = 1) #pdf of standard normal at x=0

pbinom(3, size = 10, prob = 0.5) #cdf of Bin(10,0.5) at x=3

qpois(0.9, lambda = 5) #90th percentile of Poisson(5)

rexp(10, rate = 2) #10 random variables from Exp(2)

� Pro Tip: Refer to the help files (?dnorm, ?pbinom, etc.) for

distribution-specific parameterizations. 62

Probability Distribution Example: Binomial PDF and CDF

� Plotting a binomial probability mass function (pmf) and

cumulative distribution function (cdf).
� Example Code:

Parameters

n <- 25; p <- 0.4

Set up plot

plot(0, 0, type = "n", xlim = c(0, n), ylim = c(0, 1),

xlab = "x", ylab = "pdf and cdf")

Add CDF (step function)

lines(0:n, pbinom(0:n, n, p), type = "s", lwd = 2, col = "gray")

Add PMF (vertical lines)

lines(0:n, dbinom(0:n, n, p), type = "h", lwd = 2)

Add legend

legend("right", inset = 0.05, lwd = 2, col = c("black", "gray"),

legend = c("pdf", "cdf"))

� Visualization: Black lines represent the pmf (dbinom); Gray step

function represents the cdf (pbinom).
63

Outline

Review of Statistical Inference

Introduction to R

Basics

R Session

R Graphics

Programming in R

Data Entry

Math & Stat Tools

Probability Stuff

Statistical Methods

Linear Algebra - Matrix Operations in R

64

Quick Summary

� R is extensively designed for statistical analysis with built-in

functions for standard statistical methods.

� Examples of R functions:

� t.test: Performs t-tests.

� lm: Handles linear models (ANOVA, regression, etc.).

� glm: Used for generalized linear models (like logistic

regression).

� In STAT 7650, the focus is on learning computations, so

built-in functions are primarily used for verification5

5Note: Outside of STAT 7650, using built-in functions for standard statistical

methods is recommended.

65

Outline

Review of Statistical Inference

Introduction to R

Basics

R Session

R Graphics

Programming in R

Data Entry

Math & Stat Tools

Probability Stuff

Statistical Methods

Linear Algebra - Matrix Operations in R

66

Matrix Arithmetic

� Consider two matrices A and B of suitable dimensions.6

� Adding and subtracting matrices follows the usual

element-wise operations.

� For multiplication, use the symbol %*%: A %*% B .

� Matrix division isn’t as straightforward and typically involves

matrix inversion or solving systems of linear equations.

� Matrix inversion and its implications will be discussed later.

6Care must be taken to ensure correct matrix dimensions to avoid unexpected

results due to vectorization.

67

Matrix Operations in R

� Determinants: det(M): Computes the determinant of matrix

M.
� Diagonal Entries: diag(M):

� If M is a matrix, returns a vector of diagonal entries.

� If M is a vector, creates a diagonal matrix with M on the

diagonal.

� Solving Linear Systems and Matrix Inversion:
� Solving Ax = b: x <- solve(A, b)

� Inverting a matrix:

solve(M) # Returns the inverse of an invertible matrix M

� Generalized inverse (for non-invertible matrices):

library(MASS)

ginv(M)

� Applications: Solving systems of equations, optimization

problems, and numerical methods.

68

Matrix Decompositions in R

The Spectral Theorem and Matrix Decompositions:

� Spectral Theorem:

� For a symmetric d × d positive definite matrix M:

M = UΛUT

where:

� Λ: Diagonal matrix of eigenvalues of M.

� U: Orthonormal matrix of eigenvectors of M.

� Eigenvalue Decomposition in R:

eigen(M) # Returns a list with $values (eigenvalues)

and $vectors (eigenvectors)

69

Matrix Decompositions in R

� Other Common Decompositions:

� Cholesky Decomposition: For symmetric positive definite

matrices.

chol(M) # Returns an upper triangular matrix R

such that M = R^T R

� Singular Value Decomposition (SVD):

svd(M) # Returns U, D, and V such that M = U D V^T

� Applications: Useful in numerical linear algebra,

optimization, PCA, and more.

70

Neat Example: sweep Operator

The sweep Operator on a Symmetric Positive Definite Matrix

M = (Mij):

� Definition: Sweeping on the k-th diagonal entry produces a

new matrix M̃ = (m̃ij), where:

m̃kk = − 1

mkk
, m̃ik =

mik

mkk
, m̃kj =

mkj

mkk
, m̃ij = mij−

mikmkj

mkk

� Properties:
� Sweeping has useful mathematical properties (see Chapter 7.5

in Lange).

� Successively sweeping M along all diagonal entries (in any

order) computes the inverse M−1.

� Implementation:
� R function sweep performs row/column operations but is not

directly linked to matrix sweeping in this context.

� For matrix sweeping, refer to custom R code provided on

Canvas.
71

	Review of Statistical Inference
	Introduction to R
	Basics
	R Session
	R Graphics
	Programming in R
	Data Entry

	Math & Stat Tools
	Probability Stuff
	Statistical Methods
	Linear Algebra - Matrix Operations in R

