STAT 7650 - Computational Statistics
Lecture Slides

Introduction

Elvan Ceyhan
Updated: January, 2025

AU

Acknowledgement:

Some of the content in this course is inspired by the lecture notes of Prof Ryan Martin of NCSU.

Review of Statistical Inference

Introduction

e Based on parts of: Dalgaard’'s ISWR book, Chapter 1 in
Givens & Hoeting (Computational Statistics), and Chapter 7
of Lange (Numerical Analysis for Statisticians).

e For more information: See the Course website under Canvas

What to compute?

e STAT 7650 is a course about computational statistics.

e It is important first to discuss what we want to compute in
statistical problems.
e Concerned primarily with two problems:
1. Maximizing the likelihood function.
2. Integrating a “posterior distribution” (this includes sampling
from the posterior too).
e The former should be familiar from Stat 7600/7610
(maximum likelihood or MLE).

e The latter, related to Bayesian statistics, may be new (unless
you've taken STAT 7630).

e Next: A brief introduction to these concepts with an
illustration.

Maximum Likelihood

e Consider n independent observations yy, ..., y,, from a
density/mass function pg depending on an unknown
parameter (vector) 6.

e The likelihood and log-likelihood functions are defined as:

L(6) = H pe(yi)

(o) = Z log pe (yi)

e The Maximum Likelihood Estimator (MLE) 6 of 6, which
maximizes the likelihood, is given by:

o~

0 = argmax L(8) or ('(8) =0
0

e This requires optimization and/or finding roots of functions.

Maximum Likelihood (cont’d)

e Besides estimating the unknown parameter, it's important to
assess its uncertainty.

e Under certain conditions, for large sample sizes (n), the
distribution of @ is approximately normal with mean 6 and
(co)variance /(0)~, where /() is the Fisher information

matrix:
1(6) = Eq [z’(e)z’(e)ﬂ = —E [((6)]

e An approximate 95% confidence interval for 6; is:

o~

0; +1.96 x \/[1(6)~1;, j=1,...,d

e This highlights the importance of computing derivatives and

inverting matrices.

Bayesian Approach

e The Bayesian approach utilizes the rules of probability for
inference.
e It begins with a prior distribution for 8, denoted as 7(0) -
essentially a weight function.
e This leads to a conditional distribution for 8, given Y =y,
called the ‘posterior’ distribution, expressed as:
(0) = g rigias = TOILO)

e The focus is on 7(0y), with the aim to derive or estimate
summaries like mean, variance, quantiles, probabilities, etc.

e Therefore, integrating functions or sampling from distributions
is a crucial aspect of this approach.

Example: Probit Regression

e Observations Y1, ..., Y, are independent (not iid) binary
observations.
o Specifically, Y; ~ Ber(®(x; 9)), for i = 1,...,n, where:
e "“Ber" denotes a Bernoulli distribution.
® Xi,...,X, are fixed d-dimensional covariates.
e 0 is a d-dimensional parameter vector.
e ® is the standard normal distribution function!.
e Exercise:

1. Write out the log-likelihood function.
2. Find MLE of 6.
3. Calculate the Fisher information matrix, /().

!Note: Other cdfs can be used, but then the model isn't referred to as
“probit”.

e The course focuses on solving optimization and integration
problems in statistical applications.

e A background in general numerical methods will be necessary.

e Software plays a crucial role; R will be used extensively.

e The course content ranges from simple to more challenging
topics.

e The primary goal is to equip students with the knowledge to

read current papers using computational statistics and
implement their methods.

Introduction to R
Basics
R Session
R Graphics
Programming in R

Data Entry

10

Review of Statistical Inference

Introduction to R

Basics

Math & Stat Tools

11

Main Features of R

e R is a free and open-source software platform, originally
derived from S, with S-PLUS (a commercial version) now
discontinued.

e Available for download across major operating systems
(Windows, macOS, Linux) from
https://cran.r-project.org.

e Provides an interactive environment for computation, while
supporting script-based workflows for batch execution and
reproducibility.

e Seamlessly integrates with lower-level programming languages
such as C, C++, and FORTRAN to optimize computational
performance.

e Renowned for its versatility, R enables users to define custom
functions, extend existing packages, and adapt functionality to

specific requirements. 12

https://cran.r-project.org

Arithmetic in R

e R can perform arithmetic operations similar to a calculator.
e Basic binary (arithmetic) operations include:

e -+ : Addition

e — : Subtraction

e s : Multiplication

e / : Division

e “or xx : Exponentiation

%/% : Integer division
%% : Modulus (remainder)

13

Variables and Assignments in R

e R enables storage of intermediate values by assigning them to
variables.
e Assignment syntax:
e x <- 7: Assigns the value 7 to the variable x.
e The assignment operator <- is recommended and should be
viewed as a single "left arrow” symbol.
e The equal sign (=) can also be used for assignment but is less
commonly recommended for clarity.
e Rules for variable names:
e Variable names may include letters, numbers, underscores (_),
or periods (.).
e Examples: pred.value, pred_value.
e Variable names cannot:
e Start with a number or special character (other than a dot).
e Contain spaces.

14

Expressions and Objects in R

e In R, user-entered expressions are evaluated by the system to
produce output.

e These expressions are versatile, capable of generating
formulas, graphs, datasets, and more.

e Expressions operate on objects, which are entities that can be
assigned to variables.

e Syntax varies depending on the type of expression or object
being used.

e This lecture will explore key types of expressions and objects
in R.

e To examine the internal structure of an object X, use the
command:

str(X)

15

Functions and Arguments in R

e Functions in R serve diverse purposes, including:
e Mathematical operations, e.g., log(x).
e Non-mathematical tasks, e.g., plot(x, y, pch=2).

Functions are called with parentheses enclosing arguments.
Types of arguments:
e Positional: Recognized by their order in the argument list.

e Named: Recognized by their name, making the order
irrelevant.
Functions may:
e Have no arguments.

e Include default arguments.
e Accept arbitrary numbers of arguments.

R includes a comprehensive set of built-in functions for various
applications.

e Users can easily define custom functions using R's intuitive
function syntax, which the same as ordinary R syntax. 16

e Numeric vectors are fundamental in R and widely used.

e |n addition to numeric vectors, two other key types of vectors
are commonly utilized?:

e Character Vectors: Composed of character strings.
Example: names <- c(‘Small’, ‘Medium’, ‘Large’)

e Logical Vectors: Contain elements TRUE or FALSE, very
useful for indexing data sets.
Example:
gpa <- c(3.0, 2.8, 3.4, 3.7, 3.9, 3.3)
gpa > 3.5
[1] FALSE FALSE FALSE TRUE TRUE FALSE

2Complex vectors are also supported in R.

17

Vectors (Continued)

e Key functions to create vectors in R:
e c(): Concatenates elements into a vector.

e seq(): Generates a patterned sequence.
e rep(): Repeats elements a specified number of times.

e Vectors in R must contain elements of the same data type.
e When combining variables of different types:

e Elements are coerced into a common type, following a
hierarchy: Logical — Integer — Numeric (Double) —
Complex — Character — Factor — List3.

e Examples of coercion:

e c(FALSE, 7) produces [1] 0 7 (logical coerced to numeric).
e c(11.7, "abc") produces [1] "11.7" "abc" (numeric

coerced to character).
3The ‘raw’ type, representing raw bytes, is rarely used in standard data

analysis.
18

Vectors (Continued)

e An interesting feature of R is that it supports vectorized
arithmetic, applying operations element-wise across vectors:
e Example:
x <- c(7, 10, 11)
y <- seq(5, 3, by = -1)
x +y # Results in: [1] 12 14 14

e Handling vectors of different lengths:
e The shorter vector is recycled to match the length of the
longer vector.
e An warning occurs if the length of the longer vector is not a
multiple of the shorter vector.
e When defining custom functions, be mindful of
vectorization and ensure assumptions align with your data
structure.
19

Matrices and Arrays in R

e A matrix in R extends a vector by adding a double index (row
and column).
e Example: M <- matrix(1:6, nrow = 3, ncol = 2)
e Matrices are generally treated as vectors in R*.
e Appending matrices:
e Use rbind () to append rows.
e Use cbind() to append columns.
e Assign row and column names using rownames () and
colnames ().
e R also supports arrays (generalizations of vectors with n
dimensions), though they are less common and harder to

interpret visually.
“Linear algebra operations, such as matrix multiplication, are exceptions where

matrices are treated differently.

20

Data Frames in R

e A data frame is R's representation of a data matrix or
dataset:

e Columns correspond to variables, and rows correspond to cases
(observations).
e Unlike matrices, data frames can hold mixed data types,
including numeric, character, and logical variables.
e Creating a data frame:
e Syntax: D <- data.frame(list_of_variables)
e Reading external files into a data frame will be covered in
later discussions.
e Data frames are central to R, with many statistical routines
(e.g., linear regression) designed to operate directly on them.

21

II!HH%IIHIHIII

e Alist in R is a collection of objects, potentially of different
types.
e Lists can include various object types such as vectors,
matrices, functions, and even other lists.
e Syntax for creating a list:
e mylist <- list(list_of_objects)

o Example:
M <- matrix(c(2, 5, 7, 7), nrow = 2)
f <- function(x) log(x) + x"2
mylist <- list(mymat = M, myfun = f)

mylist$myfun(mylist$mymat)
Applies the function myfun to the matrix mymat.

22

Indexing in R

e Indexing is essential for accessing specific elements in vectors,
matrices, arrays, data frames, and lists.
e Key indexing rules:
e For a matrix M, M[i, j] retrieves the element at the /-th row
and j-th column.
e M[, j] returns the j-th column of M as a vector.
e Data frames are indexed similarly to matrices.
e Vectors are treated as one-dimensional matrices for indexing.
e List elements are accessed using the $ operator, e.g.,
mylist$mymat.
e Examples:
e mylist$mymat[2, 2]: Accesses the element in the second
row and second column of mymat.
e mymat[-1,]: Excludes the first row of mymat, returning all

remaining rows.
23

Subsetting in R

e Subsetting extends indexing by using logical variables to select
specific parts of an object.

e Example: Using logical vectors for matrix subsetting:
row.log <- (l:nrow(M)) == 1
col.log <~ (1:ncol(M)) == 2
M[lrow.log, col.log] # Equivalent to M[1, 2]

e Logical variables allow more complex subsetting:
e Example with a data frame:
e Suppose data frame D has a variable age.
e To select rows for adults (age > 19): D[D$age > 19,]

e Generalizing row/column indexing:
x <- seq(5, 25, by = b5)
x[c(2, 3)]

[1] 10 15 o4

Explicit Loops in R

e Explicit loops are used in R to perform repetitive tasks

manually over elements of vectors, lists, or matrices.
e Common looping constructs in R:
e for(): Iterates over a sequence or elements.
e while(): Executes as long as a condition is TRUE.
e repeat: Executes indefinitely until stopped with break.
e Syntax examples:
e for loop: for (i in 1:5) { print(i~2) }: Prints squares
of numbers 1 through 5.
e while loop (Prints numbers 1 through 5):
e i <-1
e while (i <= 5) { print(i); i <- i + 1 }.
e repeat loop (Prints numbers 1 through 5):
e i <-1
e repeat { print(i); i <- i + 1; if (i > 5) break }.

e Explicit loops are often less efficient than implicit loops and

. . . 25
vectorized operations in R.

Implicit Loops in R

e Implicit loops simplify operations over rows/columns of
matrices, data frames, or elements of lists.
e Common R functions for implicit loops:
e lapply() and sapply() operate on lists.
e apply() works on matrices or data frames.
e Syntax examples:
e Suppose x and y are numeric vectors:
e mylist <- list(varl = x, var2 = y)

e lapply(mylist, mean): Returns a list of means.
e sapply(mylist, mean): Returns a vector of means.
e Suppose mymat is a matrix:
e mymat <- cbind(varl = x, var2 = y)
e apply(mymat, 2, mean, na.rm = TRUE): Computes column
means while ignoring NA values.

26

Sorting in R

e Sorting a single vector is straightforward using sort ():
e Example: sorted x <- sort(x)
e Sorting rows of a matrix or data frame by a specific column:
e To sort the rows of a data frame D by the first column:
e D_sorted <- D[order(D[, 11), 1]
e To sort by the first column and then by the second column:
e D_sorted <- D[order(D[, 1], D[, 2]1),]
e Use decreasing = TRUE within order () or sort() to sort
in descending order:
e Example: D_sorted <- D[order(D[, 1], decreasing =
TRUE),]
e Sorting can handle complex criteria, ensuring flexibility for
data manipulation tasks.

27

Review of Statistical Inference

Introduction to R

R Session

Math & Stat Tools

28

Workspace and Directories in R

¢ Working Directory:
e View the current directory with getwd ().
e Change the working directory using setwd ("mydir").
¢ Workspace Management:
e View all objects in the workspace with 1s().
e Remove specific objects from the workspace using
rm(object_name).
e Best Practices:
e Use save.image ("myworkspace.RData") to save the current
workspace.
e Reload a saved workspace with
load ("myworkspace.RData").

29

Workspace and Directories (Continued)

e Saving the Workspace:
e Use save.image() to save all objects in the current

workspace.
e The default saved file is .RData, but a custom filename can be

specified.
e Example: Save specific objects (x, y, z) using:

save(x, y, z, file = "myfile.RData")

e Loading a Saved Workspace:

e Reload a saved workspace using:
load(file = "myfile.RData")
e Key Note: Saving the workspace preserves objects but does

not save output from the console.

30

Why is Saving the Workspace a Good Practice in R?

e Use save.image() to save the entire workspace to a .RData

file.

e Reload the workspace with load ("myworkspace.RData").

e Benefits:

Preservation: Safeguards all objects for future use.
Efficiency: Avoids re-computation or re-importing of data.
Organization: Maintains the session state for multi-session
projects.

Reproducibility: Ensures consistent analysis across sessions or
with collaborators.

Convenience: Simplifies saving with a single command.

e Combine workspace saving with script-based workflows for

transparency and reproducibility.

31

Saving Input and Output in R

e Saving R Input (Commands):
e Store commands in a script file, e.g., myscript.R.
e Execute the script using: source("myscript.R")
¢ Redirecting Output to a File:
e Redirect output to a file, e.g., myfile, by using:
sink("myfile")
e All evaluated output will be stored in myfile instead of being
displayed in the console.
e Stop redirecting output with: sink()
e Note: The save() command preserves workspace objects but

does not save input or output from the R console.

32

Getting Help in R

e Accessing Function Documentation:

e Use help(mean) or 7mean to get help for the mean function.

Comprehensive Help:

e Use help("mean") to open a detailed help file. In RStudio,
this opens the documentation in a dedicated help window.

Online Resources:

e Google and/or ChatGPT searches often provide quick solutions
and examples.

Extensive Documentation:

e Explore built-in guides like Introduction to R and Writing R
Extensions for detailed learning.

33

Packages in R

e Extensive Package Ecosystem:
e Thousands of packages provide specialized functions, tools,
and datasets.
e Many packages leverage compiled code (e.g., C or Fortran) for
enhanced performance.
e Discovering Packages:
e Browse the CRAN repository for a comprehensive list and
package descriptions.
Installing a Package:

e Use install.packages("pkg") and follow the prompts.
Using a Package:
e Load an installed package with 1library(pkg) to access its
functions and datasets.

Pro Tip: Check the package documentation or vignettes for
usage examples and detailed instructions.

34

Review of Statistical Inference

Introduction to R

R Graphics

Math & Stat Tools

35

Introduction to Graphics in R

R is widely recognized for its powerful and extensive graphical
capabilities.
Includes numerous built-in graphical functions while

supporting user-defined customizations.

This section explores various graphical tools and annotation
techniques.

R can directly generate high-quality PDF or Postscript
graphics, ideal for LaTeX document integration.

36

Scatterplots in Base R

e Scatterplots are a fundamental graphical tool in R, offering
extensive customization options.
e Example Code:
X <= runif(50, 0, 2); y <- runif (50, 0, 2)
plot(x, y, xlab = ’x-label’, ylab = ’y-label’,
main = ’Main Title’, sub = ’subtitle’)
text (0.6, 0.6, ’text at (0.6, 0.6)’)
abline(h = 0.6, v = 0.6, 1ty = 2)
for(s in 1:4)
mtext(-1:4, side = s, at = 0.7, line = -1:4)
mtext (paste(’side’, 1:4), side = 1:4, line = -1,
font = 2)
e The example demonstrates: Adding custom text (text());
Drawing reference lines (abline()); Annotating plot sides

3
with margins (mtext()). !

Scatterplots with ggplot?2

e ggplot2 is a versatile package for creating elegant and

customizable plots in R.
e The below example demonstrates:

e Adding custom text (annotate());
e Drawing reference lines (geom-hline(), geom_vline());

e Customizing titles and labels (1abs()).

38

Scatterplots with ggplot?2

Example Code:

library(ggplot2)

Generate random data

set.seed(123) # For reproducibility
x <- runif (50, 0, 2)

y <- runif (50, 0, 2)

data <- data.frame(x, y)

Create scatterplot
ggplot(data, aes(x = x, y = y)) +

geom_point(color = "blue") +
geom_hline(yintercept = 0.6, linetype = "dashed", color = "red") +
geom_vline(xintercept = 0.6, linetype = "dashed", color = "red") +

annotate("text", x = 0.6, y = 0.6,
label = "text at (0.6, 0.6)", hjust = -0.2) +
labs(title = "Main Title", subtitle = "Subtitle",
x = "x-label", y = "y-label"
) +
theme_minimal ()

39

Histograms in Base R

e Creating histograms in R is simple and highly customizable.

e Basic command: hist (X), where X is the dataset or variable.
e Customization options include:

e Adding density curves: curve(dnorm(x, mean, sd), add =
TRUE).

e Overlaying legends: legend("topright", legend =
c("Mean", "Median"), lty = 1:2).

Example: Using the mean.med.hist function:
e Annotates the histogram with mean and median lines for
better visualization.
e Code available in the R script on Canvas.

Pro Tip: Adjust parameters such as breaks, col, and main
for enhanced visuals.

40

Histograms with ggplot2

e Histograms in ggplot2 offer powerful customization and visual
appeal.
e The below example demonstrates:

e Adds a density curve (stat_function()) with mean and SD.

e Annotates the plot with mean (solid line) and median (dotted
line).

e Enhances readability with customized labs() and

theme_minimal ().

41

Histograms with ggplot2

Example Code:
library(ggplot2)

Generate random data

set.seed(123) # For reproducibility

data <- data.frame(X = rnorm(100, mean = 5, sd = 2))
Create histogram

ggplot (data, aes(x = X)) +

geom_histogram(aes(y = ..density..),
bins = 20, fill = "lightblue", color = "black"
)+

stat_function(fun = dnorm,
args = list(mean = mean(data$X), sd = sd(data$X)),
color = "red", linetype = "dashed"

) +

geom_vline(aes(xintercept = mean(X)),
color = "blue", linetype = "solid", linewidth =1

)+

labs(title = "Histogram with Density Curve",
subtitle = "Mean Annotation",
x = "Values", y = "Density"

) +

42
theme_minimal() + theme(legend.position = "none")

Boxplots in Base R

e Boxplots are a powerful tool for visualizing the location,
spread, and potential outliers in distributions.

e Ideal for comparing multiple distributions side by side.
e Basic syntax: boxplot (X), where X can be:
e A numeric vector for a single boxplot.
e A list or data frame of numeric vectors for grouped boxplots.
e Customization options include:
e Adding titles: main = "Title".
e Customizing colors: col = "lightblue".
e Adding notches for median comparison: notch = TRUE.
e Example: The mean med_comp function annotates boxplots
with mean and median markers for enhanced comparison. See

the R script on Canvas.

43

Boxplots with ggplot2

e Boxplots in ggplot2 offer advanced customization and
aesthetic appeal.
e The below example demonstrates:
e Visualizes multiple distributions side by side with grouping by
group.
e Adds notches (notch = TRUE) to compare medians.
e Includes mean annotations (stat_summary()) with a custom
symbol.
e Clean aesthetics with theme minimal () and color-coded
groups.

44

Boxplots with ggplot2

Example Code:
library(ggplot2)

Generate random data
set.seed(123) # For reproducibility
data <- data.frame(
group = rep(c("A", "B", "C"), each = 50),
values = c(rnorm(50, mean = 5, sd = 1),
rnorm(50, mean = 6, sd = 1.5),

2)))

rnorm(50, mean = 7, sd
Create boxplot
ggplot(data, aes(x = group, y = values, fill = group)) +
geom_boxplot (notch = TRUE, outlier.color = "red", outlier.shape = 19) +
stat_summary (

fun = mean, geom = "point", shape = 4, size = 3, color = "blue"
)+
labs (

title = "Boxplot of Distributions by Group",

subtitle = "Notched Boxplot with Mean Annotation",

x = "Group", y = "Values"
) +

theme_minimal () 45

Review of Statistical Inference

Introduction to R

Programming in R

Math & Stat Tools

46

Flow Control in R: if-else

e Conditional Execution: The if-else structure controls the
flow of commands based on conditions.
e Basic Syntax:
if (conditionl) {
Do something
} else if (condition2) {
Do something else
} else {
Do another thing
}

e Conditions evaluate to TRUE or FALSE.
e Logical operators for combining conditions:
e & AND, |: OR, !': NOT.
e Comparison operators:
e Equal: ==, Not equal: !=. 47

Flow Control in R: Loops

e Major Looping Structures: for(), while(), and

repeat ().
e Example: Computing the square root of a non-negative
number (y):
e Using while():
y <- 12345 # Initialize
x <~y / 2 # Initial guess
while (abs(x"2 - y) > le-10) {
x<- (x+y/x) /2
}
print(x)
e Using repeat():
x <~y / 2 # Initial guess
repeat {
x<- (x+y/x) /2
if (abs(x"2 - y) < 1le-10) break
}
print(x)

48

Flow Control in R: Loops

¢ Validation:
sqrt(y) # Built-in square root function
¢ Highlights:
e while(): Continues as long as the condition is TRUE.

e repeat(): Executes indefinitely until explicitly break.
e Both loops ensure precision using abs () for error tolerance.

49

Flow Control in R: for() Loops (cont’d)

e The for() loop is one of the most widely used looping
structures in R.
¢ Basic Syntax:
e for (i in sequence) { # Do something }
e Example: Generating Polynomial Curves
x <- seq(0, 1, by = 0.05)
plot(x, x, type = "1", main = "Polynomial Curves")
for (j in 2:5) {
lines(x, x7j, col = j)
}
¢ Variations:
e [terating over numeric sequences: for(i in (1:10)7°4)
e |terating over specific values: for (j in c(2, 5, 7))
e lterating over object names: for (var in names(data))

e [terating over functions: for (f in c(sin, cos, tan)) 50

Avoiding Loops in R

e Loops in R are easy to use but can be inefficient for large
datasets.
e Vectorized functions, like apply, are often faster and cleaner.
e Example: Finding the maximum value in each column of
a matrix X:
e Efficient Approach (with apply):
max.X <- apply(X, 2, max)
e Inefficient Approach (with a loop):
max.X <- rep(NA, ncol(X)) # Initialize
for (j in 1:ncol(X)) { max.X[j] <- max(X[, j1) }
e The apply function is:
e Cleaner and more concise.
e Optimized for performance, especially on large datasets.

e Pro Tip: Explore related functions like lapply, sapply, and
vapply for different use cases.
51

Review of Statistical Inference

Introduction to R

Data Entry
Math & Stat Tools

52

Reading Data: scan

scan is a simple way to read numeric or character vectors.

¢ Reading Data into a Vector:

X <- scan(file = "file.dat")
#Reads file.dat into vector X
¢ Reading Lists:
e Lists can be read, but the syntax is more complex.
e Refer to: help(scan).
e Alternative for Tabular Data:
e Use read.table() or read.csv() for data frames.

data <- read.table("file.dat", header = TRUE)
data <- read.csv("file.csv")

53

Reading Data: read.table

read.table is ideal for importing tabular data as a data frame.

e Default Behavior:
e Assumes columns separated by spaces; missing values
represented as NA.
e Customize with sep, header, and other arguments.
e Example: Reading Comma-Separated Files:
data <- read.table(file = "data.dat", header = TRUE,
sep = ",")
¢ Recommended Alternatives:
e read.csv(): Simplified wrapper for CSV files.
e readr::read_csv(): Faster and more robust import from the
tidyverse.
library(readr)

data <- read_csv("data.csv")

54

The tidyverse Ecosystem

e The most comprehensive package for the tidyverse ecosystem
in R is the tidyverse package itself. When installed, it loads
a collection of core packages designed for data manipulation,
visualization, and functional programming.

e Core Packages in tidyverse: ggplot2 — Data
visualization; dplyr — Data manipulation; tidyr — Data
tidying; readr — Data import (CSV, TSV, etc.); purrr —
Functional programming; tibble — Modern data frames;
stringr — String manipulation; forcats — Factor handling

e Other tidyverse-Compatible Packages: lubridate —
Works with date-time data; sf — Spatial data analysis; haven
— Read SPSS, Stata, and SAS files; httr, rvest, xml12 — Web
scraping & APls; modelr, broom — Modeling/tidying results

e For more functionalities: tidymodels - Machine learning,
dbplyr - Database connections, and reprex - Reproducibility 55

Advanced Considerations for read.table

¢ Key Arguments:

e header: Presence of a header row (TRUE/FALSE).
e sep: Separator/delimiter (e.g., ",", "").

e na.strings: Handling missing values.

e quote: Quotes for character text.

e comment.char: Ignoring comments in the file.

e Shortcut Functions:

e read.csv(): For comma-separated files.
e read.delim(): For tab-delimited files.

e Pro Tip: For large datasets:

e Use data.table::fread() for optimal performance.

e For more details, see help(read.table).

56

Writing Data to a File in R

e Exporting data from R is often required for use in other software or for
sharing results.
e Basic Command: write.table
e Writes a "rectangular” data object X (e.g., a data frame or matrix)
to a text file.
write.table(X, file = "output.txt", row.names = FALSE,
col.names = TRUE)
e Automatically converts X into a data frame format with optional
headers.
e Alternative Commands for Common Formats:
e write.csv: For exporting data as a CSV file.
write.csv(X, file = "output.csv", row.names = FALSE)
e readr::write_csv: Faster and more robust CSV writing from the
tidyverse.
library(readr)
write_csv(X, "output.csv")
e Pro Tip: Use the quote = FALSE argument to exclude quotes around
character fields for cleaner output. 57

Math & Stat Tools
Probability Stuff
Statistical Methods
Linear Algebra - Matrix Operations in R

58

Review of Statistical Inference

Introduction to R

Math & Stat Tools
Probability Stuff

59

Combinatorics in R

e Key Functions for Counting Problems:
e factorial(x): Computes x! (factorial of x).
e choose(n, k): Calculates (}) (combinations).

¢ Related Functions:
e gamma(x): Computes [(x), the gamma function.
e lgamma(x): Returns log(I'(x)), useful for large values of x.
e digamma(x): Computes the derivative of log(I'(x)) (digamma

function).
e Examples:
factorial(b) # 5! = 120

choose (10, 3) # 10 choose 3 = 120

gamma (5) # Gamma(5) = 4! = 24
lgamma (10) # Log of Gamma(10)
digamma (5) # Digamma function at x = 5

e Applications: Useful in probability, combinatorics, and
. : 60
statistical modeling.

Random Sampling in R

e The sample() Function:
e Used for random sampling from a finite set.
e sample(x): Generates a random permutation of elements in x.
e For integer n: sample(n) is equivalent to sample(1l:n).
e Options for Sampling:
e size = k: Specifies the number of elements to sample.
e replace = TRUE: Allows sampling with replacement.
e prob: Assigns probabilities to each element in X.
¢ Example: Random Column Selection
A 10x10 matrix
X <- matrix(1:100, nrow = 10, ncol = 10)
Matrix with 7 randomly selected columns
X[, sample(10, size = 7)]
e Applications:
e Useful in bootstrapping, randomization tests, and simulations.
e Probabilistic selection for modeling and data analysis. 61

Probability Distributions in R

e R provides functions for probability calculations across
many distributions.
e Supported Distributions: Normal, binomial, Poisson,
exponential, gamma, uniform, hypergeometric, and more.
e Functions for a Distribution dist:
e ddist: Probability density (pdf) or mass function (pmf).
e pdist: Cumulative distribution function (cdf).
e gdist: Quantile function (inverse cdf).
e rdist: Generate random variables.
e Examples:
dnorm(0, mean = 0, sd = 1) #pdf of standard normal at x=0
pbinom(3, size = 10, prob = 0.5) #cdf of Bin(10,0.5) at x=3
qpois (0.9, lambda = 5) #90th percentile of Poisson(5)
rexp(10, rate = 2) #10 random variables from Exp(2)
e Pro Tip: Refer to the help files (?dnorm, ?pbinom, etc.) for
distribution-specific parameterizations. 62

Probability Distribution Example: Binomial PDF and CDF

e Plotting a binomial probability mass function (pmf) and

cumulative distribution function (cdf).
e Example Code:
Parameters
n <- 25; p <- 0.4
Set up plot
plot(0, O, type = "n", xlim = c(0, n), ylim = c(0, 1),
xlab = "x", ylab = "pdf and cdf")
Add CDF (step function)
lines(0:n, pbinom(0:n, n, p), type = "s", lwd
Add PMF (vertical lines)
lines(0:n, dbinom(0:n, n, p), type = "h", lwd = 2)
Add legend
legend("right", inset = 0.05, lwd = 2, col = c("black", "gray"),
legend = c("pdf", "cdf"))
e Visualization: Black lines represent the pmf (dbinom); Gray step

2, col = "gray")

function represents the cdf (pbinom).
63

Review of Statistical Inference

Introduction to R

Math & Stat Tools
Statistical Methods

64

Quick Summary

e R is extensively designed for statistical analysis with built-in
functions for standard statistical methods.
e Examples of R functions:

e t.test: Performs t-tests.

e 1m: Handles linear models (ANOVA, regression, etc.).

e glm: Used for generalized linear models (like logistic
regression).

e In STAT 7650, the focus is on learning computations, so
built-in functions are primarily used for verification®

®Note: Outside of STAT 7650, using built-in functions for standard statistical
methods is recommended.

65

Review of Statistical Inference

Introduction to R

Math & Stat Tools

Linear Algebra - Matrix Operations in R

66

Matrix Arithmetic

e Consider two matrices A and B of suitable dimensions.®

e Adding and subtracting matrices follows the usual
element-wise operations.

e For multiplication, use the symbol %*%: A %xh B .

e Matrix division isn't as straightforward and typically involves
matrix inversion or solving systems of linear equations.

e Matrix inversion and its implications will be discussed later.

®Care must be taken to ensure correct matrix dimensions to avoid unexpected
results due to vectorization.

67

Matrix Operations in R

e Determinants: det (M): Computes the determinant of matrix
M.
e Diagonal Entries: diag(M):
e If M is a matrix, returns a vector of diagonal entries.
e If M is a vector, creates a diagonal matrix with M on the
diagonal.
¢ Solving Linear Systems and Matrix Inversion:
e Solving Ax =b: x <- solve(A, b)
e Inverting a matrix:
solve(M) # Returns the inverse of an invertible matrix
e Generalized inverse (for non-invertible matrices):
library (MASS)
ginv (M)
e Applications: Solving systems of equations, optimization
problems, and numerical methods.
68

Matrix Decompositions in R

The Spectral Theorem and Matrix Decompositions:

e Spectral Theorem:

e For a symmetric d x d positive definite matrix M:
M = UNUT

where:

e A: Diagonal matrix of eigenvalues of M.
e U: Orthonormal matrix of eigenvectors of M.

¢ Eigenvalue Decomposition in R:

eigen(M) # Returns a list with $values (eigenvalues)

and $vectors (eigenvectors)

69

Matrix Decompositions in R

e Other Common Decompositions:

e Cholesky Decomposition: For symmetric positive definite
matrices.

chol(M) # Returns an upper triangular matrix R
such that M = R°"T R

e Singular Value Decomposition (SVD):
svd(M) # Returns U, D, and V such that M = UD V°T

e Applications: Useful in numerical linear algebra,
optimization, PCA, and more.

70

Neat Example: sweep Operator

The sweep Operator on a Symmetric Positive Definite Matrix
M = (M,‘j):

e Definition: Sweeping on the k-th diagonal entry produces a
new matrix M = (m;;), where:

~ 1 o mye mg Mg Mg
My = ———, Mjx = y My = ——, Mj = mjj—
Mk Mk Mk Mk

e Properties:
e Sweeping has useful mathematical properties (see Chapter 7.5
in Lange).
e Successively sweeping M along all diagonal entries (in any
order) computes the inverse M1,
¢ Implementation:
e R function sweep performs row/column operations but is not
directly linked to matrix sweeping in this context.
e For matrix sweeping, refer to custom R code provided on

71
Canvas.

	Review of Statistical Inference
	Introduction to R
	Basics
	R Session
	R Graphics
	Programming in R
	Data Entry

	Math & Stat Tools
	Probability Stuff
	Statistical Methods
	Linear Algebra - Matrix Operations in R

