

STAT 7650 - Computational Statistics

Lecture Slides

Optimization and Solving Nonlinear Equations (Root Finding)

Elvan Ceyhan

Updated: February, 2025

AU

- Based on parts of: Chapter 2 in Givens & Hoeting (Computational Statistics), and Chapter 14 of Lange (Numerical Analysis for Statisticians).

Outline

Introduction

Univariate Problems

Bisection

Newton's Method

Fisher Scoring

Secant Method

Fixed-Point Iteration

Available Optimization Functions in R

Multivariate Problems

Newton's Method

Newton-like Methods

Gauss-Newton Method

Optimization in R

Other Miscellaneous Items

Motivation

- In statistical applications, point estimation problems often boil down to maximizing a function:
 - Maximum likelihood
 - Least squares
 - Maximum a posteriori
- When the function to be optimized is “smooth,” we can reformulate optimization into a root-finding problem.
- **Problem:** These problems often have *no analytical solution*.
- Therefore, we need *numerical tools* to solve them.

General Setup

- **Two kinds of problems:**
 - Root-finding: Solve $f(\mathbf{x}) = 0$ for $\mathbf{x} \in \mathbb{R}^d, d \geq 1$.
 - Optimization: Maximize $f(\mathbf{x})$ for $\mathbf{x} \in \mathbb{R}^d, d \geq 1$.
- Equivalent if you need to solve $f'(\mathbf{x}) = 0$.
- We will address univariate and multivariate cases separately.
- Methods construct a sequence $\{\mathbf{x}_t : t = 0, 1, 2, \dots\}$ designed to converge (as $t \rightarrow \infty$) to the solution, denoted by \mathbf{x}^* .

General Setup (cont'd)

Theoretical considerations:

- Under what conditions on f' (or f) and initial guess \mathbf{x}_0 can we prove that $\mathbf{x}_t \rightarrow \mathbf{x}^*$?
- If $\mathbf{x}_t \rightarrow \mathbf{x}^*$, then how fast is the convergence, i.e., what is its convergence order?

Practical considerations:

- How to write and implement the algorithm?
- Can't run the algorithm till $t = \infty$, so when to stop?

Convergence Criteria

- The *convergence criteria* is usually something like:

$$|x_{\text{new}} - x_{\text{old}}| < \varepsilon \quad \text{i.e.} \quad |x_{t+1} - x_t| < \varepsilon$$

where ε is a specified small number, e.g., $\varepsilon = 10^{-7}$.

- A *relative convergence criteria* might be better:

$$\frac{|x_{\text{new}} - x_{\text{old}}|}{|x_{\text{old}}|} < \varepsilon$$

Relative Convergence in Optimization

Definition: Relative convergence refers to stopping conditions that consider the **relative change** in function values or parameter updates rather than absolute changes.

- Useful when function values or parameters have large or varying magnitudes.
- Ensures stopping criteria are scale-invariant.

Common Relative Convergence Criteria

1. Relative Change in Objective Function

$$\frac{|f(x_k) - f(x_{k-1})|}{|f(x_{k-1})|} < \delta$$

Ensures the function value is stabilizing in proportion to its magnitude.

2. Relative Change in Variables

$$\frac{\|x_k - x_{k-1}\|}{\|x_{k-1}\|} < \eta$$

Useful when variables vary significantly in scale.

Common Relative Convergence Criteria (cont.)

3. Relative Gradient Norm

$$\frac{\|\nabla f(x_k)\|}{\|\nabla f(x_0)\|} < \epsilon$$

Ensures that the optimization process is making proportionate improvements.

Why Use Relative Convergence?

- Works well when function values or variables are large.
- Prevents premature stopping when dealing with different scales.
- Ensures that improvements are meaningful in proportion to their magnitude.

Definition of Order of Convergence

An algorithm has **order of convergence** β if:

$$\lim_{t \rightarrow \infty} \frac{|\epsilon(t+1)|}{|\epsilon(t)|^\beta} = c$$

where:

- $\epsilon(t)$ is the error at iteration t .
- $\beta > 0$ measures how **quickly** the error shrinks.
- $c \neq 0$ is a constant.

Higher β means faster convergence!

Connection to Convergence Rates in Optimization

The order of convergence relates to well-known convergence rates:

- $\beta = 1 \Rightarrow$ **Linear Convergence** (error shrinks proportionally)
- $1 < \beta < 2 \Rightarrow$ **Superlinear Convergence** (faster than linear)
- $\beta = 2 \Rightarrow$ **Quadratic Convergence** (error squared at each step)
- $0 < \beta < 1 \Rightarrow$ **Sublinear Convergence** (very slow)

Example: Newton's method is **quadratically convergent** under good conditions.

Why Use \limsup Definition?

The order of convergence is often written as:

$$\limsup_{t \rightarrow \infty} \frac{|\epsilon(t+1)|}{|\epsilon(t)|^\beta} \leq C$$

where $C > 0$ ensures the worst-case asymptotic behavior.

- Allows for **variability** in error reduction per iteration.
- Ensures **robustness** in practical optimization problems.
- Captures **asymptotic behavior** for sufficiently large t .

Why Use $\leq C$ Instead of $= C$?

Using $\leq C$ instead of $= C$ allows for:

- **Generalization:** Convergence behavior may not follow strict proportionality.
- **Flexibility:** Accounts for fluctuations in the error sequence.
- **Realism:** Many practical algorithms exhibit varying convergence rates.

This ensures that the convergence definition applies to more cases.

Outline

Introduction

Univariate Problems

Bisection

Newton's Method

Fisher Scoring

Secant Method

Fixed-Point Iteration

Available Optimization Functions in R

Multivariate Problems

Newton's Method

Newton-like Methods

Gauss-Newton Method

Optimization in R

Other Miscellaneous Items

Univariate Optimization

Optimizing smooth univariate functions

- Bisection
- Newton's method
- Fisher scoring
- Secant method
- (scaled) Fixed point iteration

Goal: Maximize a real-valued function $f(x)$.

$f(x)$ may be a likelihood, a profile likelihood, a Bayesian posterior, or some other function (of interest).

Example 1:

Maximize

$$f(x) = \frac{\log x}{1+x} \quad (1)$$

with respect to x .

We cannot find the root of $f'(x) = \frac{1 + 1/x - \log x}{(1+x)^2}$ analytically.

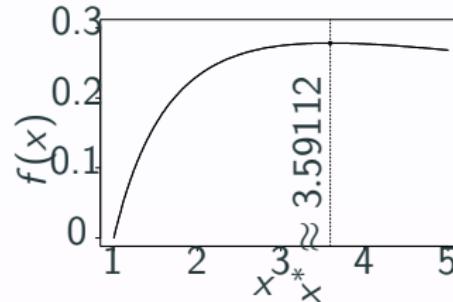


Figure 1: The maximum of $f(x) = \frac{\log x}{1+x}$ occurs at $x^* \approx 3.59112$, indicated by the vertical line.

Example 2:

The following data are an i.i.d. sample from a $\text{Cauchy}(\theta, 1)$ distribution:

1.77, -0.23, 2.76, 3.80, 3.47, 56.75, -1.34, 4.24, -2.44, 3.29, 3.71, -2.40, 4.53, -0.07, -1.05, -13.87, -2.53, -1.75, 0.27, 43.21.

The likelihood function is

$$\prod_{i=1}^{20} \frac{1}{\pi \left(1 + (x_i - \theta)^2\right)}. \quad (2)$$

Find the MLE for θ .

The score function (first derivative of the log-likelihood) has multiple roots requiring numerical solution.

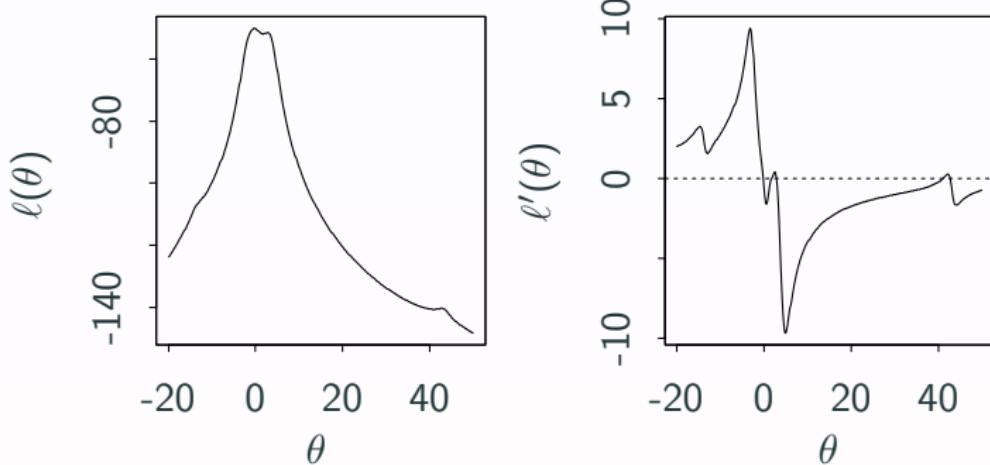


Figure 2: Log likelihood and score function for the Cauchy data.

Outline

Introduction

Univariate Problems

Bisection

Newton's Method

Fisher Scoring

Secant Method

Fixed-Point Iteration

Available Optimization Functions in R

Multivariate Problems

Newton's Method

Newton-like Methods

Gauss-Newton Method

Optimization in R

Other Miscellaneous Items

Bisection - Basic Idea

- Find a root x^* of f in interval $[a, b]$.
 - **Claim:** If f is continuous on $[a, b]$ and $f(a)f(b) \leq 0$ then the *intermediate value theorem*, then there exists a root $x^* \in (a, b)$. Why?
- Pick an initial guess $x_0 = \frac{a+b}{2}$.
 - Then x^* must be in either $[a, x_0]$ or $[x_0, b]$.
 - Evaluate $f(x)$ at the endpoints to determine which one.
- The selected interval, call it $[a_1, b_1]$, is now just like the initial interval; i.e., we know it must contain x^* .
 - Take $x_1 = \frac{a_1+b_1}{2}$.
- Continue this process to construct a sequence $\{x_t : t = 0, 1, 2, \dots\}$.

Bisection Algorithm

For the given $f(x)$, assume the interval at the t -th step is $[a_t, b_t]$ are given.

1. Set $x_t = \frac{a_t+b_t}{2}$.
2. If $f(a_t)f(x_t) \leq 0$, then $b_{t+1} = x_t$ and $a_{t+1} = a_t$; else $a_{t+1} = x_t$ and $b_{t+1} = b_t$.
3. If “converged,” then stop; otherwise return to Step 1.

1. In *computer code*, you first initialize $a = a_0$ and $b = b_0$ and update as follows at each step
2. Set $x = \frac{a+b}{2}$.
3. If $f(a)f(x) \leq 0$, then $b = x$; else $a = x$.
4. If “converged,” then stop; otherwise go to Step 1.

Note: There is also a related algorithm called Golden Section Search Algorithm.

Bisection Theory

- **Claim:** If f is continuous, then $x_t \rightarrow x^*$.
 - **Proof:**
 - If $[a_t, b_t]$ is the bounding interval at step t , then $f(a_t)f(b_t) \leq 0$ and $\lim_{t \rightarrow \infty} a_t = \lim_{t \rightarrow \infty} b_t$.
 - So, x_t converges to some \tilde{x} , and by continuity $f(\tilde{x})^2 \leq 0$.
 - Then $f(\tilde{x}) = 0$ and, since x^* is the unique root, $\tilde{x} = x^*$. \square
- Convergence holds under very mild conditions of f , but the robustness comes at the price of the order of convergence.

Examples

- Find x^* to maximize the function

$$f(x) = \frac{\log x}{1+x}, \quad x \in [1, 5].$$

- Note that

$$f'(x) = \frac{1+x^{-1} - \log x}{(1+x)^2}.$$

- Find the $100p$ -th percentile of a Student-t distribution, i.e.,
 - find x^* such that $F(x^*) = p$, where F is the t-distribution function, with degrees of freedom $df = \nu$ fixed.

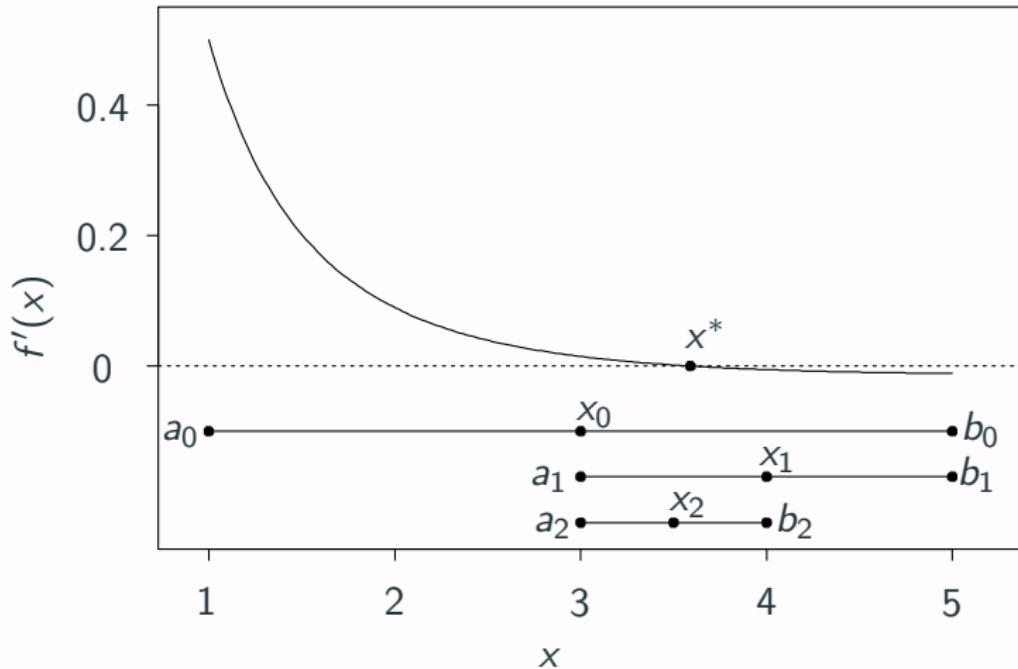


Figure 3: Illustration of the bisection method. The top portion of this graph shows $f'(x)$ and its root at x^* . The bottom portion shows the first three intervals obtained using the bisection method with $[a_0, b_0] = [1, 5]$. The t -th estimate of the root is at the center of the t -th interval.

Outline

Introduction

Univariate Problems

Bisection

Newton's Method

Fisher Scoring

Secant Method

Fixed-Point Iteration

Available Optimization Functions in R

Multivariate Problems

Newton's Method

Newton-like Methods

Gauss-Newton Method

Optimization in R

Other Miscellaneous Items

Basic Idea

- **Newton's Method** is usually presented in a calculus class.
- Idea is *to approximate a nonlinear function near its root by a linear function* which can be solved by hand.
 - Recall that Taylor's Theorem gives the linear approximation of a function $f(x)$ in a neighborhood of some point x_0 as

$$f(x) \approx f(x_0) + f'(x_0)(x - x_0).$$

- Setting this approximation equal to 0 and solving gives

$$x = x_0 - \frac{f(x_0)}{f'(x_0)}.$$

Newton Method - Algorithm

- Assume the function $f(x)$, its derivative $f'(x)$, and an initial guess x_0 are given. Set $t = 0$.
 1. At step t (so, we have x_t already computed), set

$$x_{t+1} = x_t - \frac{f(x_t)}{f'(x_t)}.$$

2. If the convergence criteria is met, then stop; otherwise, set $t = t + 1$ and return to Step 1.

- **Caveats:**

- Convergence depends on the choice of x_0 and shape of f .
- Unlike bisection, Newton's Method might not converge!

Newton Method - Theory

- **Claim:** If f'' is continuous and x^* is a root of f , with $f'(x^*) \neq 0$, then there exists a neighborhood N of x^* such that Newton's Method converges to x^* for any $x_0 \in N$.
 - Proof uses Taylor approximation.
 - Proof also shows that the convergence order is quadratic.
- Other results about Newton's Method are available; see HW.
- If Newton Method converges, then it's faster than bisection, but added speed has a cost:
 - Requires differentiability and the derivative f' .
 - Convergence is sensitive to the choice of x_0 .

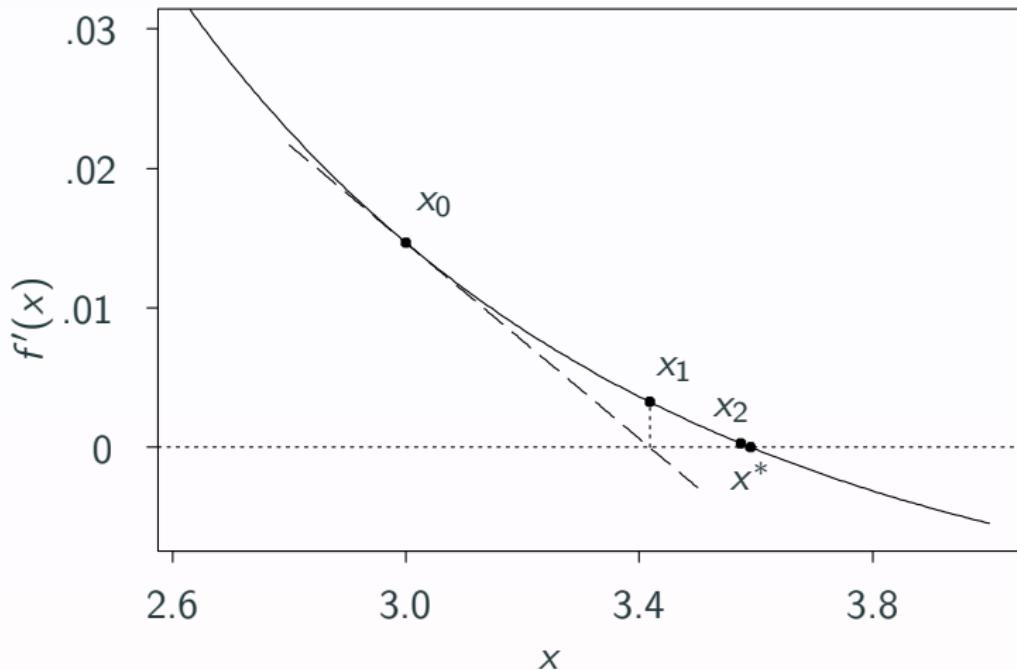


Figure 4: Illustration of Newton's Method applied to maximize the function in Equation (1). At the first step, Newton's method approximates f' by its tangent line at x_0 whose root, x_1 , serves as the next approximation of the true root, x^* . The next step similarly yields x_2 , which is already quite close to the root at x^* .

Speed is not the only factor to consider.

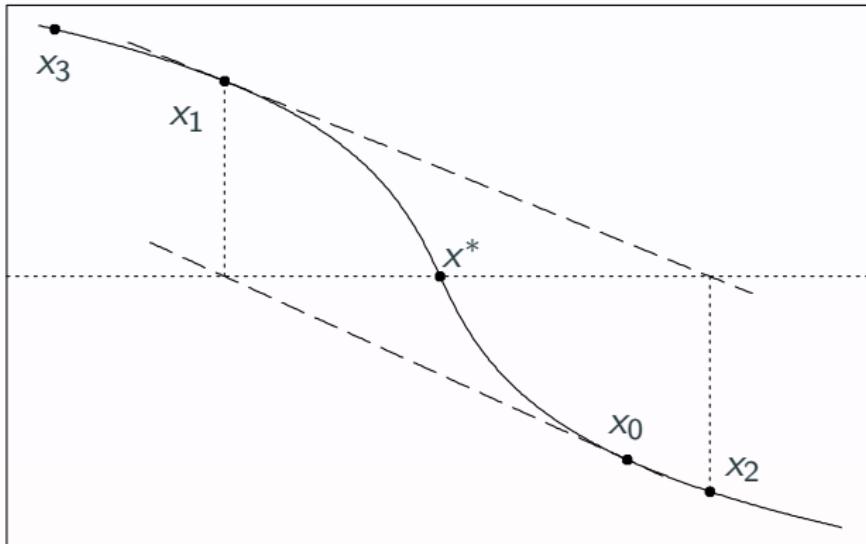


Figure 5: Starting from x_0 , Newton's method diverges by taking steps that are increasingly distant from the true root, x^* .

Bisection would have found this root easily.

Starting values are also critical.

Cauchy Example

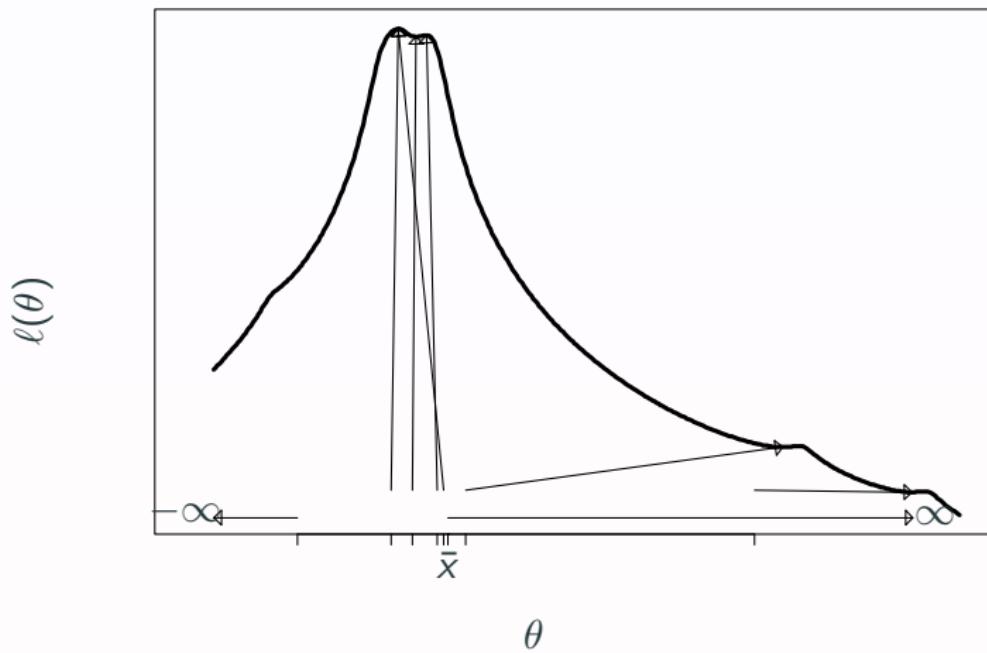


Figure 6: Log-likelihood for the Cauchy data. Arrows show convergence of Newton's method from several starting values.

Outline

Introduction

Univariate Problems

Bisection

Newton's Method

Fisher Scoring

Secant Method

Fixed-Point Iteration

Available Optimization Functions in R

Multivariate Problems

Newton's Method

Newton-like Methods

Gauss-Newton Method

Optimization in R

Other Miscellaneous Items

Fisher Scoring

- In maximum likelihood applications, the goal is to find roots of the log-likelihood function, i.e., $\ell'(\hat{\theta}) = 0$.
- In this context, Newton's Method looks like

$$\theta_{t+1} = \theta_t - \frac{\ell'(\theta_t)}{\ell''(\theta_t)}, \quad t = 0, 1, 2, \dots$$

- But recall that $-\ell''(\theta)$ is an approximation to the Fisher information $I_n(\theta)$.
- So, can rewrite Newton's Method as

$$\theta_{t+1} = \theta_t + \frac{\ell'(\theta_t)}{I_n(\theta_t)}, \quad t = 0, 1, 2, \dots$$

- This modification is called *Fisher Scoring*.

Outline

Introduction

Univariate Problems

Bisection

Newton's Method

Fisher Scoring

Secant Method

Fixed-Point Iteration

Available Optimization Functions in R

Multivariate Problems

Newton's Method

Newton-like Methods

Gauss-Newton Method

Optimization in R

Other Miscellaneous Items

Secant Method - Basic Idea

- Newton's Method requires a formula for $f'(x)$.
- To avoid this, approximate $f'(x)$ at x_0 by a difference ratio.
 - That is, recall from calculus that

$$f'(x) \approx \frac{f(x+h) - f(x)}{h}, \quad \text{for } h \text{ small and positive.}$$

- Then the *secant method* follows Newton's Method exactly, except we substitute a difference ratio for $f'(x)$.
- Name is because *the linear approximation is a secant*, not a tangent line.

Secant Method - Algorithm

- Suppose $f(x)$ and two initial guesses x_0, x_1 are given. Set $t = 1$.
 1. At step t , calculate

$$x_{t+1} = x_t - \frac{f(x_t)}{\frac{f(x_t) - f(x_{t-1})}{x_t - x_{t-1}}}.$$

- 2. If the convergence criteria are satisfied, then stop; else, set $t = t + 1$ and return to Step 1.
- Two initial guesses are needed because the difference ratio in the first iteration requires two values.
- Can be unstable at early iterations because the *difference ratio* may be a poor approximation of f' ; reasonable sacrifice if f' is not available.
- If the secant method converges, the order is almost quadratic.

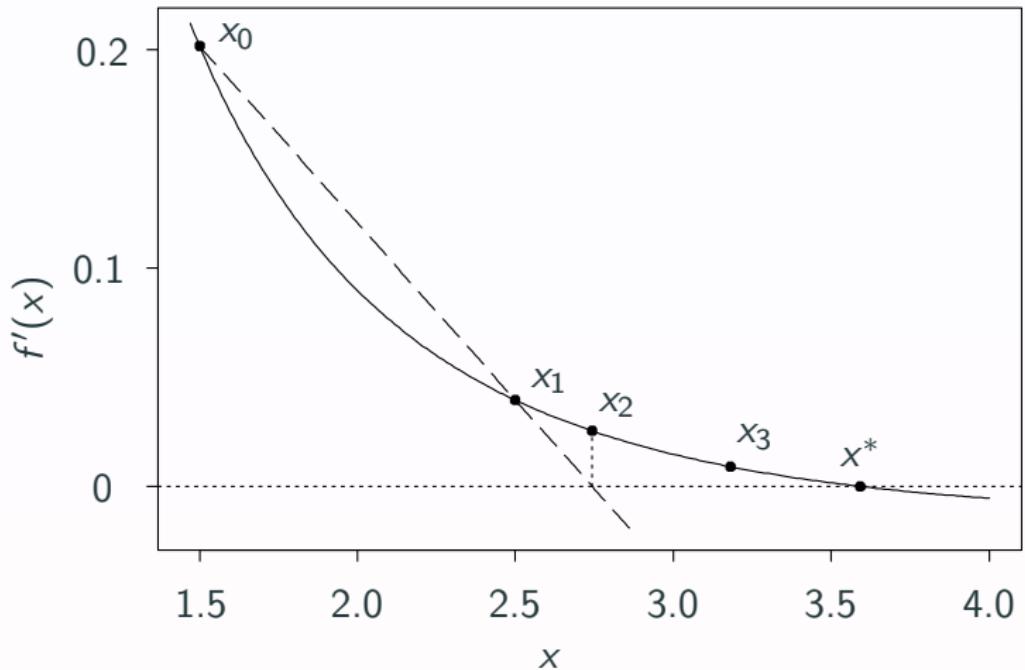


Figure 7: The secant method locally approximates f' using the secant line between x_0 and x_1 . The corresponding estimated root, x_2 , is used with x_1 to generate the next approximation.

Outline

Introduction

Univariate Problems

Bisection

Newton's Method

Fisher Scoring

Secant Method

Fixed-Point Iteration

Available Optimization Functions in R

Multivariate Problems

Newton's Method

Newton-like Methods

Gauss-Newton Method

Optimization in R

Other Miscellaneous Items

Fixed-Point Iteration - Basic Idea

- Some problems require finding a fixed-point, i.e., a point x^* such that $F(x^*) = x^*$.
- A root-finding problem can be written as a fixed-point problem with $F(x) = f(x) + x$.
- The function $F(x)$ is a contraction, if,
 - $F(x) \in [a, b]$ for all $x \in [a, b]$
 - $|F(x) - F(y)| \leq \alpha|x - y|$, for $0 < \alpha < 1$ for all $x, y \in [a, b]$

$$|F(x) - F(y)| \leq \alpha|x - y|, \quad \text{for } 0 < \alpha < 1 \text{ for all } x, y \in [a, b]$$

then the point $F(x)$ will be closer to $x^* = F(x^*)$ than x .

- Banach's Fixed-Point Theorem says:
 - Contraction mappings have a unique fixed point x^* , and
 - From a starting point x_0 , the iterates $x_{t+1} = F(x_t)$ will converge to x^* .

Fixed-Point Iteration - Algorithm

- Suppose $F(x)$ and an initial guess x_0 are given. Set $t = 0$.
 1. Calculate $x_{t+1} = F(x_t)$.
 2. If convergence criterion is met, then stop; else, set $t = t + 1$ and return to Step 1.
- It can be shown that

$$|F(x_t) - x^*| \leq \alpha^t |x_0 - x^*|,$$

so, fixed-point iteration *converges at a geometric rate*.

- If using fixed-point methods for root-finding, $F(x) = f(x) + x$ may not be the best choice; for example, maybe a scaled version would be better.

Example - Kepler's Equation

- Kepler's Equation in orbital mechanics says

$$x = M + \varepsilon \sin x,$$

where M and $\varepsilon \in (0, 1)$ are fixed quantities.¹

- Our goal is to solve for x , given M and ε .
 - Write $F(x) = M + \varepsilon \sin x$.
 - Then $F'(x) = \varepsilon \cos x$ and $|F'(x)|$ is uniformly bounded by ε .
- So, F is a contraction and fixed-point iteration will converge to a solution to Kepler's equation.

¹See Wikipedia page on Kepler's equation for more info.

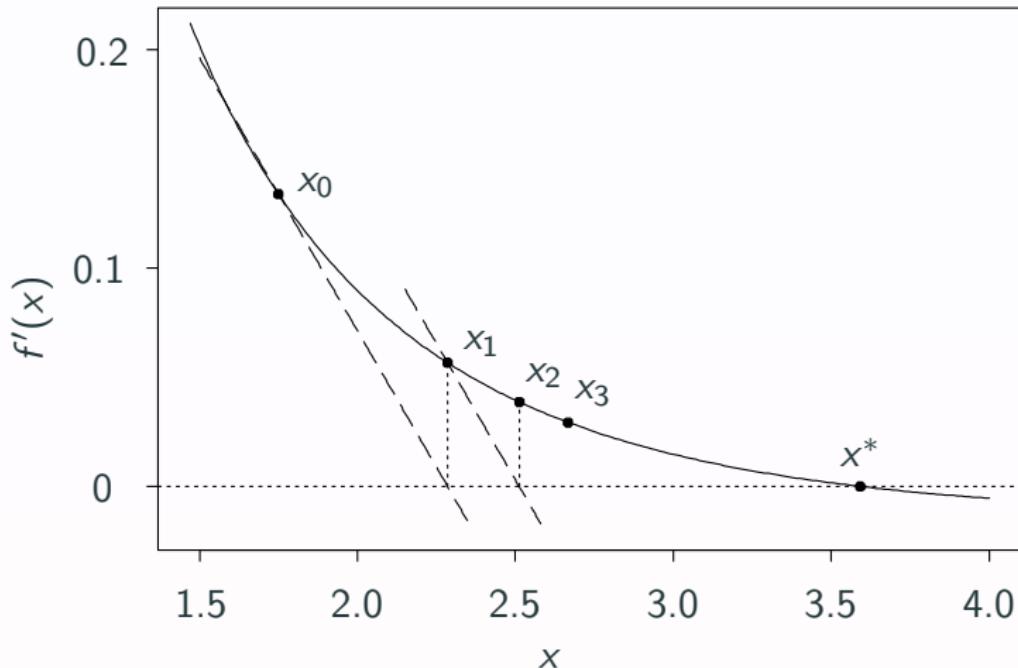


Figure 8: The first three steps of scaled fixed point iteration to maximize $f(x) = \frac{\log x}{1+x}$ using $F(x) = c f'(x) + x$ with scale parameter $c = 4$.

Outline

Introduction

Univariate Problems

Bisection

Newton's Method

Fisher Scoring

Secant Method

Fixed-Point Iteration

Available Optimization Functions in R

Multivariate Problems

Newton's Method

Newton-like Methods

Gauss-Newton Method

Optimization in R

Other Miscellaneous Items

Root-Finding and Optimization in R

- **Univariate Problems:**
 - `uniroot` does root-finding.
 - `optimize` does optimization.
 - See documentation files (and the R code on Canvas) for details.
- **Multivariate Problems:**
 - `nlm` does non-linear **minimization** with Newton-like methods.
 - `optim` is maybe a better choice.
- More on these later.

A Note About Constraints

- The univariate methods built into R are not particularly good at handling optimization problems where the parameter x is constrained, e.g., if x must be non-negative.
- The built-in R routines assume x has no constraints, so to be safe you may want to write your functions this way.
- For example, if x is required to be non-negative, then reparametrize as $y = \log x$, and set $g(y) = f(e^y)$ and perform the optimization on the function $g(y)$. If y^* is the optimizer value, then $x^* = e^{y^*}$ will be the optimizer in the original optimization problem.
- Don't forget: Re-parametrization will affect derivatives!

Outline

Introduction

Univariate Problems

Bisection

Newton's Method

Fisher Scoring

Secant Method

Fixed-Point Iteration

Available Optimization Functions in R

Multivariate Problems

Newton's Method

Newton-like Methods

Gauss-Newton Method

Optimization in R

Other Miscellaneous Items

Multivariate Optimization

Optimizing smooth multivariate functions

- Newton's method
- Fisher scoring
- ascent algorithms
- discrete Newton method
- (scaled) fixed point iteration
- quasi-Newton methods
- Gauss-Newton method
- nonlinear Gauss-Seidel iteration
- Nelder–Mead algorithm

Multivariate Optimization

- In the univariate optimization part, we posed the problem as root finding problem for a function f , which was an optimization problem when $f = g'$ (where g is the function to maximize).
- In the multivariate optimization part, we will directly pose the problem as root finding problem for a function f' , but notice that we are still solving the problem of root finding:
 - $\max_x f(x)$ over x
is equivalent to
finding the root of $f'(x)$.

Outline

Introduction

Univariate Problems

Bisection

Newton's Method

Fisher Scoring

Secant Method

Fixed-Point Iteration

Available Optimization Functions in R

Multivariate Problems

Newton's Method

Newton-like Methods

Gauss-Newton Method

Optimization in R

Other Miscellaneous Items

Newton's Method - More Than One Variable

- Suppose now that $f(\mathbf{x})$ is a function of several variables, say $\mathbf{x} = (x_1, x_2, \dots, x_p) \in \mathbb{R}^p$.
- Newton's Method works exactly the same as before, just the derivatives are more complicated.
 - $f'(\mathbf{x})$ is the gradient — vector of first partial derivatives.
 - $f''(\mathbf{x})$ is the *Hessian* — matrix of second partial derivatives.
- Based on (MV) Taylor's Formula again, Newton's Method is

$$\mathbf{x}^{(t+1)} = \mathbf{x}^{(t)} - f''(\mathbf{x}^{(t)})^{-1} f'(\mathbf{x}^{(t)}).$$

- If we are maximizing a log-likelihood, $\ell(\boldsymbol{\theta})$, then the Fisher Scoring adjustment is just like before.

Example: Gamma Distribution MLE

- $X_1, \dots, X_n \stackrel{iid}{\sim} \text{Gamma}(\alpha, \beta)$, where both α and β are unknown parameters to be estimated.
- Density function is

$$f(x|\alpha, \beta) = \frac{\beta^\alpha}{\Gamma(\alpha)} x^{\alpha-1} e^{-\beta x}, \quad x \geq 0.$$

- The log-likelihood function is (effectively)

$$\ell(\alpha, \beta) = n\alpha \log \beta - n \log \Gamma(\alpha) + \alpha \sum_{i=1}^n \log X_i - \beta \sum_{i=1}^n X_i.$$

- Find first and second (partial) derivatives of $\ell(\alpha, \beta)$.
- R code on Canvas implements Newton's Method to find the MLE.

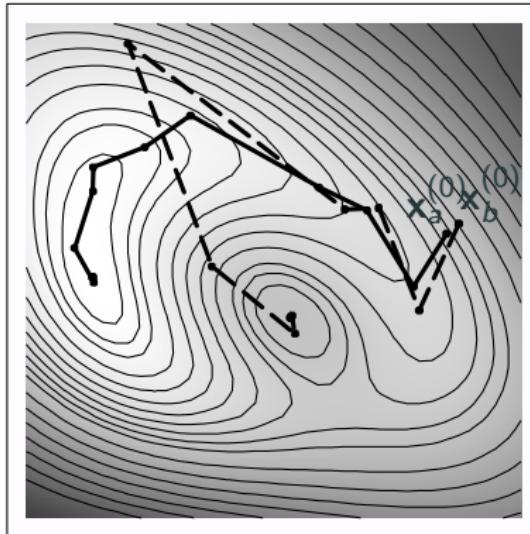


Figure 9: An application of Newton's method for maximizing a complex bivariate function. The surface of the function is indicated by shading and contours, with light shading corresponding to high values. Two runs starting from $x_a^{(0)}$ and $x_b^{(0)}$ are shown. These converge to the true maximum and to a local minimum, respectively.

Newton's method is not guaranteed to walk uphill. It is not guaranteed to find a local maximum. Step length matters even when step direction is good.

Outline

Introduction

Univariate Problems

Bisection

Newton's Method

Fisher Scoring

Secant Method

Fixed-Point Iteration

Available Optimization Functions in R

Multivariate Problems

Newton's Method

Newton-like Methods

Gauss-Newton Method

Optimization in R

Other Miscellaneous Items

Motivation for Alternatives

- Newton's Method is a very good technique for both univariate and multivariate optimization.
 - Difficulty in the multivariate case is the derivation and/or computation of the Hessian matrix and its inverse.
- Is it possible to use some other matrix, say $M^{(t)}$, in place of the Hessian $f''(\mathbf{x}^{(t)})$?
 - Yes, and we will discuss a few such methods:
 - Ascent methods
 - Discrete Newton and fixed-point methods
 - Quasi-Newton methods

Ascent Methods

- Fix matrices $M^{(t)}$ and numbers $\alpha^{(t)}$, $t = 0, 1, 2, \dots$.
- Ascent methods look like

$$\mathbf{x}^{(t+1)} = \mathbf{x}^{(t)} - \alpha^{(t)}[M^{(t)}]^{-1}f'(\mathbf{x}^{(t)}).$$

- Goal is to choose $M^{(t)}$ and $\alpha^{(t)}$ such that the function increases when $\mathbf{x}^{(t)}$ is updated to $\mathbf{x}^{(t+1)}$.
- It follows from Taylor's Formula that, if $-M^{(t)}$ is positive definite and $\alpha^{(t)}$ is sufficiently small, then ascent occurs.

Ascent Methods (cont'd)

- Method of *steepest ascent* takes $M^{(t)} \approx -I_p$.
- Motivation is the basic fact from multivariable calculus that the *gradient points in the direction of steepest ascent*.
- Then the updating equation looks like

$$\mathbf{x}^{(t+1)} = \mathbf{x}^{(t)} + \alpha^{(t)} f'(\mathbf{x}^{(t)}), \quad t = 0, 1, 2, \dots$$

- How to pick a good $\alpha^{(t)}$?
 - A *backtracking* approach determines $\alpha^{(t)}$ iteratively:
 1. Start with $\alpha^{(t)} = 1$.
 2. Update $\mathbf{x}^{(t+1)}$ with this $\alpha^{(t)}$.
 3. If ascent occurs, then increment t ; otherwise, set $\alpha^{(t)} = \alpha^{(t)}/2$ and go back to Step 2.

Ascent Methods (cont'd)

- **Claim:** If $\alpha^{(t)}$ is sufficiently small, then ascent occurs.
- **Sketch of Proof:**
 - From the two-term Taylor expansion of $f(\mathbf{x}^{(t+1)})$ near $\mathbf{x}^{(t)}$, we have

$$\begin{aligned}f(\mathbf{x}^{(t+1)}) &= f(\mathbf{x}^{(t)}) + f'(\mathbf{x}^{(t)})^T (\mathbf{x}^{(t+1)} - \mathbf{x}^{(t)}) + \\&\quad \frac{1}{2} (\mathbf{x}^{(t+1)} - \mathbf{x}^{(t)})^T f''(\tilde{\mathbf{x}}) (\mathbf{x}^{(t+1)} - \mathbf{x}^{(t)})\end{aligned}$$

where $\tilde{\mathbf{x}}$ is between $\mathbf{x}^{(t+1)}$ and $\mathbf{x}^{(t)}$.

- Plug in definition of $\mathbf{x}^{(t+1)}$; then $f(\mathbf{x}^{(t+1)}) - f(\mathbf{x}^{(t)})$ is

$$\alpha^{(t)} \|f'(\mathbf{x}^{(t)})\|^2 + \frac{1}{2} (\alpha^{(t)})^2 f'(\mathbf{x}^{(t)})^T f''(\tilde{\mathbf{x}}) f'(\mathbf{x}^{(t)})$$

- Second term is $\approx c(\alpha^{(t)})^2 \|f'(\mathbf{x}^{(t)})\|^2$, where $c \in \mathbb{R}$.
- Make $\alpha^{(t)}$ small enough that bound is positive. \square

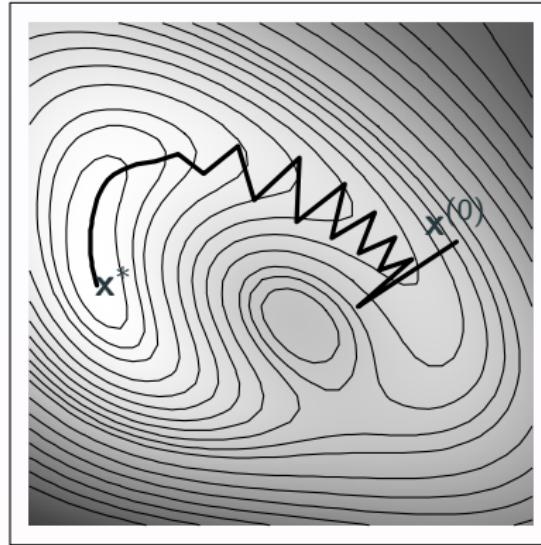


Figure 10: Steepest ascent with backtracking, using $\alpha = 0.25$ initially at each step.

The ascent direction is not necessarily the wisest, and backtracking doesn't prevent oversteps.

Discrete Newton and Fixed-Point Methods

- If we use an initial approximation, we get a MV fixed-point method.
- For example, with a fixed matrix M , write

$$\mathbf{x}^{(t+1)} = \mathbf{x}^{(t)} - M^{-1}f'(\mathbf{x}^{(t)}).$$

- A reasonable choice is $M = f''(\mathbf{x}_0)$.
- Replace Hessian $f''(\mathbf{x})$ in Newton with a discrete approximation (using difference ratios) gives a discrete Newton method.
 - Can be expensive — each step requires lots of difference ratios.

Quasi-Newton Methods

- Recall that the general idea is to replace the Hessian with some reasonable approximation.
- Methods so far have not made a serious attempt to capture any real information about f in the matrix $M^{(t)}$.
- How to ensure that $M^{(t)}$ somehow approximates the Hessian?
 - A secant condition can do the job:

$$f'(\mathbf{x}^{(t+1)}) - f'(\mathbf{x}^{(t)}) = M^{(t+1)}(\mathbf{x}^{(t+1)} - \mathbf{x}^{(t)}).$$

- How to construct a matrix sequence $M^{(t)}$ that satisfies this?

Quasi-Newton Methods (cont'd)

- There are classes of matrices that satisfy the secant condition.
 - There is a unique symmetric rank-one update:

$$M^{(t+1)} = M^{(t)} + c^{(t)} \mathbf{v}^{(t)} (\mathbf{v}^{(t)})^T,$$

where

$$\mathbf{v}^{(t)} = \mathbf{y}^{(t)} - M^{(t)} \mathbf{z}^{(t)},$$

$$\mathbf{z}^{(t)} = \mathbf{x}^{(t+1)} - \mathbf{x}^{(t)},$$

$$\mathbf{y}^{(t)} = f'(\mathbf{x}^{(t+1)}) - f'(\mathbf{x}^{(t)}),$$

$$c^{(t)} = \frac{1}{(\mathbf{v}^{(t)})^T \mathbf{z}^{(t)}}.$$

- The go-to approach is a rank-two update, called *BFGS*.
 - Formula is messy — see Equation (2.50) in the textbook.
- The R code on Canvas implements BFGS; more on R below.

Example: Problem 2.3 in G&H

- Survival analysis problem, with censored data.
- Data (y_i, x_i, w_i) where
 - y_i is the recorded survival time,
 - x_i is a treatment versus control indicator,
 - w_i is a real versus censored survival time indicator.
- Proportional hazards model gives log-likelihood

$$\ell(\theta) = \sum_{i=1}^n \left[w_i \log(\lambda_i) - \lambda_i + w_i \log \left(\frac{y_i}{\lambda_i} \right) \right],$$

where $\lambda_i = y_i e^{\beta_0 + \beta_1 x_i}$.

- **Goal:** Find MLE of $\theta = (\beta_0, \beta_1)$.

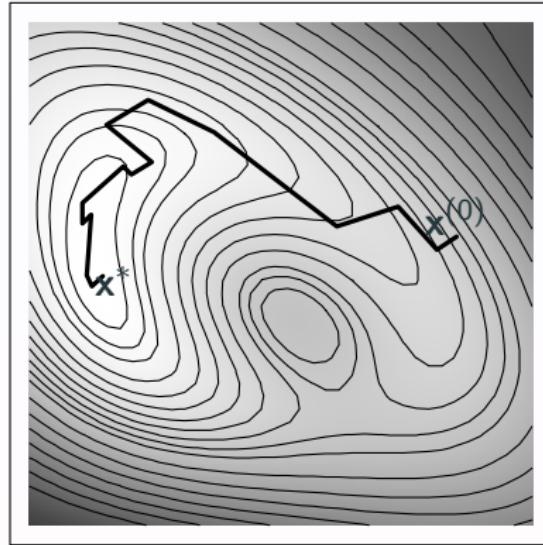


Figure 11: Quasi-Newton optimization with the BFGS update and backtracking to ensure ascent.

Convergence of quasi-Newton methods is generally superlinear, but not quadratic. These are powerful and popular methods, used, for example, see `nlmin()` in R.

Outline

Introduction

Univariate Problems

Bisection

Newton's Method

Fisher Scoring

Secant Method

Fixed-Point Iteration

Available Optimization Functions in R

Multivariate Problems

Newton's Method

Newton-like Methods

Gauss-Newton Method

Optimization in R

Other Miscellaneous Items

Least Squares

- Suppose that the function to maximize is quadratic, e.g.,

$$f(\mathbf{x}) = -\|\mathbf{y} - A\mathbf{x}\|^2.$$

- We can solve this one analytically:

$$\mathbf{x} = (A^T A)^{-1} A^T \mathbf{y}.$$

- This is the least squares solution you may have seen in a linear algebra or numerical analysis course.

Gauss-Newton for Least Squares

- In the previous slide, the goal basically was to approximate \mathbf{y} by a linear function of \mathbf{x} .
- What if the function is non-linear?
- **Gauss-Newton Method:**
 - Consider $g(\theta) = -\sum_{i=1}^n \{y_i - f(\mathbf{x}_i, \theta)\}^2$.
 - Fix θ_0 and approximate $\theta \mapsto f(\mathbf{x}_i, \theta)$ (i.e., $h(\theta) = f(\mathbf{x}_i, \theta)$) by a linear function, that is,

$$f(\mathbf{x}_i, \theta) = f(\mathbf{x}_i, \theta_0) + f'(\mathbf{x}_i, \theta_0)(\theta - \theta_0).$$

- Plug this in for $f(\mathbf{x}_i, \theta)$ in $g(\theta)$ and note the similarity to the least squares problem.
- Solve analytically for θ ; call the solution θ_1 and redo.

Gauss-Newton Method (alternate take)

- Address nonlinear least squares problems for observed data (y_i, \mathbf{x}_i) with model $Y_i = f(\mathbf{x}_i, \boldsymbol{\theta}) + \epsilon_i$.
- **Objective:** Maximize $g(\boldsymbol{\theta}) = - \sum_{i=1}^n (y_i - f(\mathbf{x}_i, \boldsymbol{\theta}))^2$.
- Newton's method approximates g via Taylor series. But Gauss-Newton approximates f by its linear Taylor expansion about $\boldsymbol{\theta}^{(t)}$, leading to $Y_i = \tilde{f}(\mathbf{x}_i, \boldsymbol{\theta}^{(t)}, \boldsymbol{\theta}) + \tilde{\epsilon}_i$.

where

$$\tilde{f}(\mathbf{x}_i, \boldsymbol{\theta}^{(t)}, \boldsymbol{\theta}) = f(\mathbf{x}_i, \boldsymbol{\theta}^{(t)}) + (\boldsymbol{\theta} - \boldsymbol{\theta}^{(t)})^T \mathbf{f}'(\mathbf{x}_i, \boldsymbol{\theta}^{(t)})$$

with for each i , $\mathbf{f}'(\mathbf{x}_i, \boldsymbol{\theta}^{(t)})$ is the column vector of partial derivatives of f with respect to $\theta_j^{(t)}$, for $j = 1, \dots, p$, evaluated at $(\mathbf{x}_i, \boldsymbol{\theta}^{(t)})$.

Gauss-Newton Method (cont'd)

- Maximize approximated objective

$$\tilde{g}(\theta) = - \sum_{i=1}^n \left(y_i - \tilde{f}(\mathbf{x}_i, \theta^{(t)}, \theta) \right)^2.$$

- $Y_i = \tilde{f}(\mathbf{x}_i, \theta^{(t)}, \theta) + \tilde{\epsilon}_i$ can be written as follows

$$\mathbf{x}^{(t)} = \mathbf{A}^{(t)}(\theta - \theta^{(t)}) + \tilde{\epsilon}$$

where $x_i^{(t)} = y_i - f(\mathbf{x}_i, \theta^{(t)})$ is the working response, and $\mathbf{a}_i^{(t)} = \mathbf{f}'(\mathbf{x}_i, \theta^{(t)})$ is the i -th row of $\mathbf{A}^{(t)}$.

- This is a regression problem!** Thus, the update rule is:

$$\theta^{(t+1)} = \theta^{(t)} + \left((\mathbf{A}^{(t)})^T \mathbf{A}^{(t)} \right)^{-1} (\mathbf{A}^{(t)})^T \mathbf{x}^{(t)}.$$

- Efficient, no Hessian computation needed, best for fairly well-fitting, not severely nonlinear models.

Outline

Introduction

Univariate Problems

Bisection

Newton's Method

Fisher Scoring

Secant Method

Fixed-Point Iteration

Available Optimization Functions in R

Multivariate Problems

Newton's Method

Newton-like Methods

Gauss-Newton Method

Optimization in R

Other Miscellaneous Items

Built-in Functions in R

- R has two built-in functions for optimization:
 - `nlm` for non-linear minimization.
 - `optim` for optimization.
- Functions in R are designed to do minimization.
- I don't use `nlm` much, mostly `optim` with `method='BFGS'`.
- See the R code on Canvas, and also documentation on `optim`.

Outline

Introduction

Univariate Problems

Bisection

Newton's Method

Fisher Scoring

Secant Method

Fixed-Point Iteration

Available Optimization Functions in R

Multivariate Problems

Newton's Method

Newton-like Methods

Gauss-Newton Method

Optimization in R

Other Miscellaneous Items

Root-Finding with Noise

- The tools described above all require that the function can be evaluated exactly.
- However, there are some problems where there is some error in evaluating the function, e.g., maybe we can only get a Monte Carlo approximation of the function.
- In such cases, Newton-like methods cannot be used.
- A neat generalization of Newton Methods to handle noisy functions is called *stochastic approximation*.
- We may discuss this briefly in the Monte Carlo Section.

Non-Differentiable Functions

- The methods described above all are based on the assumption that the function $f(\mathbf{x})$ to be optimized has at least one derivative.
- But there are problems where this assumption does not hold:
 - Quantile regression.
 - Regularized regression with, say, the *lasso*.
- For these problems, different tools are needed, e.g.,
 - Linear programming.
 - Iterative re-weighted least squares.

Functions on Discrete Spaces

- Non-differentiability is one thing, but what if the function is only defined on a discrete space?
 - In this case, the derivative doesn't even make sense.
- If there are only a few possible x values then, of course, it's easy to find the maximum.
- But what if there are billions of points? It's not unreasonable to have problems with $2^{50} \approx 10^{14}$ points. In such cases, it's impossible to search them all!
- These are called *combinatorial optimization* problems, and one interesting algorithm is called *simulated annealing*.
- Chapter 3 in the textbook discusses these issues.