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Motivation

• In statistical applications, point estimation problems often boil

down to maximizing a function:

• Maximum likelihood

• Least squares

• Maximum a posteriori

• When the function to be optimized is “smooth,” we can

reformulate optimization into a root-finding problem.

• Problem: These problems often have no analytical solution.

• Therefore, we need numerical tools to solve them.
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General Setup

• Two kinds of problems:

• Root-finding: Solve f (x) = 0 for x ∈ R
d , d ≥ 1.

• Optimization: Maximize f (x) for x ∈ R
d , d ≥ 1.

• Equivalent if you need to solve f ′(x) = 0.

• We will address univariate and multivariate cases separately.

• Methods construct a sequence {xt : t = 0, 1, 2, . . .} designed

to converge (as t → ∞) to the solution, denoted by x∗.
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General Setup (cont’d)

Theoretical considerations:

• Under what conditions on f ′ (or f ) and initial guess x0 can we

prove that xt → x∗?

• If xt → x∗, then how fast is the convergence, i.e., what is its

convergence order?

Practical considerations:

• How to write and implement the algorithm?

• Can’t run the algorithm till t = ∞, so when to stop?
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Convergence Criteria

• The convergence criteria is usually something like:

|xnew − xold| < ε i.e. |xt+1 − xt| < ε

where ε is a specified small number, e.g., ε = 10−7.

• A relative convergence criteria might be better:

|xnew − xold|

|xold|
< ε
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Relative Convergence in Optimization

Definition: Relative convergence refers to stopping conditions

that consider the relative change in function values or parameter

updates rather than absolute changes.

• Useful when function values or parameters have large or

varying magnitudes.

• Ensures stopping criteria are scale-invariant.
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Common Relative Convergence Criteria

1. Relative Change in Objective Function

|f (xk)− f (xk−1)|

|f (xk−1)|
< δ

Ensures the function value is stabilizing in proportion to its

magnitude.
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Common Relative Convergence Criteria (cont.)

2. Relative Change in Variables

‖xk − xk−1‖

‖xk−1‖
< η

Useful when variables vary significantly in scale.

9



Common Relative Convergence Criteria (cont.)

3. Relative Gradient Norm

‖∇f (xk)‖

‖∇f (x0)‖
< ǫ

Ensures that the optimization process is making proportionate

improvements.
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Why Use Relative Convergence?

• Works well when function values or variables are large.

• Prevents premature stopping when dealing with different

scales.

• Ensures that improvements are meaningful in proportion to

their magnitude.
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Definition of Order of Convergence

An algorithm has order of convergence β if:

lim
t→∞

|ǫ(t + 1)|

|ǫ(t)|β
= c

where:

• ǫ(t) is the error at iteration t.

• β > 0 measures how quickly the error shrinks.

• c 6= 0 is a constant.

Higher β means faster convergence!
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Connection to Convergence Rates in Optimization

The order of convergence relates to well-known convergence rates:

• β = 1 ⇒ Linear Convergence (error shrinks proportionally)

• 1 < β < 2 ⇒ Superlinear Convergence (faster than linear)

• β = 2 ⇒ Quadratic Convergence (error squared at each

step)

• 0 < β < 1 ⇒ Sublinear Convergence (very slow)

Example: Newton’s method is quadratically convergent under

good conditions.
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Why Use lim sup Definition?

The order of convergence is often written as:

lim sup
t→∞

|ǫ(t + 1)|

|ǫ(t)|β
≤ C

where C > 0 ensures the worst-case asymptotic behavior.

• Allows for variability in error reduction per iteration.

• Ensures robustness in practical optimization problems.

• Captures asymptotic behavior for sufficiently large t.
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Why Use ≤ C Instead of = C?

Using ≤ C instead of = C allows for:

• Generalization: Convergence behavior may not follow strict

proportionality.

• Flexibility: Accounts for fluctuations in the error sequence.

• Realism: Many practical algorithms exhibit varying

convergence rates.

This ensures that the convergence definition applies to more cases.
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Univariate Optimization

Optimizing smooth univariate functions

• Bisection

• Newton’s method

• Fisher scoring

• Secant method

• (scaled) Fixed point iteration

Goal: Maximize a real-valued function f (x).

f (x) may be a likelihood, a profile likelihood, a Bayesian posterior,

or some other function (of interest).
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Univariate Optimization for Smooth g

Example 1:

Maximize

f (x) =
log x

1 + x
(1)

with respect to x .

We cannot find the root of f ′(x) =
1 + 1/x − log x

(1 + x)2
analytically.
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Figure 1: The maximum of f (x) =
log x

1 + x
occurs at x∗ ≈ 3.59112,

indicated by the vertical line.
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Example 2:

The following data are an i.i.d. sample from a Cauchy(θ, 1)

distribution:

1.77, −0.23, 2.76, 3.80, 3.47, 56.75, −1.34, 4.24, −2.44, 3.29,

3.71, −2.40, 4.53, −0.07, −1.05, −13.87, −2.53, −1.75, 0.27,

43.21.

The likelihood function is
20
∏

i=1

1

π
(

1 + (xi − θ)2
) . (2)

Find the MLE for θ.

The score function (first derivative of the log-likelihood) has

multiple roots requiring numerical solution. 20
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Figure 2: Log likelihood and score function for the Cauchy data.
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Bisection - Basic Idea

• Find a root x∗ of f in interval [a, b].

• Claim: If f is continuous on [a, b] and f (a)f (b) ≤ 0 then the

intermediate value theorem, then there exists a root

x∗ ∈ (a, b). Why?

• Pick an initial guess x0 =
a+b
2 .

• Then x∗ must be in either [a, x0] or [x0, b].

• Evaluate f (x) at the endpoints to determine which one.

• The selected interval, call it [a1, b1], is now just like the initial

interval; i.e., we know it must contain x∗.

• Take x1 =
a1+b1

2 .

• Continue this process to construct a sequence

{xt : t = 0, 1, 2, . . .}.
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Bisection Algorithm

For the given f (x), assume the interval at the t-th step is [at , bt ]

are given.

1. Set xt =
at+bt

2 .

2. If f (at)f (xt) ≤ 0, then bt+1 = xt and at+1 = at ; else

at+1 = xt and bt+1 = bt .

3. If “converged,” then stop; otherwise return to Step 1.

1. In computer code, you first initialize a = a0 and b = b0 and

update as follows at each step

2. Set x = a+b
2 .

3. If f (a)f (x) ≤ 0, then b = x ; else a = x .

4. If “converged,” then stop; otherwise go to Step 1.

Note: There is also a related algorithm called Golden Section

Search Algorithm.
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Bisection Theory

• Claim: If f is continuous, then xt → x∗.

• Proof:

• If [at , bt ] is the bounding interval at step t, then

f (at)f (bt) ≤ 0 and limt→∞ at = limt→∞ bt .

• So, xt converges to some x̃ , and by continuity f (x̃)2 ≤ 0.

• Then f (x̃) = 0 and, since x
∗ is the unique root, x̃ = x

∗. �

• Convergence holds under very mild conditions of f , but the

robustness comes at the price of the order of convergence.
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Examples

• Find x∗ to maximize the function

f (x) =
log x

1 + x
, x ∈ [1, 5].

• Note that

f ′(x) =
1 + x−1 − log x

(1 + x)2
.

• Find the 100p-th percentile of a Student-t distribution, i.e.,

• find x∗ such that F (x∗) = p, where F is the t-distribution

function, with degrees of freedom df = ν fixed.

26
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Figure 3: Illustration of the bisection method. The top portion of this

graph shows f ′(x) and its root at x∗. The bottom portion shows the first

three intervals obtained using the bisection method with [a0, b0] = [1, 5].

The t-th estimate of the root is at the center of the t-th interval.
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Basic Idea

• Newton’s Method is usually presented in a calculus class.

• Idea is to approximate a nonlinear function near its root by a

linear function which can be solved by hand.

• Recall that Taylor’s Theorem gives the linear approximation of

a function f (x) in a neighborhood of some point x0 as

f (x) ≈ f (x0) + f ′(x0)(x − x0).

• Setting this approximation equal to 0 and solving gives

x = x0 −
f (x0)

f ′(x0)
.
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Newton Method - Algorithm

• Assume the function f (x), its derivative f ′(x), and an initial

guess x0 are given. Set t = 0.

1. At step t (so, we have xt already computed), set

xt+1 = xt −
f (xt )

f ′(xt)
.

2. If the convergence criteria is met, then stop; otherwise, set

t = t + 1 and return to Step 1.

• Caveats:

• Convergence depends on the choice of x0 and shape of f .

• Unlike bisection, Newton’s Method might not converge!
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Newton Method - Theory

• Claim: If f ′′ is continuous and x∗ is a root of f , with

f ′(x∗) 6= 0, then there exists a neighborhood N of x∗ such

that Newton’s Method converges to x∗ for any x0 ∈ N.

• Proof uses Taylor approximation.

• Proof also shows that the convergence order is quadratic.

• Other results about Newton’s Method are available; see HW.

• If Newton Method converges, then it’s faster than bisection,

but added speed has a cost:

• Requires differentiability and the derivative f ′.

• Convergence is sensitive to the choice of x0.

31
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Figure 4: Illustration of Newton’s Method applied to maximize the

function in Equation (1). At the first step, Newton’s method

approximates f ′ by its tangent line at x0 whose root, x1, serves as the

next approximation of the true root, x∗. The next step similarly yields x2,

which is already quite close to the root at x∗. 32



Speed is not the only factor to consider.

x0

x1

x2

x3

x∗

Figure 5: Starting from x0, Newton’s method diverges by taking steps

that are increasingly distant from the true root, x∗.

Bisection would have found this root easily.
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Starting values are also critical.

Cauchy Example

θ

ℓ(
θ
)

−∞ ∞

x̄

Figure 6: Log-likelihood for the Cauchy data. Arrows show convergence

of Newton’s method from several starting values.
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Fisher Scoring

• In maximum likelihood applications, the goal is to find roots

of the log-likelihood function, i.e., ℓ′(θ̂) = 0.

• In this context, Newton’s Method looks like

θt+1 = θt −
ℓ′(θt)

ℓ′′(θt)
, t = 0, 1, 2, . . . .

• But recall that −ℓ′′(θ) is an approximation to the Fisher

information In(θ).

• So, can rewrite Newton’s Method as

θt+1 = θt +
ℓ′(θt)

In(θt)
, t = 0, 1, 2, . . . .

• This modification is called Fisher Scoring.
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Secant Method - Basic Idea

• Newton’s Method requires a formula for f ′(x).

• To avoid this, approximate f ′(x) at x0 by a difference ratio.

• That is, recall from calculus that

f ′(x) ≈
f (x + h)− f (x)

h
, for h small and positive.

• Then the secant method follows Newton’s Method exactly,

except we substitute a difference ratio for f ′(x).

• Name is because the linear approximation is a secant, not a

tangent line.
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Secant Method - Algorithm

• Suppose f (x) and two initial guesses x0, x1 are given. Set

t = 1.

1. At step t, calculate

xt+1 = xt −
f (xt )

f (xt)−f (xt−1)
xt−xt−1

.

2. If the convergence criteria are satisfied, then stop; else, set

t = t + 1 and return to Step 1.

• Two initial guesses are needed because the difference ratio in

the first iteration requires two values.

• Can be unstable at early iterations because the difference ratio

may be a poor approximation of f ′; reasonable sacrifice if f ′ is

not available.

• If the secant method converges, the order is almost quadratic.
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Figure 7: The secant method locally approximates f ′ using the secant

line between x0 and x1. The corresponding estimated root, x2, is used

with x1 to generate the next approximation.
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Fixed-Point Iteration - Basic Idea

• Some problems require finding a fixed-point, i.e., a point x∗

such that F (x∗) = x∗.

• A root-finding problem can be written as a fixed-point

problem with F (x) = f (x) + x .

• The function F (x) is a contraction, if,

• F (x) ∈ [a, b] for all x ∈ [a, b]

•

|F (x)− F (y)| ≤ α|x − y |, for 0 < α < 1 for all x , y ∈ [a, b]

then the point F (x) will be closer to x∗ = F (x∗) than x .

• Banach’s Fixed-Point Theorem says:

• Contraction mappings have a unique fixed point x∗, and

• From a starting point x0, the iterates xt+1 = F (xt) will

converge to x∗.
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Fixed-Point Iteration - Algorithm

• Suppose F (x) and an initial guess x0 are given. Set t = 0.

1. Calculate xt+1 = F (xt ).

2. If convergence criterion is met, then stop; else, set t = t + 1

and return to Step 1.

• It can be shown that

|F (xt)− x∗| ≤ αt |x0 − x∗|,

so, fixed-point iteration converges at a geometric rate.

• If using fixed-point methods for root-finding, F (x) = f (x) + x

may not be the best choice; for example, maybe a scaled

version would be better.
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Example - Kepler’s Equation

• Kepler’s Equation in orbital mechanics says

x = M + ε sin x ,

where M and ε ∈ (0, 1) are fixed quantities.1

• Our goal is to solve for x , given M and ε.

• Write F (x) = M + ε sin x .

• Then F ′(x) = ε cos x and |F ′(x)| is uniformly bounded by ε.

• So, F is a contraction and fixed-point iteration will converge

to a solution to Kepler’s equation.

1See Wikipedia page on Kepler’s equation for more info.
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Figure 8: The first three steps of scaled fixed point iteration to maximize

f (x) =
log x

1 + x
using F (x) = c f ′(x) + x with scale parameter c = 4.
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Root-Finding and Optimization in R

• Univariate Problems:

• uniroot does root-finding.

• optimize does optimization.

• See documentation files (and the R code on Canvas) for details.

• Multivariate Problems:

• nlm does non-linear minimization with Newton-like methods.

• optim is maybe a better choice.

• More on these later.
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A Note About Constraints

• The univariate methods built into R are not particularly good

at handling optimization problems where the parameter x is

constrained, e.g., if x must be non-negative.

• The built-in R routines assume x has no constraints, so to be

safe you may want to write your functions this way.

• For example, if x is required to be non-negative, then

reparametrize as y = log x , and set g(y) = f (ey ) and perform

the optimization on the function g(y). If y∗ is the optimizer

value, then x∗ = ey
∗

will be the optimizer in the original

optimization problem.

• Don’t forget: Re-parametrization will affect derivatives!
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Multivariate Optimization

Optimizing smooth multivariate functions

• Newton’s method

• Fisher scoring

• ascent algorithms

• discrete Newton method

• (scaled) fixed point iteration

• quasi-Newton methods

• Gauss-Newton method

• nonlinear Gauss-Seidel iteration

• Nelder–Mead algorithm
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Multivariate Optimization

• In the univariate optimization part, we posed the problem as

root finding problem for a function f , which was an

optimization problem when f = g ′ (where g is the function to

maximize).

• In the multivariate optimization part, we will directly pose the

problem as root finding problem for a function f ′, but notice

that we are still solving the problem of root finding:r

• maxx f (x) over x

is equivalent to

finding the root of f ′(x).
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Newton’s Method - More Than One Variable

• Suppose now that f (x) is a function of several variables, say

x = (x1, x2, . . . , xp) ∈ R
p.

• Newton’s Method works exactly the same as before, just the

derivatives are more complicated.

• f ′(x) is the gradient — vector of first partial derivatives.

• f ′′(x) is the Hessian — matrix of second partial derivatives.

• Based on (MV) Taylor’s Formula again, Newton’s Method is

x(t+1) = x(t) − f ′′(x(t))−1f ′(x(t)).

• If we are maximizing a log-likelihood, ℓ(θ), then the Fisher

Scoring adjustment is just like before.
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Example: Gamma Distribution MLE

• X1, . . . ,Xn
iid
∼ Gamma(α, β), where both α and β are

unknown parameters to be estimated.

• Density function is

f (x |α, β) =
βα

Γ(α)
xα−1e−βx , x ≥ 0.

• The log-likelihood function is (effectively)

ℓ(α, β) = nα log β − n log Γ(α) + α

n
∑

i=1

logXi − β

n
∑

i=1

Xi .

• Find first and second (partial) derivatives of ℓ(α, β).

• R code on Canvas implements Newton’s Method to find the

MLE.
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a

Figure 9: An application of Newton’s method for maximizing a complex

bivariate function. The surface of the function is indicated by shading

and contours, with light shading corresponding to high values. Two runs

starting from x
(0)
a and x

(0)
b are shown. These converge to the true

maximum and to a local minimum, respectively.

Newton’s method is not guaranteed to walk uphill. It is not guaranteed

to find a local maximum. Step length matters even when step direction is

good.
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Motivation for Alternatives

• Newton’s Method is a very good technique for both univariate

and multivariate optimization.

• Difficulty in the multivariate case is the derivation and/or

computation of the Hessian matrix and its inverse.

• Is it possible to use some other matrix, say M(t), in place of

the Hessian f ′′(x(t))?

• Yes, and we will discuss a few such methods:

• Ascent methods

• Discrete Newton and fixed-point methods

• Quasi-Newton methods
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Ascent Methods

• Fix matrices M(t) and numbers α(t), t = 0, 1, 2, . . ..

• Ascent methods look like

x(t+1) = x(t) − α(t)[M(t)]−1f ′(x(t)).

• Goal is to choose M(t) and α(t) such that the function

increases when x(t) is updated to x(t+1).

• It follows from Taylor’s Formula that, if −M(t) is positive

definite and α(t) is sufficiently small, then ascent occurs.
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Ascent Methods (cont’d)

• Method of steepest ascent takes M(t) ≈ −Ip.

• Motivation is the basic fact from multivariable calculus that

the gradient points in the direction of steepest ascent.

• Then the updating equation looks like

x(t+1) = x(t) + α(t)f ′(x(t)), t = 0, 1, 2, . . . .

• How to pick a good α(t)?

• A backtracking approach determines α(t) iteratively:

1. Start with α(t) = 1.

2. Update x(t+1) with this α(t).

3. If ascent occurs, then increment t; otherwise, set α(t) = α(t)/2

and go back to Step 2.
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Ascent Methods (cont’d)

• Claim: If α(t) is sufficiently small, then ascent occurs.

• Sketch of Proof:

• From the two-term Taylor expansion of f (x(t+1)) near x(t), we

have

f (x(t+1)) = f (x(t)) + f ′(x(t))T (x(t+1) − x(t))+

1

2
(x(t+1) − x(t))T f ′′(x̃)(x(t+1) − x(t))

where x̃ is between x(t+1) and x(t).

• Plug in definition of x(t+1); then f (x(t+1))− f (x(t)) is

α(t)‖f ′(x(t))‖2 +
1

2
(α(t))2f ′(x(t))T f ′′(x̃)f ′(x(t))

• Second term is ≈ c(α(t))2‖f ′(x(t))‖2, where c ∈ R.

• Make α(t) small enough that bound is positive. �
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x∗
x(0)

Figure 10: Steepest ascent with backtracking, using α = 0.25 initially at

each step.

The ascent direction is not necessarily the wisest, and

backtracking doesn’t prevent oversteps.
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Discrete Newton and Fixed-Point Methods

• If we use an initial approximation, we get a MV fixed-point

method.

• For example, with a fixed matrix M, write

x(t+1) = x(t) −M−1f ′(x(t)).

• A reasonable choice is M = f ′′(x0).

• Replace Hessian f ′′(x) in Newton with a discrete

approximation (using difference ratios) gives a discrete

Newton method.

• Can be expensive — each step requires lots of difference ratios.
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Quasi-Newton Methods

• Recall that the general idea is to replace the Hessian with

some reasonable approximation.

• Methods so far have not made a serious attempt to capture

any real information about f in the matrix M(t).

• How to ensure that M(t) somehow approximates the Hessian?

• A secant condition can do the job:

f ′(x(t+1))− f ′(x(t)) = M (t+1)(x(t+1) − x(t)).

• How to construct a matrix sequence M (t) that satisfies this?
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Quasi-Newton Methods (cont’d)

• There are classes of matrices that satisfy the secant condition.

• There is a unique symmetric rank-one update:

M (t+1) = M (t) + c(t)v(t)(v(t))T ,

where

v(t) = y(t) −M (t)z(t),

z(t) = x(t+1) − x(t),

y(t) = f ′(x(t+1))− f ′(x(t)),

c(t) =
1

(v(t))T z(t)
.

• The go-to approach is a rank-two update, called BFGS.

• Formula is messy — see Equation (2.50) in the textbook.

• The R code on Canvas implements BFGS; more on R below.
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Example: Problem 2.3 in G&H

• Survival analysis problem, with censored data.

• Data (yi , xi ,wi ) where

• yi is the recorded survival time,

• xi is a treatment versus control indicator,

• wi is a real versus censored survival time indicator.

• Proportional hazards model gives log-likelihood

ℓ(θ) =

n
∑

i=1

[

wi log(λi )− λi + wi log

(

yi

λi

)]

,

where λi = yie
β0+β1xi .

• Goal: Find MLE of θ = (β0, β1).
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x∗
x(0)

Figure 11: Quasi-Newton optimization with the BFGS update and

backtracking to ensure ascent.

Convergence of quasi-Newton methods is generally superlinear, but

not quadratic. These are powerful and popular methods, used, for

example, see nlmin() in R.
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Least Squares

• Suppose that the function to maximize is quadratic, e.g.,

f (x) = −‖y − Ax‖2.

• We can solve this one analytically:

x = (ATA)−1ATy.

• This is the least squares solution you may have seen in a linear

algebra or numerical analysis course.
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Gauss-Newton for Least Squares

• In the previous slide, the goal basically was to approximate y

by a linear function of x.

• What if the function is non-linear?

• Gauss-Newton Method:

• Consider g(θ) = −
∑n

i=1{yi − f (xi , θ)}
2.

• Fix θ0 and approximate θ 7→ f (xi , θ) (i.e., h(θ) = f (xi , θ)) by a

linear function, that is,

f (xi , θ) = f (xi , θ0) + f ′(xi , θ0)(θ − θ0).

• Plug this in for f (xi , θ) in g(θ) and note the similarity to the

least squares problem.

• Solve analytically for θ; call the solution θ1 and redo.
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Gauss-Newton Method (alternate take)

• Address nonlinear least squares problems for observed data

(yi , xi ) with model Yi = f (xi ,θ) + ǫi .

• Objective: Maximize g(θ) = −

n
∑

i=1

(yi − f (xi ,θ))
2.

• Newton’s method approximates g via Taylor series. But

Gauss-Newton approximates f by its linear Taylor expansion

about θ(t), leading to Yi = f̃ (xi ,θ
(t),θ) + ǫ̃i .

where

f̃ (xi ,θ
(t),θ) = f (xi ,θ

(t)) + (θ − θ
(t))T f ′(xi ,θ

(t))

with for each i , f ′(xi ,θ
(t)) is the column vector of partial

derivatives of f with respect to θ
(t)
j , for j = 1, . . . , p, evaluated at

(xi ,θ
(t)).
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Gauss-Newton Method (cont’d)

• Maximize approximated objective

g̃(θ) = −

n
∑

i=1

(

yi − f̃ (xi ,θ
(t),θ)

)2
.

• Yi = f̃ (xi ,θ
(t),θ) + ǫ̃i can be written as follows

X(t) = A(t)(θ − θ
(t)) + ǫ̃

where x
(t)
i = yi − f (xi ,θ

(t)) is the working response, and

a
(t)
i = f ′(xi ,θ

(t)) is the i -th row of A(t).

• This is a regression problem! Thus, the update rule is:

θ
(t+1) = θ

(t) +
(

(A(t))TA(t)
)

−1
(A(t))T x(t).

• Efficient, no Hessian computation needed, best for fairly

well-fitting, not severely nonlinear models.
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Built-in Functions in R

• R has two built-in functions for optimization:

• nlm for non-linear minimization.

• optim for optimization.

• Functions in R are designed to do minimization.

• I don’t use nlm much, mostly optim with method=’BFGS’.

• See the R code on Canvas, and also documentation on optim.
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Root-Finding with Noise

• The tools described above all require that the function can be

evaluated exactly.

• However, there are some problems where there is some error

in evaluating the function, e.g., maybe we can only get a

Monte Carlo approximation of the function.

• In such cases, Newton-like methods cannot be used.

• A neat generalization of Newton Methods to handle noisy

functions is called stochastic approximation.

• We may discuss this briefly in the Monte Carlo Section.
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Non-Differentiable Functions

• The methods described above all are based on the assumption

that the function f (x) to be optimized has at least one

derivative.

• But there are problems where this assumption does not hold:

• Quantile regression.

• Regularized regression with, say, the lasso.

• For these problems, different tools are needed, e.g.,

• Linear programming.

• Iterative re-weighted least squares.
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Functions on Discrete Spaces

• Non-differentiability is one thing, but what if the function is

only defined on a discrete space?

• In this case, the derivative doesn’t even make sense.

• If there are only a few possible x values then, of course, it’s

easy to find the maximum.

• But what if there are billions of points? It’s not unreasonable

to have problems with 250 ≈ 1014 points. In such cases, it’s

impossible to search them all!

• These are called combinatorial optimization problems, and one

interesting algorithm is called simulated annealing.

• Chapter 3 in the textbook discusses these issues.
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