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e |n statistical applications, point estimation problems often boil
down to maximizing a function:

e Maximum likelihood
e Least squares
e Maximum a posteriori

e When the function to be optimized is “smooth,” we can
reformulate optimization into a root-finding problem.

e Problem: These problems often have no analytical solution.

e Therefore, we need numerical tools to solve them.



General Setup

e Two kinds of problems:
e Root-finding: Solve f(x) =0 for x € RY, d > 1.
e Optimization: Maximize f(x) for x € RY,d > 1.

Equivalent if you need to solve f'(x) = 0.

We will address univariate and multivariate cases separately.

Methods construct a sequence {x; : t =0,1,2,...} designed

to converge (as t — o) to the solution, denoted by x*.



General Setup (cont’d)

Theoretical considerations:

e Under what conditions on f’ (or f) and initial guess xo can we
prove that x; — x*7

e If x; — x*, then how fast is the convergence, i.e., what is its
convergence order?

Practical considerations:

e How to write and implement the algorithm?

e Can't run the algorithm till t = co, so when to stop?



Convergence Criteria

e The convergence criteria is usually something like:
[Xnew — Xold| <& ie.  |xp1— x| <e
where ¢ is a specified small number, e.g., ¢ = 10~7.
e A relative convergence criteria might be better:

‘Xnew - Xold’

<€
|Xold |



Relative Convergence in Optimization

Definition: Relative convergence refers to stopping conditions
that consider the relative change in function values or parameter
updates rather than absolute changes.

e Useful when function values or parameters have large or

varying magnitudes.

e Ensures stopping criteria are scale-invariant.



Common Relative Convergence Criteria

1. Relative Change in Objective Function

() — F(xk—1)]
| (xk-1)]

Ensures the function value is stabilizing in proportion to its

<9

magnitude.



Common Relative Convergence Criteria (cont.)

2. Relative Change in Variables

Xk — xk—1]]

<n
[

Useful when variables vary significantly in scale.



Common Relative Convergence Criteria (cont.)

3. Relative Gradient Norm

[Vl
IV (xo)ll

Ensures that the optimization process is making proportionate
improvements.
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Why Use Relative Convergence?

e Works well when function values or variables are large.

e Prevents premature stopping when dealing with different
scales.

e Ensures that improvements are meaningful in proportion to
their magnitude.
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Definition of Order of Convergence

An algorithm has order of convergence [ if:

jim DL
A TP

where:

e ¢(t) is the error at iteration t.
e 3 > 0 measures how quickly the error shrinks.

e c # 0 is a constant.

Higher 8 means faster convergence!
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Connection to Convergence Rates in Optimization

The order of convergence relates to well-known convergence rates:

e =1 = Linear Convergence (error shrinks proportionally)

e 1 < 8 <2 = Superlinear Convergence (faster than linear)

e 3 =2 = Quadratic Convergence (error squared at each
step)

e 0 < 8 <1 = Sublinear Convergence (very slow)

Example: Newton's method is quadratically convergent under
good conditions.
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Why Use lim sup Definition?

The order of convergence is often written as:

1
lim sup 7|6(t+ ) <C
too [e(£)]

where C > 0 ensures the worst-case asymptotic behavior.

e Allows for variability in error reduction per iteration.
e Ensures robustness in practical optimization problems.

e Captures asymptotic behavior for sufficiently large t.
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Why Use < C Instead of = C?

Using < C instead of = C allows for:

e Generalization: Convergence behavior may not follow strict
proportionality.
e Flexibility: Accounts for fluctuations in the error sequence.

e Realism: Many practical algorithms exhibit varying
convergence rates.

This ensures that the convergence definition applies to more cases.
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Univariate Problems
Bisection
Newton's Method
Fisher Scoring
Secant Method
Fixed-Point lteration

Available Optimization Functions in R
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Univariate Optimization

Optimizing smooth univariate functions

e Bisection
e Newton's method
e Fisher scoring

e Secant method

(scaled) Fixed point iteration

Goal: Maximize a real-valued function f(x).

f(x) may be a likelihood, a profile likelihood, a Bayesian posterior,
or some other function (of interest).

17



Univariate Optimization for Smooth g

Example 1:
Maximize |
og x
f(x)= 1
(x) = 2= &)
with respect to x.
: 1+1/x—1 :

We cannot find the root of f'(x) = W analytically.
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Figure 1: The maximum of f(x) = Ty OOl at x* =~ 3.59112,
X

indicated by the vertical line.
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Example 2:

The following data are an i.i.d. sample from a Cauchy(¢,1)
distribution:

1.77, —0.23, 2.76, 3.80, 3.47, 56.75, —1.34, 4.24, —2.44, 3.29,
3.71, —2.40, 4.53, —0.07, —1.05, —13.87, —2.53, —1.75, 0.27,
43.21.

The likelihood function is

20 1

i (1 + (% — 0)2) '

Find the MLE for 6.

The score function (first derivative of the log-likelihood) has
multiple roots requiring numerical solution. 20
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Figure 2: Log likelihood and score function for the Cauchy data.
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Bisection - Basic ldea

e Find a root x* of f in interval [a, b].

e Claim: If f is continuous on [a, b] and f(a)f(b) < 0 then the
intermediate value theorem, then there exists a root
x* € (a, b). Why?
e Pick an initial guess xg = %b.
e Then x* must be in either [a, xo] or [xo, b].
e Evaluate f(x) at the endpoints to determine which one.
e The selected interval, call it [a1, b1], is now just like the initial
interval; i.e., we know it must contain x*.

o Take x; = %bl.

e Continue this process to construct a sequence
{xt:t=0,1,2,...}.

23



Bisection Algorithm

For the given f(x), assume the interval at the t-th step is [a;, by]

are given.

1.
2.

Set x; = %bf.

If f(ar)f(xt) <0, then byy1 = x¢ and az1 = a¢; else
dt+1 = Xt and bt+]_ = bt.

If “converged,” then stop; otherwise return to Step 1.

&
4.

. In computer code, you first initialize a = ag and b = by and

update as follows at each step

Set x = %b.

If f(a)f(x) <0, then b = x; else a = x.

If “converged,” then stop; otherwise go to Step 1.

Note: There is also a related algorithm called Golden Section

Search Algorithm.
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Bisection Theory

e Claim: If f is continuous, then x; — x*.
e Proof:

e |If [at, bt] is the bounding interval at step t, then
f(at)f(bt) S 0 and Ilmt_>oo ar — ||mt_>oo bt.
e So, x; converges to some X, and by continuity f(X)? < 0.

e Then f(X) = 0 and, since x™ is the unique root, X = x*. [J

e Convergence holds under very mild conditions of f, but the
robustness comes at the price of the order of convergence.
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e Find x* to maximize the function

log x
f(x) = 1,5].
() =125, xelL
e Note that L
iy L+ x7" —logx
PO =—155p

e Find the 100p-th percentile of a Student-t distribution, i.e.,

e find x* such that F(x*) = p, where F is the t-distribution
function, with degrees of freedom df = v fixed.

26
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Figure 3: lllustration of the bisection method. The top portion of this

graph shows f’(x) and its root at x*. The bottom portion shows the first
three intervals obtained using the bisection method with [ag, bo] = [1, 5].

The t-th estimate of the root is at the center of the t-th interval. o
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e Newton’s Method is usually presented in a calculus class.

e |dea is to approximate a nonlinear function near its root by a
linear function which can be solved by hand.

e Recall that Taylor's Theorem gives the linear approximation of
a function f(x) in a neighborhood of some point xg as

f(x) = f(x0) + f'(x0)(x — x0)-

e Setting this approximation equal to 0 and solving gives

29



Newton Method - Algorithm

e Assume the function f(x), its derivative f'(x), and an initial
guess xp are given. Set t = 0.

1. At step t (so, we have x; already computed), set

f(xt)

Xer1 = X¢ — f’(X )
t

2. If the convergence criteria is met, then stop; otherwise, set
t = t+ 1 and return to Step 1.

e Caveats:

e Convergence depends on the choice of xg and shape of f.
e Unlike bisection, Newton's Method might not converge!
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Newton Method - Theory

e Claim: If " is continuous and x* is a root of f, with
f'(x*) # 0, then there exists a neighborhood N of x* such
that Newton's Method converges to x* for any xg € N.

e Proof uses Taylor approximation.
e Proof also shows that the convergence order is quadratic.
e Other results about Newton's Method are available; see HW.

e If Newton Method converges, then it's faster than bisection,
but added speed has a cost:

e Requires differentiability and the derivative f'.
e Convergence is sensitive to the choice of xg.

31



Figure 4: lllustration of Newton's Method applied to maximize the
function in Equation (1). At the first step, Newton's method
approximates f’ by its tangent line at xo whose root, xj, serves as the
next approximation of the true root, x*. The next step similarly yields xp,
which is already quite close to the root at x*.
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Speed is not the only factor to consider.

Figure 5: Starting from xp, Newton's method diverges by taking steps
that are increasingly distant from the true root, x*.

Bisection would have found this root easily.
33



Starting values are also critical.

Cauchy Example

—~
>
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Figure 6: Log-likelihood for the Cauchy data. Arrows show convergence s
. 4
of Newton's method from several starting values.
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Fisher Scoring

In maximum likelihood applications, the goal is to find roots
of the log-likelihood function, i.e., E’(GA) =0.

In this context, Newton's Method looks like

'(6:)
0t+1:9t_m, t=0,1,2,....

But recall that —¢”(0) is an approximation to the Fisher
information /,(6).

So, can rewrite Newton's Method as

'(0¢)
/n(ety

This modification is called Fisher Scoring.

Orr1=0: +

t=0,1,2,....

36
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Secant Method - Basic ldea

e Newton's Method requires a formula for f/(x).
e To avoid this, approximate f’(x) at xo by a difference ratio.

e That is, recall from calculus that

Fx+h)— f
f'(x) =~ M, for h small and positive.

e Then the secant method follows Newton's Method exactly,
except we substitute a difference ratio for /(x).

e Name is because the linear approximation is a secant, not a
tangent line.

38



Secant Method - Algorithm

e Suppose f(x) and two initial guesses xg, x; are given. Set
t=1
1. At step t, calculate

f(xt)

X =Xt — 7~ -
t+1 T ) —Fe1)

Xt —Xt—1

2. If the convergence criteria are satisfied, then stop; else, set
t = t+ 1 and return to Step 1.

e Two initial guesses are needed because the difference ratio in
the first iteration requires two values.

e Can be unstable at early iterations because the difference ratio
may be a poor approximation of f’; reasonable sacrifice if f' is
not available.

e |f the secant method converges, the order is almost quadratic.
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Figure 7: The secant method locally approximates f’ using the secant
line between xp and x;. The corresponding estimated root, xp, is used
with x; to generate the next approximation.
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Fixed-Point Iteration - Basic ldea

e Some problems require finding a fixed-point, i.e., a point x*
such that F(x*) = x*.
e A root-finding problem can be written as a fixed-point
problem with F(x) = f(x) + x.
e The function F(x) is a contraction, if,
e F(x) € [a, b] for all x € [a, b]

[ ]
|F(x)— F(y)| < alx —y|, for0<a<1forallx,y € [a,b]

then the point F(x) will be closer to x* = F(x*) than x.
e Banach's Fixed-Point Theorem says:
e Contraction mappings have a unique fixed point x*, and
e From a starting point xp, the iterates x;11 = F(x;) will
converge to x*.
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Fixed-Point Iteration - Algorithm

e Suppose F(x) and an initial guess xp are given. Set t = 0.

1. Calculate x¢11 = F(x¢).
2. If convergence criterion is met, then stop; else, set t =t +1
and return to Step 1.

e |t can be shown that
|F(xt) — x*| < af|xo — x*|,

so, fixed-point iteration converges at a geometric rate.

e If using fixed-point methods for root-finding, F(x) = f(x) +
may not be the best choice; for example, maybe a scaled
version would be better.
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Example - Kepler’'s Equation

e Kepler's Equation in orbital mechanics says
x =M+ esinx,

where M and ¢ € (0,1) are fixed quantities.!
e QOur goal is to solve for x, given M and €.
o Write F(x) = M + esinx.
e Then F'(x) = ecosx and |F'(x)| is uniformly bounded by .
e So, F is a contraction and fixed-point iteration will converge

to a solution to Kepler's equation.

!See Wikipedia page on Kepler's equation for more info.
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Figure 8: The first three steps of scaled fixed point iteration to maximize

I
f(x)= 10_;5_); using F(x) = ¢ f’(x) + x with scale parameter ¢ = 4.
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Root-Finding and Optimization in R

e Univariate Problems:

e uniroot does root-finding.
e optimize does optimization.
e See documentation files (and the R code on Canvas) for details.

e Multivariate Problems:

e nlm does non-linear minimization with Newton-like methods.
e optim is maybe a better choice.

e More on these later.

47



A Note About Constraints

e The univariate methods built into R are not particularly good
at handling optimization problems where the parameter x is
constrained, e.g., if x must be non-negative.

e The built-in R routines assume x has no constraints, so to be
safe you may want to write your functions this way.

e For example, if x is required to be non-negative, then
reparametrize as y = log x, and set g(y) = f(e¥) and perform
the optimization on the function g(y). If y* is the optimizer
value, then x* = " will be the optimizer in the original
optimization problem.

e Don't forget: Re-parametrization will affect derivatives!

48
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Multivariate Optimization

Optimizing smooth multivariate functions

e Newton's method

e Fisher scoring

e ascent algorithms

e discrete Newton method

e (scaled) fixed point iteration

e quasi-Newton methods

e Gauss-Newton method

e nonlinear Gauss-Seidel iteration

e Nelder—Mead algorithm

50



Multivariate Optimization

e In the univariate optimization part, we posed the problem as
root finding problem for a function f, which was an
optimization problem when f = g’ (where g is the function to
maximize).

e In the multivariate optimization part, we will directly pose the
problem as root finding problem for a function f’, but notice
that we are still solving the problem of root finding:r

e maxy f(x) over x
is equivalent to
finding the root of f'(x).
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Newton’s Method - More Than One Variable

Suppose now that 7(x) is a function of several variables, say

X = (Xl,XQ,...,Xp) € RP.

Newton's Method works exactly the same as before, just the
derivatives are more complicated.

o f’(x) is the gradient — vector of first partial derivatives.

o f”(x) is the Hessian — matrix of second partial derivatives.

Based on (MV) Taylor's Formula again, Newton's Method is

x(t+1) — (1) f-//(x(t))—lf/(x(t))‘

If we are maximizing a log-likelihood, ¢(0), then the Fisher
Scoring adjustment is just like before.
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Example: Gamma Distribution MLE

o
e X1,...,X, ~ Gamma(a, (), where both o and j are
unknown parameters to be estimated.

Density function is

f(x|la, B) = ﬁ—xo‘_le_ﬁx, x > 0.

M(a)

The log-likelihood function is (effectively)

e, B) = nalog B — nlog M +ozZIogX BZX

Find first and second (partial) derivatives of ¢(«, 3).

R code on Canvas implements Newton's Method to find the
MLE.
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Figure 9: An application of Newton's method for maximizing a complex
bivariate function. The surface of the function is indicated by shading
and contours, with light shading corresponding to high values. Two runs

(0) (0)
b

starting from x5’ and x,’ are shown. These converge to the true

maximum and to a local minimum, respectively.

Newton'’s method is not guaranteed to walk uphill. It is not guaranteed
to find a local maximum. Step length matters even when step direction is
ocood.

55



ntroduction
Univariate Problems

Multivariate Problems

Newton-like Methods

56
Other Miscellaneous ltems



Motivation for Alternatives

e Newton's Method is a very good technique for both univariate
and multivariate optimization.
e Difficulty in the multivariate case is the derivation and/or
computation of the Hessian matrix and its inverse.
e Is it possible to use some other matrix, say M) in place of
the Hessian f”(x(1))?
e Yes, and we will discuss a few such methods:

e Ascent methods
e Discrete Newton and fixed-point methods
e Quasi-Newton methods
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Ascent Methods

Fix matrices M) and numbers oY), t = 0,1,2, .. ..

Ascent methods look like

x(tH1) = x(&) — O MO 71F/(x(0)).,

Goal is to choose M(Y) and a(t) such that the function

increases when x() is updated to x(t+1).

It follows from Taylor's Formula that, if —M(®) is positive

definite and a(?) is sufficiently small, then ascent occurs.
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Ascent Methods (cont’d)

e Method of steepest ascent takes M(t) ~ —Ip.

e Motivation is the basic fact from multivariable calculus that
the gradient points in the direction of steepest ascent.

e Then the updating equation looks like
x(t+1) = x() 4 a(t)f’(x(t)), t=20,1,2,....

e How to pick a good a(t)?
e A backtracking approach determines a(?) iteratively:

1. Start with o' = 1.

2. Update x(*") with this (.

3. If ascent occurs, then increment t; otherwise, set ol = o(t) /2
and go back to Step 2.
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Ascent Methods (cont’d)

e Claim: If a(?) is sufficiently small, then ascent occurs.
e Sketch of Proof:

e From the two-term Taylor expansion of f(x(t+1)) near x(t), we
have

F(xEFD) = £(x®) + £/(xO) T (x(t+D) — x4
1
5( (t+1) _ X(t))Tf”()N()(X(H_l) _ X(t))

where % is between x(t+1) and x(t).
e Plug in definition of x(**1); then f(x(t*1)) — f(x()) is

aO[F/ ()2 + 2 (a®)F (<) T (%) (<)

e Second term is ~ c(al?)?||f'(x(1)||?, where c € R.
e Make a(f) small enough that bound is positive. []
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Figure 10: Steepest ascent with backtracking, using a = 0.25 initially at
each step.

The ascent direction is not necessarily the wisest, and
backtracking doesn’t prevent oversteps.
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Discrete Newton and Fixed-Point Methods

e If we use an initial approximation, we get a MV fixed-point
method.

e For example, with a fixed matrix M, write

x(t+1) — (1) _ /\/I_lf/(x(t)).

e A reasonable choice is M = f"(xg).

e Replace Hessian f”(x) in Newton with a discrete
approximation (using difference ratios) gives a discrete
Newton method.

e Can be expensive — each step requires lots of difference ratios.
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Quasi-Newton Methods

e Recall that the general idea is to replace the Hessian with
some reasonable approximation.

e Methods so far have not made a serious attempt to capture
any real information about f in the matrix M(9).
e How to ensure that M(Y) somehow approximates the Hessian?

e A secant condition can do the job:
f/(x(t+1)) _ f/(x(t)) — M(t+1)(x(t+1) _ X(t)).

e How to construct a matrix sequence M(®) that satisfies this?
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Quasi-Newton Methods (cont’d)

e There are classes of matrices that satisfy the secant condition.

e There is a unique symmetric rank-one update:
ML) = MO 1 Oy (O (y(0)T
where
v = y(O _ p(&)z(0)
2(1) = x(t+1) _ x(6)
y(t) — f/(x(t+1)) _ f’(x(f))’
1
(v(t))Tz(f).

e The go-to approach is a rank-two update, called BFGS.
e Formula is messy — see Equation (2.50) in the textbook.

B =

e The R code on Canvas implements BFGS; more on R below.
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Example: Problem 2.3 in G&H

Survival analysis problem, with censored data.

Data (y;, x;, w;) where
e y; is the recorded survival time,
e X; is a treatment versus control indicator,
e w; is a real versus censored survival time indicator.

Proportional hazards model gives log-likelihood

n

00) = Z [W; log(A\i) — Ai + w; log <¥>] )

i=1 !
where \; = y;efotFH,

Goal: Find MLE of 8 = (8o, 51).
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Figure 11: Quasi-Newton optimization with the BFGS update and
backtracking to ensure ascent.

Convergence of quasi-Newton methods is generally superlinear, but

not quadratic. These are powerful and popular methods, used, for

example, see nlmin() in R. 06
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Least Squares

e Suppose that the function to maximize is quadratic, e.g.,
f(x) = —[ly — Ax|>

e We can solve this one analytically:
x=(ATA)1ATy.

e This is the least squares solution you may have seen in a linear
algebra or numerical analysis course.
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Gauss-Newton for Least Squares

e In the previous slide, the goal basically was to approximate y
by a linear function of x.

e What if the function is non-linear?

e Gauss-Newton Method:

e Consider g(0) = —>°1_ {yi — f(x;,0)}>.
e Fix 0y and approximate 6 — f(x;,0) (i.e., h(8) = f(x;,0)) by a
linear function, that is,

f(X,’, 9) = f(X,’, 6‘0) -+ f/(X,', 6‘0)(6‘ — 90)

e Plug this in for f(x;,0) in g(#) and note the similarity to the
least squares problem.
e Solve analytically for 8; call the solution 6; and redo.
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Gauss-Newton Method (alternate take)

e Address nonlinear least squares problems for observed data
(vi,x;) with model Y; = f(x;,0) + ¢;.
n

e Objective: Maximize g(6) = — Z (vi — f(x;,0))>.
i=1
e Newton's method approximates g via Taylor series. But

Gauss-Newton approximates f by its linear Taylor expansion
about (), leading to Y; = F(x;,O(t),B) + €.

where
f(x;,00,0) = f(x;,0)) + (6 — )T (x;,01))

with for each i, f'(x;,0(*)) is the column vector of partial
derivatives of f with respect to Q}t), for j=1,...,p, evaluated at
(x;,01).
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Gauss-Newton Method (cont’d)

e Maximize approximated objective
n

. 2
HOEESS <y,- - f(x,-,9<f>,9)) .
i=1
o Y;=f(x;,0®),8) + & can be written as follows

x® = Al -9 4 &
where x,.(t) = yi — f(x;,0)) is the working response, and

alt) = f/(x;,01) is the i-th row of A1),

]

e This is a regression problem! Thus, the update rule is:
p(t+1) _ g(6) | ((Aa))TA(t))‘l (AD) T,

e Efficient, no Hessian computation needed, best for fairly

well-fitting, not severely nonlinear models.
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Built-in Functions in R

R has two built-in functions for optimization:

e nlm for non-linear minimization.
e optim for optimization.

e Functions in R are designed to do minimization.
e | don't use n1lm much, mostly optim with method="BFGS'.
e See the R code on Canvas, and also documentation on optim.
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Root-Finding with Noise

e The tools described above all require that the function can be
evaluated exactly.

e However, there are some problems where there is some error
in evaluating the function, e.g., maybe we can only get a
Monte Carlo approximation of the function.

e |n such cases, Newton-like methods cannot be used.

e A neat generalization of Newton Methods to handle noisy
functions is called stochastic approximation.

e We may discuss this briefly in the Monte Carlo Section.
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Non-Differentiable Functions

e The methods described above all are based on the assumption
that the function f(x) to be optimized has at least one
derivative.

e But there are problems where this assumption does not hold:

e Quantile regression.
e Regularized regression with, say, the /asso.
e For these problems, different tools are needed, e.g.,
e Linear programming.
o [terative re-weighted least squares.
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Functions on Discrete Spaces

Non-differentiability is one thing, but what if the function is
only defined on a discrete space?

e In this case, the derivative doesn’'t even make sense.

If there are only a few possible x values then, of course, it's
easy to find the maximum.

But what if there are billions of points? It's not unreasonable
to have problems with 250 ~ 10 points. In such cases, it's
impossible to search them all!

These are called combinatorial optimization problems, and one
interesting algorithm is called simulated annealing.

Chapter 3 in the textbook discusses these issues.

7
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