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Problem and Motivation



Notion of “Missing Data”

e Let X denote the observable data and 6 the parameter to be
estimated.

e The EM algorithm is particularly suited for problems in which
there is a notion of “missing data”.

e The missing data can be actual data that is missing, or some
“imaginary” data that exists only in our minds (and
necessarily missing).

e The point is that IF the missing data were available, then
finding the MLE for 6 would be relatively straightforward.



e Observable Data: Again, X is the observable data.
e Complete Data: Let Y denote the complete data®.

e Usually, we think of Y as being composed of observable data
X and missing data Z, thatis, Y = (X, Z).

e Perhaps, more generally, we think of the observable data X as
a sort of projection of the complete data, i.e., X = M(Y).

e This suggests a notion of marginalization...

e The basic idea behind the EM algorithm is to iteratively
impute the missing data.

'This is the notation used in G&H which, as they admit, is not standard in the
EM literature.



Example: Mixture Model

e Consider an example where X = (Xi,..., X,) consists of i.i.d
samples from the mixture:

wN(p1,1) + (1 — 7)N(p2, 1),

where 6 = (m, 1, p2) is to be estimated.

e Missing Data: If we knew which of the two groups X; was
from, estimating 6 would be straightforward—simply calculate
the group means.

e The missing part Z = (Zi,...,Z,) represents the group label,
where:

1 if Xj ~ N(p1,1)
0 if Xi ~ N(uz,1)

e Here, the “missing data” is not real but hypothetical, helping
in the estimation process.



Definition of the EM Algorithm



More Notation

e Complete Data: Y = (X, Z) — Splits into the observed data
X and missing data Z.

e Complete Data Likelihood: 8 — Ly(8) — The joint
distribution of (X, Z): Ly(0) = v (y) = fx,z(x, ).

e Observed Likelihood: 6 — Lx(0) — Obtained by
marginalizing the joint distribution of (X, Z):
Lx(a) = fx(x) = f ijz(X,Z)dZ.

e Conditional Distribution of Z, Given X: 6 > Lzx(0) —
An essential piece for understanding the relationship between

observed and missing data: Lzx(0) = fzjx(z) = fx;,)z(giz).

e Although the same notation “L"” is used for all the likelihoods,
it's crucial to recognize that these represent distinct functions
of 8.



Mixture Model Example (Cont’d)

e Complete Data Y = (Yi,...,Y,), where each Y; consists of
the observed data X; with the missing group label Z;.
e Observed Data Likelihood:

Lx(0) = [ [ [N (Xilp1,1) + (1 = m)N(Xi |2, 1)],
i=1

not a nice function—the sum is inside the product.
e Complete Data Likelihood is much nicer — Letting 7 = 7

and m = 1 — 7, we have

2 n
Ly(0) = [T TT (meN(Xilik, 1))/ &1

k=1i=1
e Conditional Distribution of Z, Given X, is determined by
the conditional probabilities:
WN(XI"ML 1)

Po(Z: = 1|X;) = .
o(Z = 1% = TN (X 1) + (1 — MN (X, 1) :




EM Formulation

e In general, the EM algorithm works with a specific function:
Q(616)) = Egollog Ly (0)IX].

the conditional expectation of the complete data log
likelihood, at @, given X and the value at t-th iteration o(t) of
the EM Algorithm.

e Implicit in this expression is that, given X, the only “random”
part of Y is the missing data Z.

e Thus, in this expression, the expectation is actually with
respect to Z, given X, i.e.,

Q(8]6")) = Ezx[log Ly (8)[X] = / log L(x 2)(8)L,x(6))dz.



EM Formulation (Cont’d)

The EM algorithm iterates computing Q(8]6(?)), which involves an
Expectation, and then Maximizing it.

Procedure

1. Start with an initial estimate 6(°),

2. At iteration t =1,2,... do:
o E-step: Evaluate Q.(8) := Q9]0 1).
e M-step: Update 0 = arg maxg Q:(0).

3. Repeat these steps until practical convergence is reached.

e Goal: Maximize the observed data likelihood.

e But EM iteratively maximizes some other function, so it's not
clear that we are doing something reasonable.

e Before we get to theory, it helps to consider a few simple
examples to see that EM is doing the right thing. 10



Trivial Example - 1:

o Let Y1, Y5 S Exp(6) with y; = 5 observed but y» missing.
e The complete data log likelihood function is

log L(0]y) = log fv(y|f)) = 2log & — Oy1 — Oy>.
e So,
Q(9161)) = 2logh — 50 — 6/6()
since E[Ya|y1,0(0] = E[Y2]6)] = 1/6(9) follows from
independence.
e The maximizer of Q(8|6(?) is the root of
Q'(A16M) =2/ —5—1/() = 0.

e Thus,

iy _ 209
50(t) + 1
Converges quickly to 6=0.2.

11



Trivial Example - 1 - Comments

e The E-step and M-step do not need to be re-derived at each
iteration!

e This example is not realistic. An easy analytic solution exists
(how?).

e Taking the required expectation is trickier in real applications
because one needs to know the conditional distribution of the
missing data given the observed data.

12



Trivial Example - 2

e Example:
o LetY = (X, 2), where X, Z are i.i.d. from N(0,1), but Z is
missing.
e Observed data MLE 6 = X.
e The Q function in the E-step is given by:
QO]9 = —% (0 — X)2+ (0 — 9“))2} .

e Find the M-step Update — what should happen as t — oco0?

13



Properties of EM

14



The Nature of EM

Ascent Property: Each M step increases observed-data the log
likelihood.

Convergence: Linear (slow!). Rate is inversely related to the
proportion of missing data.

Optimization transfer:
0(0]x) > Q(6161)) + £(6W) |x) — QM) |61)) = G(0]6)).

The last two terms in G(6]6(?)) are constant with respect to 6, so
@ and G are maximized at the same 6. Further, G is tangent to /¢
at 09 and lies everywhere below ¢. We say that G is a minorizing
function for £. At each iteration, EM transfers optimization from /¢

to the surrogate function G, which is more convenient to maximize.

15



£(0|x)

Pt+1)g(t+2)
0

o)

Figure 1: One-dimensional illustration of EM algorithm as a

minorization or optimization transfer strategy.

Each E-step forms a minorizing function G, and each M-step

maximizes it to provide an uphill step.
16



Convergence of EM Algorithm

Objective: Investigate the convergence properties of the
Expectation-Maximization (EM) algorithm.

e Each maximization step increases the observed-data log
likelihood, £(8]x).
e The log of the observed-data density can be rewritten as:

log fx (x|0) = log fv(y|@) — log fz)x(z|x, 8). (1)

e Taking expectation w.r.t. the conditional distribution of
Z|(x,01):

Ellog fx(x(0)[x, 6] = Q(6]6)) — H(6]6"),  (2)

where
H(6]6\")) = E[log fz)x(Z|x, 0)|x, 8] (3)

17



Maximization of H(6]6")

Key Observation: H(0]0(*)) is maximized at = (1),
Proof:

H(6W|6®)) — H(6|0(1)) =
E [|og faix(Z[x, 01) — log fyx(Z|x, 0) ‘ X, 0<f>}

fzx(zlx, 0)
:/ [— Iog‘—(t) fz|x(z|x,0(t))dz
fzx (z[x, 6*")

> —log [ fyx(ai, 6))dz
—0.
Thus,

H(6W )6 — H(8|6()) > 0. (4)
This inequality follows from an application of Jensen’s inequality,

since — log u is strictly convex in wu. 18



Implication of H(0|0")) Maximization

Key Result: H(8|60(*)) is maximized at 8 = ().
Implication: For any 8 # 08(9), we have:

H(0)6®)) < H(O™M|6)).

Guaranteed Ascent in EM:
e Since Q(0]0")) is maximized at @ = 8(*+1) we obtain:
log fx (|01 — log fx (x|0(*)) > 0.

e This follows because Q(8]6?) increases and H(0|6(*))
decreases at each step.
o If Q00 > Q(01)|6(), the inequality is strict.

Conclusion: Each EM iteration ensures a non-decreasing
log-likelihood, establishing its ascent property.
19



Derivation of Optimization Transfer in EM - |

Recall Equation (2), where the function H(6]6)) captures the
expected log-conditional distribution of the missing data.

Also, Equation (4) is

H(O® | 9)) — H(B | 61 > 0.

which implies that H(0]0(?)) is maximized at § = 6(*).

20



Derivation of Optimization Transfer in EM - Il

Manipulating the Expression for log fx(x|0)

Q(0|0(t)) H(0|0(t)) 4 H(a(t),g(t)) - H(G(t)\e(t))
- Q(0|9(t)) _ H(g(t)|9(t)) _ (H(e(t)w(t)) B H(H\H(f))) ‘

Applying the Jensen Bound:
H(0®]0()) — H(8|6™)) > 0.
Thus, we obtain:

log & (x|0) > Q(0|6)) — H(6)|6™)). (5)

21



Derivation of Optimization Transfer in EM - I1lI

From:
log fx(x|0(f)) - Q(g(t)yg(t)) _ H(O(t)|0(t))’

we obtain:
H(6W]01)) = Q8]0 — log x (x|0).
Substituting this into the previous result in Equation (5):

log fx (x|6) > Q(0]01)) + log fx (x|0)) — Q(8)|6()).

22



Further Properties

EM updates can be expressed through an abstract mapping,
v, ie, 0 = w(e).

If EM converges to 9 then @ must be a fixed-point of V.
Do a Taylor approximation of W(6()) around 6:

w(0W) ~ w(d) + v'(8)(6"Y — )
Hence,

w60 — w(d) ~ v'(8)(6Y — )

— () _ 9 ~ v'(0) (6 — )

If the parameter is one-dimensional, then the convergence
order can be seen to be linear, provided that @ is a (local)

maximum.

23



Further (Asymptotic) Properties

Asymptotic Normality: If the model is correctly specified and
certain regularity conditions are met, the maximum likelihood
estimates obtained by the EM algorithm are asymptotically normal.
That is, as the sample size n approaches infinity, the distribution of
the estimate around the true parameter value follows a normal
distribution. This result is similar to the asymptotic normality of

maximum likelihood estimators more generally.

Asymptotic Efficiency: Under suitable conditions, the EM
estimates are asymptotically efficient, meaning that they achieve
the Cramér-Rao lower bound. This implies that the estimates have
the smallest possible variance among all unbiased estimators, at

least asymptotically.

24



EM for Exponential Family Models

e Recall that a model/joint distribution fg for data Y is a
natural exponential family if the log-likelihood is of the form:

log Ly (8) = constant + log a(0) + 6" s(y),

where s(y) is the “sufficient statistic.”

e For problems where the complete data Y is modeled as an
exponential family, EM takes a relatively simple form.

e This is an important case since many examples involve
exponential families, simplifying the implementation of EM
and interpretation of its results.

25



EM for Exponential Family Models (Cont’d)

For exponential families, the Q function is expressed as:

Q(8]6)) = constant + log a(8) + /OTs(y)sz(H(t))dz.

e To maximize this, take derivative w.r.t. @ and set to zero:

3(0) :/S(y)sz(O(t))dZ

From STAT 7600, you know that the left-hand side is
Eo[s(Y)].
Let s(t) be the right-hand side.

M-step updates 8(9) — 8(t*1) by solving the equation:
Eg[s(Y)] = s(®).

26



EM for Exponential Family Models (Cont’d)

E-step
Compute s(!) based on guess (1.

M-step
Update guess to e(t+1) by solving the equation

Eo[s(Y)] = s

27



Examples

28



Example 1: Censored Exponential Model

e Complete Data Yi,..., Y, 2 Exp(f), with the rate

parameter.
e Complete Data Log-Likelihood:

log Ly (0) = nlogf — 0> ;.
i=1

——
S(Y)

e Censoring: Suppose some observations are right-censored,
i.e., only a lower bound is observed.
e Write the observed data as pairs (X, d;), where

Xi =min(Y;,¢), and & =lix_v,

where ¢;’s are non-random censoring thresholds.
e Missing Data Z: Consists of the actual event times for the

censored observations. 20



Example 1: Censored Exponential Model (Cont’d)

e For the EM algorithm, we focus on censored cases for
computing s(t).

e Observations: If an observation Y; is right-censored at ¢;,
then ¢; is a lower bound.

e Recall the memory-less property of exponential: This
property is crucial for the E-step computation.

e E-step Computation:

n
st =3 "[6iXi + (1 — 6;) Eyo [ Yi|censored]]
i=1
which simplifies to
n 1 1 n

30



Example 1: Censored Exponential Model (Cont’d)

M-step Computation

Given that Ey[s(Y)] = n/6, the M-step requires solving for 6 in
USSR )
5 = nX + % Z( — ,).

i=1
In particular, the EM Update Formula in this case is

n

0(t+1) - .
nX + ﬁ > (1—6))

Iterate this update until convergence is achieved.

31



Example 1: Censored Exponential Model (Cont’d)

e Simulated Data: Number of observations n = 30, rate
parameter § = 3, and censored at 0.632.

e EM Algorithm Initialization: Starting point for #(0) = 7.

e The picture below illustrates the observed data likelihood and

the EM steps.

E‘) 2 4 6 8 32



Example 2: Probit Regression

e Recall the probit regression model: X; ~ Ber(®(u/9)).
e The EM algorithm facilitates obtaining the MLE of 6.

e Complete Data Representation: Y = (Y1,...,Y),), where
Y; ~ N(ul0,1), and X; is defined as:

1 ifY;>0
0 ifY;<0

X; =

e Exercise: Verify that X;, defined in this way, has the same
distribution as that given by the probit model.

e Essentially, we observe the sign of the complete data, but the
actual values are missing.

33



Example 2: Probit Regression (Cont’d)

e The complete-data problem is easy, just a normal linear
regression with known variance—exponential family.

e s(Y) = UTY, where U is the design matrix.

e Observed data provides the sign of Y;, leading to the
conditional expectation of a truncated normal distribution?:

.¢(Mft)) o

Egio (YilX)) = n? + w =t 4+ v,
’ o(wil?)
where ,ugt) =u 0, w; =2X; -1, and V(t) — w q:i(’(#, ))

e This completes the E-step; M-step requires solving:

uTue = uTue® + yTv®
—— ’

Eo[s(Y)] s(t)
https://en.wikipedia.org/wiki/Truncated_normal_distribution

34
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Example 2: Probit Regression (Recap)

Complete-Data Problem

e In this example the complete-data problem is treated as a
normal linear regression problem with known variance, falling
into the exponential family of distributions.

e Because in this case, the relationship between Y; and the
covariates u; is linear, with Y; having a normal distribution
centered around u,-TB with variance 1.

Sufficient Statistic s(Y)

e The sufficient statistic for this complete-data problem is
s(Y) = UTY, where U is the design matrix comprising all
covariate vectors u; as its rows.

e This follows from the log-likelihood function for a normal
distribution, which involves the sum of the product of observed

. : . 35
values and their corresponding model-predicted values.



Example 2: Probit Regression (Recap)

Observed Data and Conditional Expectation

e Given that the observed data only provide the sign of Y;, the
EM algorithm computes the conditional expectation of Y;
given X;, corresponding to the expectation of a truncated

normal distribution.

e This conditional expectation is Ey(Y;|Xi) = /L,(-t) VO

1
where:

o Mgt) = u7 0" is the mean of Y; under the current estimate
g(t)’
e w; = 2X; — 1 adjusts the direction of the adjustment based on

whether X; is 0 or 1,

® _ o)
* T M)

standard normal distribution’s density and cdfs.

represents the adjustment based on the

36



Example 2: Probit Regression (Recap)

E-step and M-step

e E-step: Computes the conditional expectation of the latent
variable Y; given the observed data X; and the current

estimate of 6.

e M-step: Updates the estimate of 8 by solving the equation:
UTue =uTue® + uTv®),

where v(?) is the vector of adjustments for each observation.

37



Example 2: Probit Regression (Cont’d)

e Simulated Data: Number of observations: n = 50, intercept
1 = 0, slope 6, = 1, and predictor variables are i.i.d N(0,4?).

e The plot below illustrates the observed data alongside the EM
fitted probit regression line.

2 © o wmom-® 00 © °

38



Example 3: Robust Regression

Consider the linear model y; = x,-Tﬂ + €; where y; is the
response, X; is the predictor vector, 3 represents coefficients,
and ; % N(0, 02) denotes model errors.

Least-squares estimators are sensitive (i.e. not robust) to
“outlier” observations due to fitting at the mean x/ 3 (which
undermines the assumption of normal errors).

Remedy: Fit a model with heavier-than-normal tails, such as
modeling € with a Student-t distribution with a small number
of degrees of freedom (i.e., ¢; i t, with small v).

This model can be fitted using standard optimization tools,
but a clever application of EM significantly simplifies the
process.

Key Observation: The Student-t distribution is a scale
mixture of normals:

39
fle) = /N(E|0.02/z) ChiSa(z!i)\)dz.



Example 3: Robust Regression (Cont’d)

e For simplicity, we assume v = df (degrees of freedom) is
known.

e The Z; values, related to the Student-t error distribution for
ei (i.e. representing scale factors in the Student-t error model
for each observation), are considered as “missing data”.

e If we knew Z = (Z3,...,Z,), the problem would essentially
be a simple modification of the normal model.

e Define model parameters as @ = (3,0). The complete data
log-likelihood is:

log Ly(8) = _ log N(y; — x/ 8[0,v0?/ Z)).
i=1

o E-step: Requires computing the expectation with respect to
the conditional distribution of Z, given the data and a guess
o) . 20



Robust Regression - E-step

e |t can be shown that conditional distribution of Z;, given

observed data and 6(9) is
—1

1 (yi—x/ 8" i
— | ——F~%— ] +1| xChiSq(v+1) fori=1,...,n.

1 o(t)

e Q Function:

Q(6]6")) = —Zlogo® — % S w Oy - % B)?,

where weights wt)

i

are specifically designed to mitigate the
impact of outliers by adjusting each observation's influence on

the model based on its alignment with current estimates:
T30\ -
ANy t
W-(t):(l/—l-l) (y,x,ﬁ) +v , i=1,...,n

f o(t)
41



Robust Regression - M-step: Weighted Least Squares

e The M-step is equivalent to solving a weighted least squares
problem, where weights are Wi(t) from the E-step.

e This leads to updates for @ that account for the robustness
against outliers by adjusting the influence of each observation.

Insights and Applications

e Adjusting for Variability: The conditional distribution of Z;
reflects how individual observations’ variability is adjusted in
the presence of outliers, directly influencing the robustness of
the regression model.

e Optimization via Weights: The Q function illustrates the
method for incorporating the calculated weights into the
optimization process, ensuring that the updated parameter
estimates (@) in the M-step are influenced appropriately by
the data’s underlying structure. 42



Belgian Phone Call Data Analysis

e Analysis of Belgian phone call data from R's MASS library.

e Objective: Compare the fitting of Least Squares (LS) versus
Student-t distribution via the EM algorithm (df = 4) for the
years 1950 and 1955.

e Notice the robustness of the Student-t model against outliers

compared to the traditional LS approach.
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Estimating Standard Errors

44



A Challenge in EM Algorithm

Background: The Core of EM Algorithm

e The EM algorithm excels at finding the Maximum Likelihood
Estimate (MLE) 0 in scenarios complicated by incomplete
data or latent variables.

e It does not offer a direct method for estimating the standard

errors of the estimated parameters 0.
The Challenge

e Recall that if we run, say, BFGS via the function optim in R,
then we can request that the Hessian at the MLE be returned,
which can be used to approximate the standard errors of 6.

e The challenge is that the EM doesn’t work directly with the
observed data log-likelihood.
The Question: How do we integrate standard error computation
into the EM algorithm's framework to extend its utility in

I . 45
statistical analysis?



Analytical Calculation of Standard Errors

Background: Importance of Standard Errors
e Standard errors measure the variability of parameter estimates.

e They are estimated using the negative second derivative of the
log-likelihood, — log Lx(8), or the Fisher information, /(8).

Probit Regression Model: Fisher Information
For the probit regression model, the Fisher information is given by:

N o(u/ 0)° |
MO =2 T - ofren ™

Plugging in our MLE 6 from the EM algorithm into this formula
allows us to (numerically) invert the matrix to estimate standard

€rrors.

Alternative Approach: Numerical Differentiation
Numerically differentiating — log Lx(0) provides a versatile method

to estimate standard errors without explicit formulas.

46



Bootstrap: A Preliminary Overview

Main Idea (more on this later)
The bootstrap method aims to estimate the variance (hence

standard error) of 9 obtained via the EM algorithm, in situations

where we only have a single value of 6.
Challenge

e Estimating the variance of 0 is difficult with only one sample.

e If multiple samples or copies of 6 were available, variance
estimation would be straightforward.

Solution: Bootstrap Principle

e Generate multiple copies of 0 by resampling (with
replacement) from the observed data X = (Xi,..., X,), many
times.

47



Bootstrap Method (Cont’d)

Procedure:
1. Choose a large number B for bootstrap samples.

2. Forb=1,....B:
e Sample X} = (X}, ..., Xg,) with replacement from the
observed data X = (Xy,...,X,).
e Compute 6 by applying the EM algorithm to Xj.
3. Estimate the variance of @ using the sample variance (or
covariance) of 61, ...,05.
Considerations:
e The empirical distribution of X should resemble the true
sampling model for large n, motivating the bootstrap
approach.

e This method may be computationally intensive in the EM
context due to the requirement for B separate EM algorithm
runs. 48



Other (Advanced) Methods for Analyzing the EM Algorithm

Numerical Differentiation for Score Function 880 log Lx (@), at

parameter estimates 6, the EM solution or estimate.

Applications:

1. Standard Error Estimation: For the precision of parameter
estimates, confidence intervals and significance tests.

2. Sensitivity Analysis: Evaluates parameter sensitivity to
changes, aiding in model specification and diagnostics.

3. Model Comparison and Selection: Construction of
likelihood ratio tests and information criteria (AIC/BIC).

4. Gradient-Based Optimization: Enhances EM algorithm
extensions through gradient optimization, improving
convergence in complex models.

5. Robustness Checks: Verifies the reliability of EM solutions

by examining log-likelihood changes around 0. 49



Other (Advanced) Methods for Analyzing the EM Algorithm

Supplemented EM (SEM) for Enhanced Stability
o Enhancement over EM: Multiple iterations of EM, each

from different starting points, to improve stability.

e Benefit: Mitigates risk of local maxima, enhancing reliability.

Louis’s Method: Missing Information Principle
e Theoretical Foundation: Uses ix(0) = iy(0) — izx(0) to

partition information into observed and missing.

e Application: Complex computation but offers valuable
insights for standard errors and confidence intervals.

Empirical Information
e Simplicity and Practicality: Uses empirical variance as an

estimator for the Fisher information.

e Advantage: Straightforward and minimally demanding,

enhancing accessibility. 50



Different Versions of EM

51



Considerations in EM Algorithm Design

Computational Challenges:

e In each of the two main steps of the EM algorithm, there are
potentially some non-trivial computations involved.

e The E-step requires computing an expectation, which often
cannot be done analytically.

e The M-step involves optimization, which also frequently
cannot be solved analytically.

Numerical Approaches:
e Both integration (for the E-step) and optimization (for the

M-step) can be performed numerically.
e However, this introduces concerns about efficiency,
particularly due to the nested loops in these computations.

Efficient Design:
e There are ongoing questions about how to efficiently design

EM algorithms to mitigate these computational challenges.



Modifying the E-step

e E-step Challenge: Compute an expectation with respect to
the conditional distribution of Z, given X.

e In some cases, this boils down to several one-dimensional
integrals, which we could possibly do with quadrature.

e Alternative: Monte Carlo Integration

e Replace numerical integration with Monte Carlo simulation
(more on this later) to estimate these expectations.

e Attractive for its general applicability but may increase
computational costs, requiring Monte Carlo simulations at
every E-step.

e Adds a Bayesian flavor to the EM algorithm.

e Acronyms in EM: In line with the EM community’s fondness
for acronyms, this approach is known as Monte Carlo EM

(MCEM).

53



Modifying the M-step

Challenge in M-step
To maximize Q(0|0)) w.r.t. 6, especially when an analytical

solution is not available.
Numerical Optimization

e If not doable analytically, then consider using numerical
optimization routines, though they may be computationally

expensive.

Alternative Approaches

e ECM Algorithm: Maximize @ one component at a time for

more manageable optimization.

o EM Gradient: Perform just one iteration of Newton's
method at each M-step to gradually approach the maximum.

54



One Specific Extension: PX-EM

Introduction to PX-EM: Ordinary EM algorithm simplifies
computations under the assumption that some “missing data”

were known.

Counter-Intuitive Idea: A counter-intuitive approach that
involves introducing additional parameters (i.e. expanding and
reparametrizing the parameter space) and mapping expanded
parameters back to the original space.

This approach is called PX-EM, where PX stands for “Parameter
Expansion”.

Convergence Properties
e The PX-EM algorithm maintains the same ascent property as

the traditional EM algorithm.

e |ts rate of convergence is guaranteed to be no slower than
that of the standard EM algorithm. 55



PX-EM (Cont'd)

Parameter (Space) Expansion
Treat parameter 0 as a function of additional parameters (1, ¢),

with the intuition that the original model corresponds to ¢ being
fixed at a specified value ¢y, i.e., 8 = (1), ¢o).

Complete-Data Log Likelihood

Begin with the complete-data log likelihood for (¢, ¢), expressed
as log Ly (v, ¢). For exponential families, this likelihood is a linear
function of the sufficient statistics for the expanded (v, ¢)-model.
Iterative Process

Proceed with iterative computation of conditional expectation and
maximization, similar to traditional EM. However, the PX E-step
includes a slight difference, adapting to the expanded model's
structure.

56



PX-EM (Cont'd)

Iteration Process
At iteration t, suppose we have ((t), ¢(!)), which defines (%),

PX E-step
Set Q(v, |1, ), the conditional expectation of the

complete-data log-likelihood, using ¢q instead of the current guess
0.

PX M-step

Maximize Q to obtain (1/(**1), ¢(t*1)) and compute

olt+1) — f (D) p(t41)),

Advantage of PX-EM

This version improves the M-step by using extra information from
the enlarged model, potentially enhancing convergence properties.
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Example 2: Probit Regression with PX-EM

e Probit Regression Model: X; ~ Ber(®(u9)).

e Complete Data: Y; ~ N(u/0,1).

e Parameter Expansion: Introduce a variance parameter to
expand 0, resulting in Y; ~ N(u/ 6, $?) with ¢g = 1.

o Sufficient Statistics: For the complete-data model are
s(Y)=(UTY,YTY).

e PX E-step: Utilizes properties of the truncated normal

distribution.

e PX M-step: Straightforward, akin to the ordinary EM, with
enhancements from the parameter expansion.

Note: For implementation details, see the R code.
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Summary
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Remarks on the EM Algorithm

EM is a powerful tool for maximizing complex likelihood
functions, especially with “missing data".

Deriving E- and M-steps requires effort but is facilitated by
extensive literature.

Applications include mixture models and censored-data
problems.
Data augmentation (ideas of sort of “randomly imputing”

missing values) is clever and introduces a Bayesian flavor.
Main challenge: Potentially slow convergence, with several
remedies available.

Open question: Is it feasible to parallelize EM?

The original EM paper has garnered significant attention,
3

3As of March 2024, the original EM paper (Dempster, Laird, and Rubin,
JRSS-B 1977) has been cited over 72,000 times!
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