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Motivation

While many statistical problems rely on optimization, there are also

some that require numerical integration.

� Bayesian statistics is almost exclusively integration.

� Data admits a likelihood function L(θ);

� θ unknown, so assign it a weight function π(θ), called the

prior;

� Combine prior and data using Bayes’s formula, to obtain the

posterior:

π(θ|x) = L(θ)π(θ)∫
L(θ′)π(θ′)dθ′

Need to compute probabilities and expectations (usually with

respect to the posterior) — integrals! Some “non-Bayesian”

problems may involve integration, e.g., random- or mixed-effects

models. Other approaches besides Bayesian and frequentist also

exist...
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Intuition

There are a number of classical numerical integration techniques,

simple and powerful.

Recall from Calculus

� Integral was defined as the limit of sum of areas of rectangles

approximating the area under the curve (i.e. function) on

small intervals.

� Numerical integration, or quadrature, is based on this

definition and refinements thereof.

Basic Principle1 Approximate the function on a small interval by

a “nice” one that you know how to integrate.

� Works well for one- or two-dimensional integrals; for

higher-dimensional integrals, other tools are needed.
1This principle also motivated the various methods discussed for optimization.
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Notation and Partitioning the Interval - I

Consider a function f (x) that we wish to integrate over the

interval [a, b].

� Choose a relatively large integer n to divide the interval into

small subintervals of width: h = b−a
n .

� Define partition points:

xi = a+ ih, for i = 0, 1, . . . , n − 1, and xn = b.

Thus, the explicit list of points is: x0 = a, x1 = a+ h, x2 =

a+ 2h, x3 = a+ 3h, . . . , xn−1 = a+ (n − 1)h, xn = a+ nh = b.

Therefore,∫ b

a
f (x) dx =

∫ x1

x0=a
f (x) dx +

∫ x2

x1

f (x) dx + · · ·+
∫ xn=b

xn−1

f (x) dx

=
n−1∑
i=0

∫ xi+1

xi

f (x) dx .
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Notation and Partitioning the Interval - II

Key Idea: If f (x) is sufficiently smooth, it can be

well-approximated by a simpler function fi (x) over each subinterval

[xi , xi+1]. That is, f (x) ≈ fi (x) over [xi , xi+1] so that∫ xi+1

xi

f (x) dx ≈
∫ xi+1

xi

fi (x) dx

Thus, we can approximate the definite integral using a summation:∫ b

a
f (x) dx =

n−1∑
i=0

∫ xi+1

xi

f (x) dx ≈
n−1∑
i=0

∫ xi+1

xi

fi (x) dx .

In each subinterval [xi , xi+1] we insert m + 1 evaluation points

(called nodes) as xi0 = xi , . . . , xim = xi+1.
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Numerical Approximation of the Integral

To approximate the integral numerically, we replace each

subinterval integral with a weighted sum of function evaluations:∫ xi+1

xi

f (x) dx ≈
m∑
j=0

Aij f (xij).

where

xij are selected evaluation points (nodes) within the subinterval

[xi , xi+1],

Aij are corresponding weights that depend on the chosen numerical

method,

m is the number of evaluation points per subinterval.

Final Approximation:∫ b

a
f (x) dx ≈

n−1∑
i=0

m∑
j=0

Aij f (xij).
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Polynomial Approximation

Consider the following sequence of polynomials for j = 0, . . . ,m:

pij(x) =

1, if m = 0∏m
k=0,k ̸=j

x−xik
xij−xik

, m = 1, 2, . . . .

Then, the mth degree polynomial that interpolates f (x) at the

nodes xi0, . . . , xim is given by:

pi (x) =
m∑
j=0

pij(x)f (xij)

This polynomial can approximate the integral of f (x) over

[xi , xi+1] as:∫ xi+1

xi

f (x)dx ≈
∫ xi+1

xi

pi (x)dx =
m∑
j=0

(∫ xi+1

xi

pij(x)dx

)
︸ ︷︷ ︸

Aij

f (xij)

where Aij are the weights for the approximation.
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Riemann Rule: m = 0

Approximation by a Constant
Approximate f (x) on [xi , xi+1] by a constant.

� Here xi0 = xi and pi0(x) ≡ 1, so Ai0 = h and∫ b

a
f (x)dx ≈

n−1∑
i=0

f (xi )(xi+1 − xi ) = h
n−1∑
i=0

f (xi ).

Features of Riemann Rule

� Very easy to program — only need f (x0), . . . , f (xn).

� Can be slow to converge, i.e., many xi ’s may be needed to get

a good approximation.
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Trapezoid Rule: m = 1

Linear Function Approximation
Approximate f (x) on [xi , xi+1] by a linear function. In this case:

xi0 = xi , xi1 = xi+1 and Ai0 = Ai1 =
xi+1 − xi

2
=

h

2
.

Therefore,∫ b

a

f (x)dx ≈ h

2

n−1∑
i=0

(f (xi ) + f (xi+1)) =
h

2

n−1∑
i=0

(f (xi ) + f (xi + h))

=
h

2
(f (x0) + f (x0 + h) + f (x0 + 2 h) + . . .+ f (x0 + n h))

=
h

2
(f (a) + f (a+ h) + f (a+ 2 h) + . . .+ f (b)) =: T (h)

Features of the Trapezoid Rule
� Still only requires function evaluations at the xi ’s.

� More accurate than Riemann because the linear approximation is

more flexible than constant.

� Can derive bounds on the approximation error. 11



Trapezoid Rule (Cont’d)

Euler-Maclaurin Formula:
A general tool to study the precision of the trapezoid rule is the

Euler-Maclaurin formula. For a function g(x) twice differentiable,

we have:

n∑
t=0

g(t) =

∫ n

0
g(t)dt +

1

2
[g(0) + g(n)] + C1g

′(t)
∣∣∣n
0
+ Rn,

where |Rn| ≤ C2

∫ n

0
|g ′′(t)|dt.

Implication for Trapezoid Rule:
Letting g(t) = f (a+ ht), the trapezoidal approx T (h) becomes:

T (h) := h

[
1

2
g(0) + g(1) + . . .+ g(n − 1) +

1

2
g(n)

]
.

This formula helps us understand the error in the trapezoid rule in

terms of the function’s second derivative, allowing for a precise

error estimation.
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Trapezoid Rule (Cont’d)

Using the Euler-Maclaurin formula in T (h):

T (h) = h
n∑

t=0

g(t)− h

2
[g(0)+ g(n)] ≈ h

∫ n

0
g(t)dt+ hC1

[
g ′(t)

] ∣∣∣n
0

= h

∫ b

a

1

h
f (x)dx + hC1

[
hf ′(b)− hf ′(a)

]
Therefore, the error in the trapezoid rule approximation:∣∣∣∣T (h)−

∫ b

a
f (x)dx

∣∣∣∣ = O(h2), as h → 0.
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Trapezoid Rule (Cont’d)

Can Trapezoid Error O(h2) Be Improved?
Although our initial derivation suggested an error of O(h2), the

next term in the expansion actually implies an improvement to

O(h4) is possible.

Romberg’s Rule:
Romberg found that manipulating T (h) can cancel the O(h2)

term, enhancing precision to O(h4):

4T (h2 )− T (h)

3
=

∫ b

a
f (x)dx + O(h4), as h → 0.

Iterative Improvement:
This technique can be iterated for further improvement (see

Section 5.2 in G&H), highlighting a significant advancement in

numerical integration strategies.
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Simpson Rule: m = 2

Quadratic Function Approximation
Approximate f (x) on [xi , xi+1] by a quadratic function. Similar

arguments as above gives the xi ’s and Aij ’s for the approximation.

Simpson’s Rule Approximation
The approximation formula is given by:∫ b

a
f (x)dx ≈ h

6

n−1∑
i=0

(
f (xi ) + 4f

(
xi + xi+1

2

)
+ f (xi+1)

)
.

Accuracy and Simplification

� More accurate than the trapezoid rule with an error of

O(n−4).

� For even n, the formula simplifies further, enhancing

computational efficiency. See Equation (5.20) in G&H and the

accompanying R code in Canvas for detailed implementation.
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Remarks on Numerical Integration

Scalability with m
The approximation accuracy improves as m increases.

Extension to Multi-variable Functions
While the method can be extended to functions of more than one

variable, the complexity of the details increases significantly.

Software and Practical Considerations

� In R, the function integrate is used for one-dimensional

integration.

� Numerical methods and corresponding software generally

perform very well, yet careful consideration is needed to

ensure accuracy and reliability. See Section 5.4 in G&H for a

detailed discussion of numerical integration.
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Example: Bayesian Analysis of Binomial

Consider X ∼ Bin(n, θ) where n is known and θ is unknown.

Prior Distribution:
The prior for θ is the semicircle distribution with density:

π(θ) = 8π−1

[
1

4
−
(
θ − 1

2

)2
]1/2

, θ ∈ [0, 1].

Posterior Distribution:
The posterior density is given by:

π(θ|x) =
θx(1− θ)n−x

[
1
4 −

(
θ − 1

2

)2]1/2
∫ 1
0 θx(1− θ)n−x

[
1
4 −

(
θ − 1

2

)2]1/2
dθ

.

Bayes Estimate:
Calculating the Bayes estimate of θ, the posterior mean, requires

numerical integration.
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Example: Mixture Densities

Mixture distributions are prevalent models, known for their

flexibility. They are particularly useful for density estimation and

modeling heavy-tailed distributions.

General Mixture Model: Can be represented as:

p(y) =

∫
k(y |x)f (x)dx ,

where

� k(y |x) is a probability density function (pdf) or probability

mass function (pmf) in y for each x .

� f (x) is a pdf or pmf.

Straightforward to verify that p(y) is a pdf or pmf depending on k .

Evaluation of p(y) Evaluating p(y) for each specified y requires

integration, e.g. with numerical methods in this chapter.
18



Example: Mixture Density Model

Suppose we have two normal distributions with pdfs:

k1(y |x) = N(y ;µ1, σ
2
1) and k2(y |x) = N(y ;µ2, σ

2
2)

and we mix these with proportions f (x) = π and 1− π

respectively, where 0 ≤ π ≤ 1.

The mixture density p(y) can then be expressed as:

p(y) = πN(y ;µ1, σ
2
1) + (1− π)N(y ;µ2, σ

2
2)
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Mixture Density Formulation

For this example, let’s choose specific values for our parameters:

� µ1 = 0, σ2
1 = 1 (Standard normal distribution)

� µ2 = 3, σ2
2 = 4 (Normal distribution with mean 3 and

variance 4)

� π = 0.5 (Equally weighted mixture)

Given these values, our mixture density model is:

p(y) = 0.5N(y ; 0, 1) + 0.5N(y ; 3, 4)

20



Figure 1: Illustration of the normal mixtures.

Interpretation: This model represents a distribution where half of

the data is expected to follow a standard normal distribution, and

the other half follows a normal distribution centered at 3 with a

larger variance. This mixture can model a scenario where a dataset

might be composed of two underlying populations or processes,

each with its own normal distribution. 21



Example 5.1 in G&H: GLMM

Model Description
Consider a Generalized Linear Mixed Model (GLMM) where:

Yij ∼ Poi(λij), λij = exp(β0 + β1j + γi ),

for i = 1, . . . , n and j = 1, . . . , J. Here, γ1, . . . , γn are iid N(0, σ2
γ).

Model Parameters: The model parameters are (β0, β1, σ
2
γ).

Marginal Likelihood
The marginal likelihood for θ = (β0, β1, σ

2
γ) is given by:

L(θ) =
n∏

i=1

∫  J∏
j=1

Pois(Yij | exp(γi + β0 + β1j))N(γi |0, σ2
γ)

 dγi .

Objective
The goal is to maximize L(θ) over θ, necessitating advanced

computational methods for integral evaluation and optimization. 22



Example 5.1 in G&H: Mixture Components

The marginal likelihood here follows the general mixture model

structure: p(y) =

∫
k(y |x)f (x)dx .

where the mixture components are Component 1: The

conditional distribution k(y |x) is the Poisson likelihood:

k(Yij |γi ) = Pois(Yij | exp(β0 + β1j + γi )).

Component 2: The mixing distribution f (x) is the normal

distribution of the random effects:

f (γi ) = N(γi |0, σ2
γ).

Mixture Representation: The marginal likelihood integrates out

γi :

L(θ) =
n∏

i=1

∫  J∏
j=1

Pois(Yij | exp(γi + β0 + β1j))N(γi |0, σ2
γ)

 dγi .
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Example 5.1 in G&H (Cont’d)

Log-Likelihood: Taking the logarithm, we obtain the log-likelihood

function:

ℓ(θ) =
n∑

i=1

log

∫  J∏
j=1

Pois(Yij | exp(γi + β0 + β1j)) · N(γi |0, σ2
γ)

 dγi


︸ ︷︷ ︸

Li (θ)

.

Gradient Evaluation: G&H discuss evaluating the gradient with respect

to β1, which involves computing:

∂

∂β1
Li (θ) =

∫  J∑
j=1

j(Y1j − exp(γ1 + β0 + β1j))

×

 J∏
j=1

Pois(Y1j | exp(γ1 + β0 + β1j)) · N(γ1|0, σ2
γ)

 dγ1.

See the Appendix at the end of the slides for the derivation.

Reproduction of Results: Reproduce Tables 5.2-5.4 using R codes.
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Very Brief Summary: Gaussian Quadrature

Gaussian Quadrature vs. Newton-Cotes: Gaussian quadrature,

as an alternative to Newton-Cotes for numerical integration, is

particularly advantageous when integrating with respect to a

non-uniform measure, such as in calculating expectations.

Key Concept: The core idea behind Gaussian quadrature is the

utilization of a sequence of “orthogonal polynomials” identified by

the integration measure, yielding more precise function

approximations than Newton-Cotes.

Advantages

� Increased accuracy in approximating integrals, especially for

complicated measures.

� Ensures computational efficiency via orthogonal polynomials.
Note: The book provides minimal details on Gaussian quadrature,

and it will not be covered in depth here. 26
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Setup for Laplace Approximation

The Laplace approximation is a powerful method for approximating

certain types of integrals, using optimization techniques.

Integral Form: Consider integrals of the form:

Jn :=

∫ b

a
f (x)eng(x)dx , n → ∞,

where a < b can be finite or infinite, and f and g are sufficiently

nice functions. Additionally, g has a unique maximizer

x̂ = argmax g(x) within the interval (a, b).

Claim: When n is large, the major contribution to the integral

comes from a neighborhood around x̂ , the maximizer of g .2 This

principle underlies the Laplace approximation’s efficiency.
2For a proof and further discussion on this claim, see Section 4.7 in Lange.
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Formula for Laplace Approximation

Local Approximation: With the premise stated in the “claim”, it

suffices to restrict the range of integration to a small neighborhood

around x̂ , denoted nbhd(x̂), where the function g(x) can be

approximated as:

g(x) ≈ g(x̂) + g ′(x̂)(x − x̂) +
1

2
g ′′(x̂)(x − x̂)2.

The linear term vanishes because g ′(x̂) = 0 at the maximizer.

Integral Transformation: The integral Jn can be approximated

by:

Jn ≈ eng(x̂)
∫
nbhd(x̂)

f (x)e
1
2
ng ′′(x̂)(x−x̂)2dx ,

which can be written as:

= eng(x̂)
∫
nbhd(x̂) f (x)e

− 1
2
[−ng ′′(x̂)](x−x̂)2dx .

Importance: This approximation effectively reduces the integral to

a more manageable form, focusing on the significant contributions

around x̂ .
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Formula for Laplace Approximation (Cont’d)

Continuing from the previous slide, we have:

Jn ≈ eng(x̂)
∫
nbhd(x̂)

f (x)e−
1
2
[−ng ′′(x̂)](x−x̂)2dx .

Two Observations

� Since x̂ is a maximizer, g ′′(x̂) < 0.

� In a small neighborhood, f (x) ≈ f (x̂).

Refined Approximation: Thus, the integral Jn can be further

approximated as:

Jn ≈f (x̂)eng(x̂)
∫
nbhd(x̂)

e−
1
2
[−ng ′′(x̂)](x−x̂)2dx

≈
√
2πf (x̂)eng(x̂)

[
−ng ′′(x̂)

]− 1
2 .

This formula provides a concise approximation for Jn, emphasizing the

crucial role of the maximizer x̂ and simplifying the calculation of complex

integrals.
30



Example: Stirling’s Formula

Stirling’s formula provides an approximation for factorials, crucial

for various mathematical and statistical applications.

Gamma Function Representation: The factorial can be

expressed as a gamma function:

n! = Γ(n + 1) =

∫ ∞

0
zne−zdz .

Change of Variable: By changing the variable x = z/n, we

obtain:

n! = nn+1

∫ ∞

0
en log x−nxdx , g(x) = log x − x ,

where g(x) has a maximizer x̂ = 1 within the interval (0,∞).

Laplace Approx.: For large n, the Laplace approximation yields:

n! ≈ nn+1e−n g(1)
√
2π(−ng ′′(1))−

1
2 =

√
2πnn+

1
2 e−n.
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Laplace Approximation in Bayesian Inference

Bayesian Setup: In Bayesian analysis, we often want to compute

the posterior distribution of a parameter θ given observed data y .

According to Bayes’ theorem:

π(θ | y) = L(θ | y) p(θ)∫
L(θ | y)p(θ) dθ

,

where:

� L(θ | y) is the likelihood of the data given the parameter.

� p(θ) is the prior on θ.

� p(y) =
∫
L(θ | y)p(θ) dθ is the normalizing constant.

� π(θ | y) is the posterior distribution.

For complex models, the posterior π(θ | y) may be difficult to

compute directly, primarily due to the intractability of the

normalization constant p(y). Instead, we apply the Laplace

approximation, which approximates the posterior with a Gaussian

distribution centered at its mode. 32



Laplace Approximation in Bayesian Inference - Steps

I- Identifying the Function to Approximate

Taking the logarithm of the posterior:

log π(θ | y) = log L(θ | y) + log p(θ)− log p(y).

Define g(θ) = log L(θ | y) + log p(θ), which represents the log

unnormalized posterior (ignoring the constant log p(y)).

II- Finding the Mode (MAP Estimator)

The Laplace approximation is built around expanding g(θ) near its

maximum. The maximum a posteriori (MAP) estimate is:

θ̂ = argmax
θ

g(θ),

found by solving:
d

dθ
g(θ) = 0.

33



Laplace Approximation in Bayesian Inference - Steps

III- Second-Order Taylor Expansion Around θ̂

Use a second-order Taylor expansion around θ̂:

g(θ) ≈ g(θ̂) +
1

2
(θ − θ̂)T H(θ̂) (θ − θ̂),

where

H(θ̂) =
d2

dθ2
g(θ)

∣∣∣
θ=θ̂

is the Hessian matrix evaluated at θ̂.

Since this expansion is analogous to the log of a normal

distribution, exponentiating both sides yields:

π(θ | y) ≈ N(θ̂, −[H(θ̂)]−1).

That is, the Laplace approximation substitutes the posterior with a

normal distribution centered at θ̂, with covariance given by the

inverse Hessian of g(θ). 34



Interpretation of the Laplace Approximation

� Particularly useful for θ that is high-dimensional, where

direct integration is infeasible.

� The precision matrix of the Gaussian approximation is

−H(θ̂), hence the covariance is [−H(θ̂)]−1.

� Works well when the posterior is unimodal and roughly

Gaussian-shaped near θ̂.
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Example: Bayesian Posterior Expectations

In Bayesian analysis, we compute posterior expectations to infer

parameter values based on observed data.

Bayesian Framework
Given:

� L(θ) as the likelihood based on n iid observations.

� π(θ) as a prior density.

The posterior expectation is defined as:

E[h(θ)|data] =
∫
h(θ)L(θ)π(θ)dθ∫
L(θ)π(θ)dθ

.

36



Example: Bayesian Posterior Expectations (Cont’d)

Laplace Approximation Application
For large n, applying Laplace’s approximation to both the

numerator and denominator simplifies the posterior expectation to:

E[h(θ)|data] ≈ h(θ̂),

where θ̂ is the maximum likelihood estimate (MLE).

Importance
This result demonstrates that the proximity of the posterior mean

to the MLE in large sample scenarios is not coincidental (e.g.,

previous binomial example that showed posterior mean close to

MLE), highlighting the efficiency of Laplace approximation in

Bayesian inference.
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Example: Bayesian Logistic Regression

Consider a Bayesian logistic regression model:

Yi ∼ Ber(σ(βTxi )),

where the logistic function is defined as:

σ(z) =
1

1 + e−z
.

We assume a Gaussian prior on the parameter vector β:

p(β) = N(0, τ2I ).

Posterior Distribution:

π(β|y) ∝
n∏

i=1

σ(βTxi )
yi (1− σ(βTxi ))

1−yi · exp
(
− 1

2τ2
∥β∥2

)
.

38



Example: Bayesian Logistic Regression

Posterior Distribution:

π(β|y) ∝
n∏

i=1

σ(βTxi )
yi (1− σ(βT xi ))

1−yi · exp
(
− 1

2τ2
∥β∥2

)
.

Computing this posterior is intractable for large datasets, so we

approximate it using the Laplace method:

1. Find the MAP estimate β̂ by maximizing

log p(y|β) + log p(β).

2. Compute the Hessian H(β̂) of the log-posterior.

3. Approximate π(β|y) with N(β̂,−H(β̂)−1).

This provides an efficient Gaussian approximation to the posterior,

enabling predictions and uncertainty quantification without

requiring expensive MCMC sampling.

39



Remarks on Laplace Approximation

Error Rate: The error in the Laplace approximation is O(n−1),

indicating high accuracy for large sample sizes. This error rate can

be further improved with additional refinements.

Core Idea: Locally, the target integrals can be approximated by

Gaussian integrals, simplifying their evaluation significantly.

Extensions to Multivariate Cases: The Laplace approximation is

not limited to univariate integrals; it extends naturally to

multivariate integrals, where it becomes even more useful.

Boundary Maximizers: A variant of the Laplace approximation

caters to situations where the maximizer of g is on the boundary,

which adapts the integral to resemble exponential or gamma

integrals.

Further Reading: For more details, especially on the boundary

case, see Section 4.6 of Lange.
40
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Remarks on Numerical Integration Methods

� Quadrature methods are highly effective for numerical integration,

particularly in one to two dimensions. However, their efficacy

diminishes in higher dimensions due to the “curse of

dimensionality,” which necessitates an exponentially growing

number of grid points for accurate approximation.

� The Laplace approximation remains practical in higher dimensions

but is specifically suited for certain types of integrals. Statistically

relevant integrals often fall into this category; so, Laplace

approximation is a valuable tool in statistical analysis.

� Monte Carlo Methods: For integrals in higher dimensions, Monte

Carlo methods become preferable due to their:

� General ease of implementation.

� Approximation accuracy, which is notably independent of the

dimensionality of the integral.

� We will delve into Monte Carlo methods in greater detail later.
42



APPENDIX

Derivation of the Gradient for β1 in Example 5.1 of G&H

Log-Likelihood:

Taking the logarithm of the marginal likelihood, we obtain the log-likelihood function:

ℓ(θ) =
n∑

i=1

log

(∫ ( J∏
j=1

Pois(Yij | eγi+β0+β1 j ) · N(γi | 0, σ2
γ )
)
dγi

)
︸ ︷︷ ︸

Li (θ)

.

Steps for Gradient Evaluation (w.r.t. β1):

1. Differentiate the log-likelihood.

∂

∂β1

ℓ(θ) =
n∑

i=1

1

Li (θ)
·
∂Li (θ)

∂β1

.

2. Pull the derivative inside the integral. By regularity conditions (interchanging differentiation and

integration), we write:

∂Li (θ)

∂β1

=

∫
∂

∂β1

[ J∏
j=1

Pois(Yij | eγi+β0+β1 j ) · N(γi | 0, σ2
γ )
]
dγi .
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3. Differentiate the Poisson term. Recall:

Pois(Yij | λij ) =
λ
Yij
ij e

−λij

Yij !
, λij = eγi+β0+β1 j .

Taking ∂/∂β1 introduces a factor of

j
(
Yij − λij

)
due to the chain rule on λij = eγi+β0+β1 j .

4. Combine factors. Within the integrand, N(γi | 0, σ2
γ ) does not depend on β1. Consequently,

∂Li (θ)

∂β1

=

∫ ( J∑
j=1

j
[
Yij − e(γi+β0+β1 j)

])( J∏
j=1

Pois(Yij | eγi+β0+β1 j )
)
· N(γi | 0, σ2

γ ) dγi .

5. Insert into the sum. Plugging this back into the partial derivative of ℓ(θ) yields:

∂

∂β1

ℓ(θ) =
n∑

i=1

1

Li (θ)

∫ ( J∑
j=1

j
[
Yij−e(γi+β0+β1 j)

])( J∏
j=1

Pois(Yij | eγi+β0+β1 j )
)
·N(γi | 0, σ2

γ ) dγi .
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