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Introduction



While many statistical problems rely on optimization, there are also

some that require numerical integration.

e Bayesian statistics is almost exclusively integration.

e Data admits a likelihood function L(8);

e 0 unknown, so assign it a weight function 7(0), called the
prior;

e Combine prior and data using Bayes's formula, to obtain the

posterior: (0) (0)
L T

Need to compute probabilities and expectations (usually with

respect to the posterior) — integrals! Some “non-Bayesian”
problems may involve integration, e.g., random- or mixed-effects
models. Other approaches besides Bayesian and frequentist also

exist...



There are a number of classical numerical integration techniques,
simple and powerful.
Recall from Calculus
e Integral was defined as the limit of sum of areas of rectangles
approximating the area under the curve (i.e. function) on
small intervals.

e Numerical integration, or quadrature, is based on this

definition and refinements thereof.

Basic Principle! Approximate the function on a small interval by

a “nice” one that you know how to integrate.

e Works well for one- or two-dimensional integrals; for

__ higher-dimensional integrals, other tools are needed.

'This principle also motivated the various methods discussed for optimization.



Notation and Partitioning the Interval - |

Consider a function f(x) that we wish to integrate over the
interval [a, b].
e Choose a relatively large integer n to divide the interval into
small subintervals of width: h = %.
e Define partition points:
xi=a+ih, fori=0,1,....,.n—1, and x,=b.

Thus, the explicit list of pointsis: xp = a, x1 = a+ h, xo =
a+2h,x3s=a+3h, ..., xp-1=a+(n—1)h, x, =a+ nh=0b.

Therefore,
b X1 X2 xp=b
/ f(x)dx—/ f(x)dx—l—/ f(x)dx+--~+/ f(x) dx
a Xo=a X1 Xp—1
n—1 Xit+1
= Z / f(x) dx.
X 5

i=0



Notation and Partitioning the Interval - Il

Key Ildea: If f(x) is sufficiently smooth, it can be
well-approximated by a simpler function f;(x) over each subinterval
[xi, xix1]. Thatis, f(x) = f;(x) over [x;, xj11] so that

Xj41 Xi+1
/ F(x) dx ~ / £(x) dx

i i

Thus, we can approximate the definite integral using a summation:
b =1 exigg =1 rxig
/ f(x) dx:Z/ f(x) dx%Z/ fi(x) dx.
a i=0 7% i=0 7%

In each subinterval [x;, x;+1] we insert m + 1 evaluation points
(called nodes) as xjo = Xj, . . ., Xim = Xj+1-



Numerical Approximation of the Integral

To approximate the integral numerically, we replace each
subinterval integral with a weighted sum of function evaluations:

Xi+1 m
/ Fx)dx~ > Ay ().

Jj=0
where
xjj are selected evaluation points (nodes) within the subinterval
[xi, Xit1],
Ajj are corresponding weights that depend on the chosen numerical
method,

m is the number of evaluation points per subinterval.

Final Approximation:

b n—1 m
/a Fx) o~ S5 Af(xi).

i=0 j=0 7



Newton-Cotes Quadrature



Polynomial Approximation

Consider the following sequence of polynomials for j =0,..., m:

pij{x) = o
HT:(),/(# ;;_7);'2(, m=12....

Then, the mth degree polynomial that interpolates f(x) at the
nodes Xjq, . .., Xim IS given by:

pi(x) = pi(x)f(xy)
=0

This polynomial can approximate the integral of f(x) over

[X,', X;+1] as:
Xit1 Xi1 m Xit1
/ f(x)dx ~ / pi(x)dx = Z </ p,-j(x)dx) f(xij)
Xi Xi j=0 Xi

Ajj

where A:: are the weights for the approximation.



Riemann Rule: m =10

Approximation by a Constant
Approximate f(x) on [x;, x;+1] by a constant.

e Here xjo = x; and pjo(x) =1, so Ajp = h and

b n—1 n—1
/ FO)dx = 3 Fx) i1 —xi) = h S F(x)
a i=0 i=0

Features of Riemann Rule
e Very easy to program — only need f(xp),. .., f(xn).

e Can be slow to converge, i.e., many x;'s may be needed to get
a good approximation.

10



Trapezoid Rule: m=1

Linear Function Approximation
Approximate f(x) on [x;, x;+1] by a linear function. In this case:

Xi+1 — Xi h
Xio = Xj; Xi1 = Xi1 and Ajp = Ajp = ——— = .
Therefore,

/ F(x

ZZ

(f(X/) + f Xl+1

M\}

n—1
Z (X)) + f(x;i + h))

i=0

—
- HM\
—~ o

x0)+ f(xo+h)+f(xo+2h)+...+f(xo+nh))

I
NSNS N>

(f(a)+f(a+h)+f(a+2h)+...+f(b)) = T(h)

Features of the Trapezoid Rule
e Still only requires function evaluations at the x;’s

e More accurate than Riemann because the linear approximation is
more flexible than constant.

e Can derive bounds on the approximation error. 11



Trapezoid Rule (Cont’d)

Euler-Maclaurin Formula:
A general tool to study the precision of the trapezoid rule is the

Euler-Maclaurin formula. For a function g(x) twice differentiable,

we have:

Zk- = [ ettt + 5160 + £l + G ()] + R

n
where |R| < c2/ 18" (¢)|d.
0

Implication for Trapezoid Rule:
Letting g(t) = f(a + ht), the trapezoidal approx T(h) becomes:

T(R) = h | 3600) + £(1) + ..+ (n— 1)+ e

This formula helps us understand the error in the trapezoid rule in

terms of the function's second derivative, allowing for a precise "

error estimation.



Trapezoid Rule (Cont’d)

Using the Euler-Maclaurin formula in T (h):

T(h) = by ()~ Sle©)+g(n)] ~ h [ e(e)dr+ hGi [¢0)] |
t=0

b
_h / %f(x)dx 1 hCy [hF'(b) — hF'(3)]

Therefore, the error in the trapezoid rule approximation:

‘T(h) - /ab f(x)dx| = O(h?), as h — 0.

13



Trapezoid Rule (Cont’d)

Can Trapezoid Error O(h?) Be Improved?
Although our initial derivation suggested an error of O(h?), the

next term in the expansion actually implies an improvement to
O(h*) is possible.

Romberg’s Rule:

Romberg found that manipulating T(h) can cancel the O(h?)
term, enhancing precision to O(h*):

47_(3)3_7_(,7) — /ab f(x)dx + O(h4), as h — 0.

Iterative Improvement:
This technique can be iterated for further improvement (see

Section 5.2 in G&H), highlighting a significant advancement in

numerical integration strategies.
14



Simpson Rule: m =2

Quadratic Function Approximation
Approximate f(x) on [x;, xi+1] by a quadratic function. Similar

arguments as above gives the x;'s and Aj;'s for the approximation.

Simpson’s Rule Approximation
The approximation formula is given by:

/ab F(x)dx /6’"2_:1 (f(x,-) +af <X+2X“> + f(x,-+1)> .

i=0

%

Accuracy and Simplification
e More accurate than the trapezoid rule with an error of
Oo(n™*%).
e For even n, the formula simplifies further, enhancing

computational efficiency. See Equation (5.20) in G&H and the
accompanying R code in Canvas for detailed implementation.



Remarks on Numerical Integration

Scalability with m
The approximation accuracy improves as m increases.

Extension to Multi-variable Functions
While the method can be extended to functions of more than one

variable, the complexity of the details increases significantly.

Software and Practical Considerations

e In R, the function integrate is used for one-dimensional
integration.

e Numerical methods and corresponding software generally
perform very well, yet careful consideration is needed to
ensure accuracy and reliability. See Section 5.4 in G&H for a
detailed discussion of numerical integration.

16



Example: Bayesian Analysis of Binomial

Consider X ~ Bin(n, ) where n is known and 6 is unknown.

Prior Distribution:
The prior for 6 is the semicircle distribution with density:

1/2

7(0) = 8r* [i—(@—;ﬂ , 6¢€]o0,1].

Posterior Distribution:
The posterior density is given by:

o(1—0) 1 - (0 3)

(0)x) = )
Jy -y |

=
|
—~
>
|
N~

Bayes Estimate:
Calculating the Bayes estimate of 6, the posterior mean, requires

. : 17
numerical integration.



Example: Mixture Densities

Mixture distributions are prevalent models, known for their
flexibility. They are particularly useful for density estimation and

modeling heavy-tailed distributions.

General Mixture Model: Can be represented as:

p(y) = / Ky [x)F (x)dx,

where
e k(y|x) is a probability density function (pdf) or probability
mass function (pmf) in y for each x.
e f(x)is a pdf or pmf.

Straightforward to verify that p(y) is a pdf or pmf depending on k.

Evaluation of p(y) Evaluating p(y) for each specified y requires

integration, e.g. with numerical methods in this chapter.
18



Example: Mixture Density Model

Suppose we have two normal distributions with pdfs:

ki(ylx) = N(y; u1,03) and  ko(y|x) = N(y; 12, 03)

and we mix these with proportions f(x) =7 and 1 — 7
respectively, where 0 < 7 < 1.

The mixture density p(y) can then be expressed as:

p(y) = wN(y; p1,07) + (1 — m)N(y;: pi2, 03)

19



Mixture Density Formulation

For this example, let's choose specific values for our parameters:

e 11 =0, 02 =1 (Standard normal distribution)

® Lo =3, a% = 4 (Normal distribution with mean 3 and
variance 4)

e 7 = 0.5 (Equally weighted mixture)

Given these values, our mixture density model is:

p(y) = 0.5N(y;0,1) + 0.5N(y; 3,4)

20



Mixture of Two Normal Distributions

Distribution == Wixture == N(y;0,1) = N(;234)

Figure 1: lllustration of the normal mixtures.

Interpretation: This model represents a distribution where half of
the data is expected to follow a standard normal distribution, and
the other half follows a normal distribution centered at 3 with a
larger variance. This mixture can model a scenario where a dataset
might be composed of two underlying populations or processes,
each with its own normal distribution.

21



Example 5.1 in G&H: GLMM

Model Description
Consider a Generalized Linear Mixed Model (GLMM) where:

Y ~ Poi(Ay), Aj = exp(Bo + B + i),

for i=1,...,nand j=1,...,J. Here, v1,...,7, are iid N(0,02).
Model Parameters: The model parameters are (Bo,ﬁl,cr%).

Marginal Likelihood
The marginal likelihood for 8 = (50,51,05) is given by:

n J
L) =11 / T Pois( il exp(vi + Bo + B1i))N(il0, 02) | di.
i=1 j=1

Objective
The goal is to maximize L(0) over 6, necessitating advanced

computational methods for integral evaluation and optimization. 22



Example 5.1 in G&H: Mixture Components

The marginal likelihood here follows the general mixture model
structure: p(y) = /k(y]x)f(x)dx.

where the mixture components are Component 1: The
conditional distribution k(y|x) is the Poisson likelihood:

k(Yijlyi) = Pois(Yjj| exp(fo + B1j + 7i))-

Component 2: The mixing distribution f(x) is the normal
distribution of the random effects:

f(7i) = N(7i[0,03).

Mixture Representation: The marginal likelihood integrates out

Vi

23

n J
Lo)=1] / [T Pois(Yiilexp(yi + Bo + B1j))N(7il0,02) | di.
i=1 j=1



Example 5.1 in G&H (Cont’d)

Log-Likelihood: Taking the logarithm, we obtain the log-likelihood
function:

n
=Yg [ HPous il exp(i + o + 1)) - N(310,02) | di
i=1

Li(0)

Gradient Evaluation: G&H discuss evaluating the gradient with respect
to (1, which involves computing:

8 J
sl = [ ;J(YU ~exp(n + o+ Bui)) | X
J
H Pois( Y1| exp(v1 + Bo + B1j)) - N(71|0,O'3{) dvr.
j=1

See the Appendix at the end of the slides for the derivation. "

—~ 2 . ~ ™ . —~ 1 -_ [ . - 1



Gaussian Quadrature

25



Very Brief Summary: Gaussian Quadrature

Gaussian Quadrature vs. Newton-Cotes: Gaussian quadrature,
as an alternative to Newton-Cotes for numerical integration, is
particularly advantageous when integrating with respect to a

non-uniform measure, such as in calculating expectations.

Key Concept: The core idea behind Gaussian quadrature is the
utilization of a sequence of “orthogonal polynomials” identified by
the integration measure, yielding more precise function
approximations than Newton-Cotes.

Advantages

e Increased accuracy in approximating integrals, especially for
complicated measures.
e Ensures computational efficiency via orthogonal polynomials.
Note: The book provides minimal details on Gaussian quadrature,
and it will not be covered in depth here. 26



Laplace Approximation

27



Setup for Laplace Approximation

The Laplace approximation is a powerful method for approximating
certain types of integrals, using optimization techniques.

Integral Form: Consider integrals of the form:
b
In ::/ f(x)e"®Xdx, n— oo,

where a < b can be finite or infinite, and f and g are sufficiently
nice functions. Additionally, g has a unique maximizer
X = arg max g(x) within the interval (a, b).

Claim: When n is large, the major contribution to the integral
comes from a neighborhood around X, the maximizer of g.? This

principle underlies the Laplace approximation’s efficiency.
2For a proof and further discussion on this claim, see Section 4.7 in Lange.

28



Formula for Laplace Approximation

Local Approximation: With the premise stated in the “claim”, it
suffices to restrict the range of integration to a small neighborhood
around X, denoted nbhd(X), where the function g(x) can be
approximated as:

. o R VT .
g(x) ~ g(%) + g/ (%) (x = %) + 58" (R)(x - ).
The linear term vanishes because g’(%) = 0 at the maximizer.

Integral Transformation: The integral J, can be approximated
by:
Iy = e”g(ﬁ)/ f(x)e%"g”()?)(x_’?ydx,
nbhd(X)
which can be written as:
— en8(%) fnbhd()?) f(X)e—%[—ng”(?)](X—?)zdx.

Importance: This approximation effectively reduces the integral to
a more manageable form, focusing on the significant contributions 29



Formula for Laplace Approximation (Cont’d)

Continuing from the previous slide, we have:

J, ~ enE®) / F(x) e 1-ng" (RNC22 gy
nbhd(%)

Two Observations
e Since % is a maximizer, g”(X) < 0.
e In a small neighborhood, f(x) ~ f(X).

Refined Approximation: Thus, the integral J, can be further
approximated as:

Jp (%)) / o g (R](—2) gy
nbhd()
~\27f(R)e8R) [(—ng"(%)]~

This formula provides a concise approximation for J,, emphasizing the

N

crucial role of the maximizer X and simplifying the calculation of complex

integrals.



Example: Stirling’s Formula

Stirling's formula provides an approximation for factorials, crucial
for various mathematical and statistical applications.

Gamma Function Representation: The factorial can be
expressed as a gamma function:

n=T(n+1)= / z"e ?dz.
0

Change of Variable: By changing the variable x = z/n, we
obtain:

o0
n! = n”“/ "B dx,  g(x) =logx — x,
0
where g(x) has a maximizer X = 1 within the interval (0, c0).

Laplace Approx.: For large n, the Laplace approximation yields:

nl &~ nle neW\/2r(—ng"(1)) "2 = V2rn " 2e ", "



Laplace Approximation in Bayesian Inference

Bayesian Setup: In Bayesian analysis, we often want to compute
the posterior distribution of a parameter 6 given observed data y.
According to Bayes' theorem:

w(0]y) = L(8 | y) p(0) 7

J L0 ]y)p(0) do

where:

L(0 | y) is the likelihood of the data given the parameter.
o p(@) is the prior on 6.
p(y)

y) = [L(0]y)p(0) df is the normalizing constant.
e 7(0 | y) is the posterior distribution.

For complex models, the posterior 7(6 | y) may be difficult to
compute directly, primarily due to the intractability of the
normalization constant p(y). Instead, we apply the Laplace
approximation, which approximates the posterior with a Gaussian

distribution centered at its mode. 32



Laplace Approximation in Bayesian Inference - Steps

I- Identifying the Function to Approximate
Taking the logarithm of the posterior:

log7(0 | y) = log L(6 | y) + log p(0) — log p(y).
Define g(0) = log L(0 | y) + log p(6), which represents the log
unnormalized posterior (ignoring the constant log p(y)).
II- Finding the Mode (MAP Estimator)

The Laplace approximation is built around expanding g(f) near its
maximum. The maximum a posteriori (MAP) estimate is:

0=arg max g(0),

found by solving:
d
—g(0) =0.
7080 .



Laplace Approximation in Bayesian Inference - Steps

I1l- Second-Order Taylor Expansion Around §

Use a second-order Taylor expansion around 0:

~

5(6) ~ g(0) + 5(0 — )T H(B) (6 - §).

where

~ d? 0
H(9) = @g( ) .
is the Hessian matrix evaluated at 6.

Since this expansion is analogous to the log of a normal
distribution, exponentiating both sides yields:

w0 |y) =~ N@, —[H@)]™).
That is, the Laplace approximation substitutes the posterior with a

normal distribution centered at 6, with covariance given by the
inverse Hessian of g(#). 34



Interpretation of the Laplace Approximation

e Particularly useful for 8 that is high-dimensional, where
direct integration is infeasible.

e The precision matrix of the Gaussian approximation is
—H(#), hence the covariance is [—H(f)] .

e Works well when the posterior is unimodal and roughly
Gaussian-shaped near 0.

35



Example: Bayesian Posterior Expectations

In Bayesian analysis, we compute posterior expectations to infer
parameter values based on observed data.

Bayesian Framework
Given:

e L[(0) as the likelihood based on n iid observations.

e 7(0) as a prior density.

The posterior expectation is defined as:

[ h(B)L(8)x(6)db

E[h(0)|data] = T L(0)=(0)do

36



Example: Bayesian Posterior Expectations (Cont’d)

Laplace Approximation Application
For large n, applying Laplace’s approximation to both the

numerator and denominator simplifies the posterior expectation to:
E[h(6)|data] ~ h(d),

where @ is the maximum likelihood estimate (MLE).

Importance

This result demonstrates that the proximity of the posterior mean
to the MLE in large sample scenarios is not coincidental (e.g.,
previous binomial example that showed posterior mean close to
MLE), highlighting the efficiency of Laplace approximation in
Bayesian inference.

37



Example: Bayesian Logistic Regression

Consider a Bayesian logistic regression model:
Y; ~ Ber(c(87x;)),
where the logistic function is defined as:

1
o(z) = 1+4+e 2

We assume a Gaussian prior on the parameter vector 3:

p(B) = N(0,72/).

Posterior Distribution:

(Bly) x [T (1 - o8 0 (51 1817 )

i=1

38



Example: Bayesian Logistic Regression

Posterior Distribution:

(Bly) [T o(87x)"(1 ~ o(8Tx)) - exp (511817 )
=1

Computing this posterior is intractable for large datasets, so we
approximate it using the Laplace method:

1. Find the MAP estimate 3 by maximizing

log p(y|B) + log p(8B).
2. Compute the Hessian H(3) of the log-posterior.
3. Approximate 7(8|y) with N(3, —H(B3)™1).

This provides an efficient Gaussian approximation to the posterior,
enabling predictions and uncertainty quantification without
requiring expensive MCMC sampling.

39



Remarks on Laplace Approximation

Error Rate: The error in the Laplace approximation is O(n™1),
indicating high accuracy for large sample sizes. This error rate can
be further improved with additional refinements.

Core Idea: Locally, the target integrals can be approximated by
Gaussian integrals, simplifying their evaluation significantly.

Extensions to Multivariate Cases: The Laplace approximation is
not limited to univariate integrals; it extends naturally to
multivariate integrals, where it becomes even more useful.

Boundary Maximizers: A variant of the Laplace approximation
caters to situations where the maximizer of g is on the boundary,
which adapts the integral to resemble exponential or gamma
integrals.

Further Reading: For more details, especially on the boundary

cace cee Section 4 6 of | ance



Conclusion

41



Remarks on Numerical Integration Methods

e Quadrature methods are highly effective for numerical integration,
particularly in one to two dimensions. However, their efficacy
diminishes in higher dimensions due to the “curse of
dimensionality,” which necessitates an exponentially growing
number of grid points for accurate approximation.

e The Laplace approximation remains practical in higher dimensions
but is specifically suited for certain types of integrals. Statistically
relevant integrals often fall into this category; so, Laplace
approximation is a valuable tool in statistical analysis.

e Monte Carlo Methods: For integrals in higher dimensions, Monte
Carlo methods become preferable due to their:
e General ease of implementation.
e Approximation accuracy, which is notably independent of the
dimensionality of the integral.

e We will delve into Monte Carlo methods in greater detail later. 0



APPENDIX
Derivation of the Gradient for 5; in Example 5.1 of G&H

Log-Likelihood:
Taking the logarithm of the marginal likelihood, we obtain the log-likelihood function:

n J
00) =3 log ( / ([T Poistyy | €750 A1) (v | 0,02)) dw) :
i=1

=1

Li(0)

Steps for Gradient Evaluation (w.r.t. 31):

1. Differentiate the log-likelihood.

E} &1 a9
Tmz((’)_zuw) EE

i=1

2. Pull the derivative inside the integral. By regularity conditions (interchanging differentiation and
integration), we write:

aLi(6 8 ;
A0 [ [T poistyy | 0H80) - Ny | 0,02)]
9p1 J 0B g

42



Differentiate the Poisson term. Recall:

Yi —xj
i i € YitBo+B1
Pois(Yjj | A\j) = ————, Xj = e iTP0TR,
v;!
Taking /01 introduces a factor of
i(Yi = Xj)

due to the chain rule on \j; = eYitBot+hL

Combine factors. Within the integrand, N(~; | 0, agy) does not depend on 1. Consequently,

aL;(0) J ; J )
o5 / (D2l — it PP ) (T Pois(vy | €717P0+A1)) - N(y; | 0, 02) d;.

j=1 j=1

Insert into the sum. Plugging this back into the partial derivative of £(0) yields:

n 1 J

) ) , D (T o , ;
87516(9) =3 "0 /(Zj[yl_j__e(w,JrﬁngBu)D (H Pois(Yj | e%+l30+ﬁ11)) N(vi | 0, "Er) dvi.

i=1 j=1 j=1

42
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