
STAT 7650 - Computational Statistics

Lecture Slides

Simulating Random Variables

Elvan Ceyhan

Updated: March, 2025

AU

� Based on parts of: Chapter 6 in Givens & Hoeting (Computational Statistics), Chapter 22 of Lange

(Numerical Analysis for Statisticians), and Chapter 2 in Robert & Casella (Monte Carlo Statistical

Methods).

1



Outline

Introduction

Direct Sampling Techniques

Fundamental Theorem of Simulation

Indirect Sampling Techniques

Acceptance-Rejection Sampling

Ratio Method

Sampling Importance Resampling

Summary

2



Motivation

� Simulation is a very powerful tool for statisticians.

� It allows us to investigate the performance of statistical

methods before delving deep into difficult theoretical work.

� At a more practical level, integrals themselves are important
for statisticians:

� p-values and expectations are nothing but integrals;

� Bayesians need to evaluate integrals to produce posterior

probabilities, point estimates, and model selection criteria.

� Therefore, there is a need to understand simulation techniques

and how they can be used for integral approximations.
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Basic Monte Carlo

Suppose we have a function h(x) and we’d like to compute the

expected value

E[h(X )] =

∫
h(x)f (x) dx

where f (x) is a density. There is no guarantee that the techniques

we learn in calculus are sufficient to evaluate this integral

analytically.

Thankfully, the law of large numbers (LLN) is here to help: If

X1,X2, . . . ,Xn are i.i.d samples from f (x), then

1

n

n∑
i=1

h(Xi ) →
∫

h(x)f (x) dx with prob 1 as n → ∞.

This suggests that a generic approximation of the integral can be

obtained by sampling lots of Xi ’s from f (x) and replacing

integration with averaging. This is the heart of the Monte Carlo

method.
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What Follows?

Here, we focus mostly on simulation techniques.

� Some of these will be familiar, others probably not.

� As soon as we know how to produce samples from a

distribution, the basic Monte Carlo method described earlier

can be used to approximate any expectation.

� However, there are problems where it is not possible to sample

from a distribution exactly.

We’ll discuss this point more later.
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Generating Uniform RVs

Generating a single U from a uniform distribution on [0, 1] seems

simple enough. However, there are a number of concerns to be

addressed:

� Is it even possible for a computer, which is precise but

ultimately discrete, to produce any number between 0 and 1?

� How can a deterministic computer possibly generate anything

that’s really random?

While it’s important to understand that these questions are out

there, we will side-step them and assume that calls of runif in R

produce bona fide uniform RVs.
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Inverse CDF Transform

Suppose we want to simulate X whose distribution has a given

CDF F , i.e., for continuous X ,

d

dx
F (x) = f (x).

If F is continuous and strictly increasing, then F−1 exists.

Procedure
Sampling U ∼ Unif(0, 1) and setting X = F−1(U) does the job.

Can you prove it?

This method is (sometimes) called the inversion method.

Note:
The assumptions above can be weakened to some extent.
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Example: Exponential Distribution

For an exponential distribution with rate λ, we have:

f (x) = λe−λx and F (x) = 1− e−λx .

It is easy to check that the inverse CDF is:

F−1(u) = − log(1− u)

λ
, u ∈ (0, 1).

Therefore, to sample X from an Exponential(λ) distribution:

1. Sample U ∼ Unif(0, 1).

2. Set X = − log(1−U)
λ .

Can be easily “vectorized” to get samples of size n. This is in the

R function rexp — be careful about rate vs. scale parametrization.
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Example: Cauchy Distribution

The standard Cauchy distribution has pdf and cdf given by:

f (x) =
1

π(1 + x2)
and F (x) =

1

2
+

arctan(x)

π
.

This distribution has a shape similar to the normal distribution, but

with much heavier tails—Cauchy has no finite moments. However,

its CDF can be inverted:

F−1(u) = tan

[
π

(
u − 1

2

)]
, u ∈ (0, 1).

To generate X from a standard Cauchy distribution:

1. Sample U ∼ Unif(0, 1).

2. Set X = tan
[
π
(
U − 1

2

)]
.

To generate a non-standard Cauchy(µ, σ) RV (location µ and scale

σ): µ+ σX .

Use rt(n, df=1) in R for simulation from standard Cauchy. 10



Example: Discrete Uniform Distribution

Suppose we want X to be sampled uniformly from {1, . . . ,N}.
Here is an example where the CDF is neither continuous nor

strictly increasing.

The idea is as follows:

1. Divide up the interval [0, 1] into N equal subintervals; i.e.,

[0, 1
N ), [

1
N ,

2
N ), and so forth.

2. Sample U ∼ Unif(0, 1).

3. If i
N ≤ U < i+1

N , then X = i + 1 for i = 0, 1, . . . ,N − 1.

More simply, set X = ⌊NU⌋+ 1.

This is equivalent to sample(N, size=1) in R.
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Example: Triangular Distribution

The (symmetric) pdf of X is given by:

f (x) =

1 + x if − 1 ≤ x < 0;

1− x if 0 ≤ x ≤ 1.

and the corresponding cdf is

F (x) =

 x2

2 + x + 1
2 if − 1 ≤ x < 0;

− x2

2 + x + 1
2 = 1− 1

2(1− x)2 if 0 ≤ x ≤ 1.

If we restrict X to [0, 1], then the pdf becomes:

f̃ (x) = 2 (1− x) for 0 ≤ x ≤ 1

and the CDF is simply:

F̃ (x) = 2x − x2 = 1− (1− x)2, x ∈ [0, 1].
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Example: Triangular Distribution
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Figure 1: The pdf (left) and cdf (right) of the symmetric triangular

distribution.
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Example: Triangular Distribution

For this (restricted) “sub-problem”, the inverse is:

F̃−1(u) = 1−
√
1− u, u ∈ [0, 1].

To sample X from the symmetric triangular distribution:

1. Sample U ∼ Unif(0, 1).

2. Set X̃ = 1−
√
1− U.

3. Take X = ±X̃ based on a flip of a fair coin.
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Sampling Normal RVs

While normal RVs can, in principle, be generated using the CDF

transform method, this requires evaluation of the standard normal

inverse CDF, which is a non-trivial calculation.

� There are a number of fast and efficient alternatives for

generating normal RVs.

� The method below, due to Box and Muller, is based on some

trigonometric transformations.
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Box-Muller Method

This method generates a pair of (independent) standard normal

RVs X and Y based on the following facts:

For X ,Y
iid∼ N(0, 1), the joint pdf in the Cartesian coordinates

(X ,Y ) becomes

(2π)−1re−
r2

2 , (θ, r) ∈ [0, 2π)× [0,∞)

when transformed to to the polar coordinates (θ,R). Then

θ ∼ Unif(0, 2π) and R2 ∼ Exp(1/2) (with the rate) are

independent.

So, to generate independent normal X and Y :

1. Sample U,V ∼ Unif(0, 1).

2. Set R =
√
−2 logV and θ = 2πU.

3. Finally, take X = R cos θ and Y = R sin θ.

Take a linear function to get different mean and variance.
16



Bernoulli RVs

Perhaps the simplest RVs are Bernoulli RVs — ones that take only

values 0 or 1.

To generate X ∼ Ber(p):

1. Sample U ∼ Unif(0, 1).

2. If U ≤ p, then set X = 1; otherwise, set X = 0.

In R, use rbinom(n=1, size=1, prob=p).
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Binomial RVs

Since X ∼ Bin(n, p) is equal in distribution to X1 + . . .+ Xn,

where the Xi ’s are independent Ber(p) RVs, the previous slide

gives a natural strategy to sample X .

That is, to sample X ∼ Bin(n, p), generate X1, . . . ,Xn

independently from Ber(p) and set X equal to their sum.
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Poisson RVs

Poisson RVs can be constructed from a Poisson process, an

integer-valued continuous-time stochastic process.

By definition, the number of events of a Poisson process in a fixed

interval of time is a Poisson RV with mean proportional to the

length of the interval.

But the time between events are independent exponentials.

Therefore, if Y1,Y2, . . . are independent Exp(1) RVs, then

X = max

{
k :

k∑
i=1

Yi ≤ λ

}

then X ∼ Poi(λ).

In R, use rpois(n, lambda).
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Chi-square RVs

The chi-square RV X (with n degrees of freedom) is defined as

follows:

� Generate n independent N(0, 1) RVs: Z1, . . . ,Zn

� Take X = Z 2
1 + · · ·+ Z 2

n .

Therefore, to sample X ∼ ChiSq(n) (or X ∼ χ2
n), take the sum of

squares of n independent standard normal RVs.

Independent normals can be sampled using the Box-Muller method.
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Student-t RVs

A Student-t RV X (with ν degrees of freedom) is defined as the

ratio of a standard normal and the square root of an independent

(normalized) chi-square RV with ν df.

More formally, let Z ∼ N(0, 1) and Y ∼ χ2
ν ; then

T =
Z√
Y /ν

is a tν RV.

Remember the scale mixture of normals representation?

In R, use rt(n, df=nu).
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Representation of Student-t as a Scale Mixture of Normals

The scale mixture of normals representation elucidates that the

Student-t distribution is effectively a normal distribution with a

random variance.

Formally, we define:

� An auxiliary variable W = 1
/√

Y /ν, with W following an

inverse-gamma distribution due to its derivation from a

chi-square distribution Y ∼ χ2
ν .

� The Student-t RV X as X = Z ·W , where W serves as the

scaling factor, adjusting Z ’s variance.

Thus, the Student-t distribution can be viewed as an infinite

mixture of normal distributions with mean 0 and variable variances.

It’s particularly adept at modeling data with outliers or heavy tails,

thus, offers a significant advantage over the normal distribution for

such scenarios.
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Multivariate Normal RVs

The p-dimensional normal distribution has a mean vector µ and a

p × p variance-covariance matrix Σ.

The techniques above can be used to sample a vector

Z = (Z1, . . . ,Zp)
⊤ of independent normal RVs. But how to

incorporate the dependence contained in Σ?

Let Σ = LL⊤ be the Cholesky decomposition of Σ. It can be

shown that X = µ+ LZ is the desired p-dimensional normal

distribution.

Can you prove it?
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Intuition Behind Simulating from a Density Function

Let f be a density function on an arbitrary space X ; the goal is to

simulate from f .

Note the trivial identity:

f (x) =

∫ f (x)

0
du

This identity implicitly introduces an auxiliary variable U with a

conditionally uniform distribution.

The intuition behind this viewpoint is that simulating from the

joint distribution of (X ,U) might be easy, and then we can just

throw away U to get a sample of X ∼ f ...
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The “Theorem” on Simulation

Theorem: Simulating X ∼ f is equivalent to simulating

(X ,U) ∼ Unif{(x , u) : 0 < u < f (x)} and then throwing away U.

Proof: Write the density of (X ,U) and integrate out U.

How to implement this?

� One idea: X ∼ f and U|{X = x} ∼ Unif(0, f (x)).

� A better idea: “conditioning preserves uniformity,” i.e., for

A0 ⊂ A,

Z ∼ Unif(A) ⇒ Z |{Z ∈ A0} ∼ Unif(A0).

Note: The first approach is used in the accept-reject method.
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More on Implementation

The “conditioning preserves uniformity” point can be interpreted

as follows:

Procedure: Suppose that A is the set that contains

Cf := {(x , u) : 0 < u < f (x)}. Simulate (X ,U) uniformly on A,

and keep (X ,U) only if U < f (X ). Such a kept pair (X ,U) is

uniformly distributed on the constraint set, Cf , so X has the

desired distribution f .

Efficiency of Sampling: The efficiency of sampling depends on

how tightly A fits the desired constraint set. For a one-dimensional

X , with bounded support and bounded f , a reasonable choice for

A is a rectangle.

Extension: This idea extends—this is what the next sections are

about!
27



Example: Beta Simulation

Objective: Simulate from a Beta(2.7, 6.3) distribution.

Procedure

� Start with uniforms in a box containing the Beta(2.7, 6.3) pdf,

but keep only those that satisfy the constraint.

� Simulated 2000 uniforms, kept only 744 betas.

This approach demonstrates the use of uniform distributions as a

starting point and applying constraints to achieve the desired

distribution.
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Example: Beta Simulation
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Figure 2: Simulation from Beta(2.7, 6.3) distribution. Initial uniform

points are shown as dots. Rejected points are in gray, and red dots

represent accepted samples matching the Beta distribution, with its

theoretical density curve overlaid.
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Example: Beta Simulation
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Figure 3: Histogram of simulated Beta(2.7, 6.3) points with theoretical

pdf overlaid, showing the close match between empirical pdf (i.e. the

density histogram) and the theoretical pdf curve overlaid.
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Majorization

Concept: Sampling from a distribution with pdf f (x).

Suppose f (x) ≤ h(x) := Mg(x) where g(x) is a (simple) pdf and

M > 1 is a constant. We say h(x) majorizes f (x).

Goal: Use samples from the (easy-to-sample) pdf g(x) as

“candidate samples” from f (x).

� It’s clear that there will be samples from g that are not

representative of f , since g(x) ̸= f (x) .

� The idea is to throw away those “bad” samples.

This approach provides a mechanism for simplifying the sampling

process from complex distributions by utilizing a simpler

distribution as a proxy.
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Acceptance-Rejection Method

The rule that determines when a sample is “thrown away” is called

the acceptance-rejection method.

To sample X from f (x):

1. Sample U ∼ Unif(0, 1).

2. Sample X̃ ∼ g(x).

3. Keep X = X̃ if U ≤ f (X̃ )

h(X̃ )
.

Try to prove the following:

� Accept-reject returns a sample from f (see “theorem”).

� Acceptance rate or probability is 1/M.

Goal: To make acceptance rate high, i.e., M ≳ 1... (why?)

Note: It is not necessary to know f exactly—it’s enough to know

f only up to a proportionality constant.
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Example: Sampling from a Trigonometric Density

Context: The true density is a complex trigonometric function,

used in the Robert & Casella book cover (see the code and the

figure below).

Approach:

� The majorant used for the acceptance-rejection method is a

normal distribution.

� We simulate n = 2000 samples from the trigonometric density.

Outcome:

� A histogram of the samples showcases the distribution across

the range [−4, 4].

� The density plot highlights the complex behavior of the trig

function, contrasting it with the majorant normal distribution.

Insight: So, the acceptance-rejection method can be very effective

in simulating with non-standard densities, facilitating the

exploration of their properties through simulation.
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Example: Sampling from a Complex Trigonometric Density
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Figure 4: Left: Complex trigonometric density function f (x) and a

envelope function h(x), with f (x) in black and h(x) in red (both

non-normalized). Right: Normalized histogram of simulated values with

theoretical pdf f (x) overlaid for comparison.
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Example: von Mises Distribution

Definition and Characteristics: The von Mises distribution is

defined by its probability density function (PDF):

f (x) =
exp(−κ cos x)

2πI0(κ)
, x ∈ [0, 2π],

where I0(κ) denotes the modified Bessel function of the first kind

and order zero, and κ represents the concentration parameter,

analogous to the inverse of variance in the normal distribution.

This distribution is pivotal for modeling angles and directions,

hence its domain x ∈ [0, 2π].

Significance and Applications:

� Often referred to as a circular normal distribution due to its

bell-shaped curve when plotted in polar coordinates,

illustrating its utility in capturing the essence of circular data.
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von Mises Distribution (Cont’d)

Significance and Applications:

� Popular in fields such as geology, biology, and environmental

science for modeling directional data, showcasing its versatility

and applicability across diverse scientific disciplines.

Efficient Sampling Techniques: Sampling from the von Mises

distribution, with a specific concentration parameter κ, can be

done with an acceptance-rejection method which is optimized by

designing a “good” envelope or majorant, typically composed of

exponential PDFs, to approximate the target distribution closely.

The challenge is constructing an envelope that minimizes the

rejection rate.

Implementation Insight: For practical implementation (including

constructing the optimal majorant), refer to the R code.
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von Mises Distribution (Cont’d)

Example with κ = 2:1

� Uses two oppositely oriented exponentials for the envelope.

� n = 5000 samples; acceptance rate (for κ = 2) is

approximately 0.81.

Observations:

� The (un-normalized) density plot would show the true density

versus the majorant.

� True density and majorant plots illustrate the efficiency and fit

of the majorant to the true distribution.

1For some reason, majorant construction in the R code only works for

κ > .66...
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von Mises Distribution (Cont’d)
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Figure 5: Left: von Mises pdf with parameter κ = 2 (black) and its

majorant function (red) (both un-normalized). Right: Normalized

histogram of simulated points from the von Mises distribution using the

accept-reject method, with the theoretical pdf curve overlaid.
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Example: Small-Shape Gamma Distribution

Problem: Suppose we want X ∼ Gamma(ν, 1), with ν ≤ 0.01.

� Using rgamma for this will result in many exact zeros!

Question: Can we develop a better/more efficient method?

Towards an Acceptance-Rejection Method:

� As ν → 0, −ν logX → Exp(1) in distribution.

� Suggests good samples of logX can be obtained using

acceptance-rejection with an exponential envelope.

Work in Literature:

� A version of the paper by R. Martin is available at

arXiv:1302.1884.

� R code is on his research website.
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Example: Small-Shape Gamma (Cont’d)

Efficiency Analysis:

� Left panel shows (un-normalized) density of Z = −ν logX , for

ν = 0.005, along with the proposed envelope.

� This approach is more efficient than other accept-reject

methods for this problem, based on acceptance rate (as a

function of ν).

Acceptance Rate Comparison:

� The plot would typically show acceptance rates for

Ahrens-Dieter, Best, Kundu-Gupta, and rgamss methods.

� Indicates superiority of the proposed method in terms of

acceptance rate.

Note: This advanced method provides a significant improvement

in sampling from distributions with very small shape parameters. 42



Example: Small-Shape Gamma (Cont’d)

0 

� ' 
,,
'' 
' ' 

ci 

<D 

ci 
,....,_ 
N 

.s::: '<I" 

ci 

ci 

0 

ci 

-0.5 0.0 0.5 1.0 1.5 2.0 

z 

0 

q 

CJ) 

Q) ci
«i
a: 

Q) 
<D 0 
CJ) 

«I 0 

a. 
Q) 
0 
0 

v 
<( 

0 

N 
CJ) 

0 

2.5 3.0 0.00 

Ahrens-Dieter 
Best 
Kundu-Gupta 
rgamss 

0.02 0.04 

ν  

0.06 0.08 0.10 

Figure 6: Left: The un-normalized density function (solid) for

Z = −ν logX with ν = 0.005, compared to a carefully tailored envelope

(dashed). Right: Acceptance rates of various methods—Ahrens-Dieter,

Best, Kundu-Gupta, and rgamss—for sampling from distributions with

small shape parameters.
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Bounding Set

Suppose we want to sample from a pdf f (x).

� All that matters is the shape of f (x), so we can remove any

constants and consider h(x) = cf (x), for some c > 0.

� Define the set in R2:

Sh =
{
(u, v) : 0 < u ≤ (h (v/u))1/2

}
.

� If Sh is bounded, then we can find a bounding set that

encloses it.

� Ideally, the bounding set should be simple, e.g., a rectangle.

This strategy helps in simplifying the sampling process by focusing

on the shape of the distribution, allowing for efficient sampling

methods.
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Ratio Method

Given: Sh is bounded, allowing for a rectangle that encloses it.

Sampling Process:

1. Sample (U,V ) uniformly from the bounding rectangle.

2. If (U,V ) ∈ Sh, then X = V /U is a sample from f (x).

Proof: Requires some Jacobian-type calculations (see Lange).

Efficiency:

� Some draws from the rectangle will be rejected.

� The efficiency of the sampling algorithm depends on how

closely the bounding set matches Sh.
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Why Ratio Method Works?

Proposition (Lange): Suppose ku = supx{
√
h(x)} and

kv = supx{|x |
√

h(x)} are finite. Then the rectangle

[0, ku]× [−kv , kv ] encloses Sh. If h(x) = 0 for x < 0, then the

rectangle Ru,v = [0, ku]× [0, kv ] encloses Sh. Finally, if the point

(U,V ) sampled uniformly from the enclosing set (i.e. the rectangle

Ru,v ) falls within Sh, then the ratio X = V /U is distributed

according to f (x).

Proof (modified from Lange):

� From the definition of Sh it is clear that the permitted u lie in

[0, ku].

� Multiplying the inequality u ≤
√
h(v/u) by |v |/u implies that

|v | ≤ kv .

� If h(x) = 0 for x < 0, then no v < 0 yields a pair (u, v) in Sh.
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Proof (continued)

Finally, note that the transformation (u, v) → (v/u, u) has

Jacobian −1/u. Hence,

FX (x0) = P(X = V /U ≤ x0) (since X = V /U are accepted)

∝
∫ ∫

1{ v
u
≤x0}1

{
0<u≤

√
h( v

u )
} du dv (unif. integration on Sh)

=

∫ ∫
1{x≤x0}1

{
0<u≤

√
h(x)

} u du dx (change of var. x = v/u)

=

∫ x0

−∞

1

2
h(x)dx =

∫ x0

−∞
c ′f (x)dx

is the distribution function of the accepted X up to a normalizing

constant. □
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Example: Gamma Distribution

Objective: Sample X ∼ Gamma(ν, 1) for non-integer ν.

� To apply the ratio method, take h(x) = xν−1e−x for x > 0.

� It can be shown that, in general, if h(x) = 0 for x < 0, then

the rectangle [0, ku]× [0, kv ], with:

ku = sup
x
{h(x)

1
2 } and kv = sup

x

{
|x |h(x)

1
2

}
encloses Sh.

� For the Gamma(ν, 1) case:

ku =

(
ν − 1

e

) ν−1
2

and kv =

(
ν + 1

e

) ν+1
2
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Example: Gamma Distribution (Cont’d)

Ratio Method Implementation: Sampling X ∼ Gamma(ν, 1)

1. Sample U ′,V ′ ∼ Unif(0, 1), set U = kuU
′ and V = kvV

′.

2. Set X = V /U.

3. If U ≤
√
h(X ) = X (ν−1)/2e−X/2, then accept X .

Example: ν = 7.7.

� The ratio method has an acceptance rate ≈ 0.44.

� This example illustrates the density of accepted X values

across the range [5, 20].

Insight: The acceptance rate indicates the efficiency of the

sampling algorithm. Higher acceptance rates suggest a closer

match between the sampling method and the target distribution’s

characteristics.
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Example: Gamma Distribution (Cont’d)
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Figure 7: The region Sh in the uv -plane (shaded region) for

Gamma(ν = 7.7, 1) distribution and the bounding rectangle (red)

encompassing Sh.
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Example: Gamma Distribution (Cont’d)

Gamma Simulation vs Theoretical pdf
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Figure 8: Histogram of 5000 simulated points from Gamma(ν = 7.7, 1)

distribution, generated using the ratio method. The theoretical Gamma

pdf curve is also overlaid (solid line).
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Motivation for Sampling Importance Resampling (SIR)

Exact Sampling:

� Previous methods are “exact” in that the distribution of the

draw X (given that it’s accepted) matches the target

distribution f .

Question:

� Is it necessary for the sampling to be exact?

An Approximate Sampling Approach:

� An interesting idea is to sample from a different distribution

g(x), similar to f (x), and weight these samples in such a way

that a resample according to the given weights resembles a

sample from f (x).

� This is the core idea behind Sampling Importance Resampling

(SIR) (note the similarity to acceptance-rejection sampling).

Comparison:

� SIR is not unlike acceptance-rejection sampling, but

introduces a weighting and resampling mechanism to

approximate the target distribution.
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Sampling Importance Resampling (SIR) Algorithm

The target pdf f (x), which may be known only up to a

proportionality constant.

Preparation: Let g(x) be another pdf with the same support as

f (x).

SIR Algorithm Steps:

1. Take an independent sample Y1, . . . ,Ym from g .

2. Calculate the standardized importance weights

w̃(Yj) =
w(Yj)∑m
i=1 w(Yi )

, where w(Yj) =
f (Yj)

g(Yj)
, j = 1, . . . ,m.

3. Resample X1, . . . ,Xn with replacement from {Y1, . . . ,Ym}
with probabilities w̃(Y1), . . . , w̃(Ym).

Outcome: The resulting sample X1, . . . ,Xn is approximately

distributed as f (x). 55



Remarks on Sampling Importance Resampling (SIR)

Approximation Quality: As m → ∞, P(Xi ∈ A) →
∫
A
f (x) dx ,

indicating the approximate nature of sampling.

Choice of Envelope g :

� The selection of g is critical; f (x)/g(x) should not be too

large to avoid dominance by a single weight.

� Violation may result in X -samples being almost identically a

single value.

Sample Size Considerations: Theory suggests m should be large,

where “large” depends on the desired sample size n from the

target.

Comparison with Other Methods: Monte Carlo estimates based

on the SIR sample typically have variances larger than those

obtained with direct sampling or importance sampling. 56



Example: Bayesian Inference via SIR

Problem Context: Want to sample from the posterior for the

following setup.

� Consider the likelihood function

L(θ) ∝
n∏

i=1

(1− cos(xi − θ)), 0 ≤ θ ≤ 2π.

� Observed data (x1, . . . , xn) is provided in the R code.

Prior Distribution: Assume θ is given a Unif(0, 2π) prior

distribution, π(θ) = 1
2π .

Posterior Distribution: Then posterior ∝ prior × likelihood ∝
likelihood.

SIR Algorithm Application: Use the SIR algorithm with the prior

as the envelope; N = 1000.

Visualization: See the plots below.
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Bayesian Inference via SIR (Cont’d)
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Figure 9: Left: Histogram of the importance weights, showing the

distribution of weights assigned to each sampled point. Right: Histogram

of the SIR sample with a density plot overlaid, illustrating the distribution

of θ after resampling according to importance weights.

58



Bayesian Inference via SIR (Cont’d)

Interpretation:

� The left histogram provides insights into the variability and

distribution of importance weights across the sampled points.

� The right histogram, along with the density overlay,

demonstrates how the SIR process adjusts the prior

distribution to better reflect the observed data, resulting in a

posterior distribution of θ.

Note: This example showcases the practical application of SIR in

Bayesian inference, emphasizing the transformation from prior to

posterior distribution through the weighting and resampling

mechanism.
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Remarks on Simulating Random Variables

Importance of Simulation:

� Simulating random variables is crucial for various applications

of the Monte Carlo method.

Methods of Simulation:

� Some distributions can be easily simulated via the inversion

method, while others require more intricate approaches.

Strategies and Implementations:

� The “Fundamental Theorem of Simulation” provides a general

strategy for simulating from non-standard distributions,

though its implementation may be complex.

� The accept-reject method is a practical implementation with

efficiency depending on how closely the envelope function

matches the target density. 61



Remarks on Simulating Random Variables

Challenges and Solutions:

� Identifying an effective envelope function is challenging.

� Various automatic/adaptive methods have been developed to

address this.

Recurring Concepts:

� The accept-reject idea not only plays a crucial role in

Rejection Sampling context, but will recur in future

discussions and applications.
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