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Introduction



e Simulation is a very powerful tool for statisticians.

e |t allows us to investigate the performance of statistical
methods before delving deep into difficult theoretical work.

e At a more practical level, integrals themselves are important
for statisticians:

e p-values and expectations are nothing but integrals;
e Bayesians need to evaluate integrals to produce posterior
probabilities, point estimates, and model selection criteria.
e Therefore, there is a need to understand simulation techniques
and how they can be used for integral approximations.



Basic Monte Carlo

Suppose we have a function h(x) and we'd like to compute the
expected value

E[A(X)] = / h(x)F(x) dx
where f(x) is a density. There is no guarantee that the techniques

we learn in calculus are sufficient to evaluate this integral
analytically.

Thankfully, the law of large numbers (LLN) is here to help: If
X1, X2, ..., X, are i.i.d samples from f(x), then

1 n

= h(X;) = /h(x)f(x) dx with prob 1 as n — oo.

n -

This suggests that a generic approximation of the integral can be
obtained by sampling lots of X;'s from f(x) and replacing
integration with averaging. This is the heart of the Monte Carlo
method.



What Follows?

Here, we focus mostly on simulation techniques.

e Some of these will be familiar, others probably not.

e As soon as we know how to produce samples from a
distribution, the basic Monte Carlo method described earlier
can be used to approximate any expectation.

e However, there are problems where it is not possible to sample
from a distribution exactly.

We'll discuss this point more later.



Direct Sampling Techniques



Generating Uniform RVs

Generating a single U from a uniform distribution on [0, 1] seems
simple enough. However, there are a number of concerns to be

addressed:

e Is it even possible for a computer, which is precise but
ultimately discrete, to produce any number between 0 and 17

e How can a deterministic computer possibly generate anything
that's really random?

While it's important to understand that these questions are out
there, we will side-step them and assume that calls of runif in R
produce bona fide uniform RVs.



Inverse CDF Transform

Suppose we want to simulate X whose distribution has a given
CDF F, i.e., for continuous X,

d
—F(x) = f(x).
ZF(x) = f(x)
If F is continuous and strictly increasing, then F~! exists.

Procedure
Sampling U ~ Unif(0, 1) and setting X = F~1(U) does the job.

Can you prove it?
This method is (sometimes) called the inversion method.

Note:
The assumptions above can be weakened to some extent.



Example: Exponential Distribution

For an exponential distribution with rate A, we have:

f(x)=Xe™ and F(x)=1-—e ™
It is easy to check that the inverse CDF is:

Fl(u) = 'Og(lA_ 4 ue (o)

Therefore, to sample X from an Exponential(\) distribution:

1. Sample U ~ Unif(0,1).
log(1-U

Can be easily “vectorized” to get samples of size n. This is in the
R function rexp — be careful about rate vs. scale parametrization.



Example: Cauchy Distribution

The standard Cauchy distribution has pdf and cdf given by:
1 1  arctan(x)
)= —— and F(x) = & + 22X,
(x) (1 + x?) an (x) 2 - T
This distribution has a shape similar to the normal distribution, but
with much heavier tails—Cauchy has no finite moments. However,
its CDF can be inverted:

F~(u) = tan [w <u - ;)} , ue(0,1).

To generate X from a standard Cauchy distribution:
1. Sample U ~ Unif(0,1).

2. Set X = tan [7r (U— %)]

To generate a non-standard Cauchy(u, o) RV (location p and scale
o) p+oX.
Use rt(n, df=1) in R for simulation from standard Cauchy. 10



Example: Discrete Uniform Distribution

Suppose we want X to be sampled uniformly from {1,... N}.
Here is an example where the CDF is neither continuous nor
strictly increasing.

The idea is as follows:

1. Divide up the interval [0, 1] into N equal subintervals; i.e.,
[0, %), [, %) and so forth.

2. Sample U ~ Unif(0, 1).
3.If 5 <U<t then X =i+1fori=01,...,N—1.

More simply, set X = [NU| + 1.

This is equivalent to sample (N, size=1) in R.

11



Example: Triangular Distribution

The (symmetric) pdf of X is given by:

1+x if —1<x<0;
f(x) = B
1—-x ifo<x<I1.
and the corresponding cdf is
%Z—Fx—i-% if —1<x<0;

F=1 ", 1 1 2
S +x+5=1-5(1-x) ifo<x<1

If we restrict X to [0, 1], then the pdf becomes:
F(x)=2(1—x) for0<x<1
and the CDF is simply:

Fix)=2x—-x*=1-(1-x)% xel0,1].

12



Example: Triangular Distribution

pdf of Symmetric Triangular Distribution, STri(-1,1) cdf of Symmetric Triangular Distribution, STri(-1,1)
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Figure 1: The pdf (left) and cdf (right) of the symmetric triangular
distribution.
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Example: Triangular Distribution

For this (restricted) “sub-problem”, the inverse is:

Fluy=1—vV1—u, uel01]

To sample X from the symmetric triangular distribution:

1. Sample U ~ Unif(0, 1).
2. Set X =1—+1—U.
3. Take X = £X based on a flip of a fair coin.

14



Sampling Normal RVs

While normal RVs can, in principle, be generated using the CDF
transform method, this requires evaluation of the standard normal

inverse CDF, which is a non-trivial calculation.

e There are a number of fast and efficient alternatives for

generating normal RVs.

e The method below, due to Box and Muller, is based on some

trigonometric transformations.

15



Box-Muller Method

This method generates a pair of (independent) standard normal
RVs X and Y based on the following facts:

For X, Y i N(0, 1), the joint pdf in the Cartesian coordinates
(X, Y) becomes

N

r

(2r)tre=7, (8,r) €]0,27) x [0, 0)
when transformed to to the polar coordinates (6, R). Then
6 ~ Unif(0,27) and R? ~ Exp(1/2) (with the rate) are
independent.

So, to generate independent normal X and Y

1. Sample U, V ~ Unif(0,1).

2. Set R=+/—2logV and § = 2nU.
3. Finally, take X = Rcosf and Y = Rsind.

16
Take a linear function to get different mean and variance.



Bernoulli RVs

Perhaps the simplest RVs are Bernoulli RVs — ones that take only

values 0 or 1.

To generate X ~ Ber(p):

1. Sample U ~ Unif(0,1).
2. If U < p, then set X = 1; otherwise, set X = 0.

In R, use rbinom(n=1, size=1, prob=p).

17



Binomial RVs

Since X ~ Bin(n, p) is equal in distribution to Xj + ...+ X,
where the X;'s are independent Ber(p) RVs, the previous slide
gives a natural strategy to sample X.

That is, to sample X ~ Bin(n, p), generate Xi,..., X,
independently from Ber(p) and set X equal to their sum.

18



Poisson RVs can be constructed from a Poisson process, an

integer-valued continuous-time stochastic process.

By definition, the number of events of a Poisson process in a fixed
interval of time is a Poisson RV with mean proportional to the
length of the interval.

But the time between events are independent exponentials.
Therefore, if Y1, Y2, ... are independent Exp(1) RVs, then

k
X_max{k:ZY,-S/\}
i=1

then X ~ Poi(\).
In R, use rpois(n, lambda).

19



Chi-square RVs

The chi-square RV X (with n degrees of freedom) is defined as

follows:
e Generate n independent N(0,1) RVs: Z3,...,2Z,
o Take X = Z2 + - + Z2.

Therefore, to sample X ~ ChiSq(n) (or X ~ x?2), take the sum of
squares of n independent standard normal RVs.

Independent normals can be sampled using the Box-Muller method.

20



Student-t RVs

A Student-t RV X (with v degrees of freedom) is defined as the
ratio of a standard normal and the square root of an independent
(normalized) chi-square RV with v df.

More formally, let Z ~ N(0,1) and Y ~ x?2; then
z

VY /v

T —

isat, RV.
Remember the scale mixture of normals representation?

In R, use rt(n, df=nu).

21



Representation of Student-t as a Scale Mixture of Normals

The scale mixture of normals representation elucidates that the
Student-t distribution is effectively a normal distribution with a

random variance.
Formally, we define:

e An auxiliary variable W = l/m with W following an
inverse-gamma distribution due to its derivation from a
chi-square distribution Y ~ x2.

e The Student-t RV X as X = Z - W, where W serves as the
scaling factor, adjusting Z's variance.

Thus, the Student-t distribution can be viewed as an infinite

mixture of normal distributions with mean 0 and variable variances.
It's particularly adept at modeling data with outliers or heavy tails,
thus, offers a significant advantage over the normal distribution for

) 22
such scenarios.



Multivariate Normal RVs

The p-dimensional normal distribution has a mean vector p and a
p X p variance-covariance matrix X.

The techniques above can be used to sample a vector
Z=(Z,...,Z,)" of independent normal RVs. But how to
incorporate the dependence contained in X7

Let ¥ = LLT be the Cholesky decomposition of X. It can be

shown that X = p + LZ is the desired p-dimensional normal
distribution.

Can you prove it?

23



Fundamental Theorem of Simulation

24



Intuition Behind Simulating from a Density Function

Let f be a density function on an arbitrary space X’; the goal is to

simulate from f.

Note the trivial identity:

f(x)
f(x)= / du
0

This identity implicitly introduces an auxiliary variable U with a

conditionally uniform distribution.

The intuition behind this viewpoint is that simulating from the
joint distribution of (X, U) might be easy, and then we can just
throw away U to get a sample of X ~ f...

25



The “Theorem” on Simulation

Theorem: Simulating X ~ f is equivalent to simulating
(X, U) ~ Unif{(x,u) : 0 < u < f(x)} and then throwing away U.

Proof: Write the density of (X, U) and integrate out U.

How to implement this?
e Oneidea: X ~ f and U|{X = x} ~ Unif(0, f(x)).

e A better idea: “conditioning preserves uniformity,” i.e., for
Ao C A,

Z ~ Unif(A) = Z|{Z € Ao} ~ Unif(Ay).

Note: The first approach is used in the accept-reject method.

26



More on Implementation

The “conditioning preserves uniformity” point can be interpreted
as follows:

Procedure: Suppose that A is the set that contains
Cr:={(x,u) : 0 < u < f(x)}. Simulate (X, U) uniformly on A,
and keep (X, U) only if U < f(X). Such a kept pair (X, U) is
uniformly distributed on the constraint set, Cr, so X has the
desired distribution f.

Efficiency of Sampling: The efficiency of sampling depends on
how tightly A fits the desired constraint set. For a one-dimensional
X, with bounded support and bounded f, a reasonable choice for
A is a rectangle.

Extension: This idea extends—this is what the next sections are

about!
27



Example: Beta Simulation

Objective: Simulate from a Beta(2.7,6.3) distribution.

Procedure

e Start with uniforms in a box containing the Beta(2.7,6.3) pdf,
but keep only those that satisfy the constraint.

e Simulated 2000 uniforms, kept only 744 betas.

This approach demonstrates the use of uniform distributions as a
starting point and applying constraints to achieve the desired
distribution.

28



Example: Beta Simulation

Acceptance-Rejection Sampling for Beta(2.7,6.3) Distribution
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Figure 2: Simulation from Beta(2.7,6.3) distribution. Initial uniform
points are shown as dots. Rejected points are in gray, and red dots
represent accepted samples matching the Beta distribution, with its

. . . 29
theoretical density curve overlaid.



Example: Beta Simulation

Histogram of Accepted Samples with Theoretical pdf

density
1

sampled values

Figure 3: Histogram of simulated Beta(2.7,6.3) points with theoretical
pdf overlaid, showing the close match between empirical pdf (i.e. the

density histogram) and the theoretical pdf curve overlaid.
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Indirect Sampling Techniques
Acceptance-Rejection Sampling

Ratio Method
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Sampling Importance Resampling

Summary
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Concept: Sampling from a distribution with pdf f(x).
Suppose f(x) < h(x) := Mg(x) where g(x) is a (simple) pdf and
M > 1 is a constant. We say h(x) majorizes f(x).
Goal: Use samples from the (easy-to-sample) pdf g(x) as
“candidate samples” from f(x).

e |t's clear that there will be samples from g that are not

representative of f, since g(x) # f(x) .

e The idea is to throw away those “bad” samples.

This approach provides a mechanism for simplifying the sampling

process from complex distributions by utilizing a simpler
distribution as a proxy.

33



Acceptance-Rejection Method

The rule that determines when a sample is “thrown away" is called
the acceptance-rejection method.

To sample X from f(x):

1. Sample U ~ Unif(0,1).
2. Sample X ~ g(x).

3. Keep X = XifU< E;

Try to prove the following:

e Accept-reject returns a sample from f (see “theorem™).
e Acceptance rate or probability is 1/M.

Goal: To make acceptance rate high, i.e., M = 1... (why?)
Note: It is not necessary to know f exactly—it's enough to know

f only up to a proportionality constant. 2



Example: Sampling from a Trigonometric Density

Context: The true density is a complex trigonometric function,
used in the Robert & Casella book cover (see the code and the
figure below).

Approach:
e The majorant used for the acceptance-rejection method is a
normal distribution.
e We simulate n = 2000 samples from the trigonometric density.
Outcome:
e A histogram of the samples showcases the distribution across
the range [—4,4].
e The density plot highlights the complex behavior of the trig
function, contrasting it with the majorant normal distribution.

Insight: So, the acceptance-rejection method can be very effective

in simulating with non-standard densities, facilitating the

exploration of their properties through simulation. 35



Example: Sampling from a Complex Trigonometric Density

pdf and proposal density Sampled Histogram with Theoretical pdf

w —® 3
— d

density values
density
4

Figure 4: Left: Complex trigonometric density function f(x) and a
envelope function h(x), with f(x) in black and h(x) in red (both
non-normalized). Right: Normalized histogram of simulated values with
theoretical pdf f(x) overlaid for comparison.
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Example: von Mises Distribution

Definition and Characteristics: The von Mises distribution is
defined by its probability density function (PDF):

exp(—k cos x)

flx) = M2

(x) 2rly(k)

where Io(x) denotes the modified Bessel function of the first kind

x € [0, 2n],

and order zero, and k represents the concentration parameter,
analogous to the inverse of variance in the normal distribution.
This distribution is pivotal for modeling angles and directions,
hence its domain x € [0, 27].

Significance and Applications:

o Often referred to as a circular normal distribution due to its
bell-shaped curve when plotted in polar coordinates,

illustrating its utility in capturing the essence of circular data.
37



von Mises Distribution (Cont’d)

Significance and Applications:

e Popular in fields such as geology, biology, and environmental
science for modeling directional data, showcasing its versatility
and applicability across diverse scientific disciplines.

Efficient Sampling Techniques: Sampling from the von Mises
distribution, with a specific concentration parameter k, can be
done with an acceptance-rejection method which is optimized by
designing a “good” envelope or majorant, typically composed of
exponential PDFs, to approximate the target distribution closely.
The challenge is constructing an envelope that minimizes the

rejection rate.

Implementation Insight: For practical implementation (including

constructing the optimal majorant), refer to the R code.
38



von Mises Distribution (Cont’d)

Example with = 2:!

e Uses two oppositely oriented exponentials for the envelope.

e n = 5000 samples; acceptance rate (for Kk = 2) is
approximately 0.81.

Observations:

e The (un-normalized) density plot would show the true density
versus the majorant.
e True density and majorant plots illustrate the efficiency and fit

of the majorant to the true distribution.

'For some reason, majorant construction in the R code only works for
K > .66...

39



von Mises Distribution (Cont’d)

Sampled Histogram and pdf of von Mises Distribution

— true pdf
- - majorant

03 04 05

density

(Un-normalized) Density
02

0 1 2 3 4 5 6 7
I

Figure 5: Left: von Mises pdf with parameter x = 2 (black) and its
majorant function (red) (both un-normalized). Right: Normalized
histogram of simulated points from the von Mises distribution using the
accept-reject method, with the theoretical pdf curve overlaid.
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Example: Small-Shape Gamma Distribution

Problem: Suppose we want X ~ Gamma(r, 1), with v < 0.01.

e Using rgamma for this will result in many exact zeros!
Question: Can we develop a better/more efficient method?
Towards an Acceptance-Rejection Method:

e Asv — 0, —vlog X — Exp(1) in distribution.
e Suggests good samples of log X can be obtained using
acceptance-rejection with an exponential envelope.

Work in Literature:

e A version of the paper by R. Martin is available at
arXiv:1302.1884.

e R code is on his research website.

41



Example: Small-Shape Gamma (Cont’d)

Efficiency Analysis:

e Left panel shows (un-normalized) density of Z = —vlog X, for
v = 0.005, along with the proposed envelope.

e This approach is more efficient than other accept-reject
methods for this problem, based on acceptance rate (as a

function of v).
Acceptance Rate Comparison:

e The plot would typically show acceptance rates for
Ahrens-Dieter, Best, Kundu-Gupta, and rgamss methods.
e Indicates superiority of the proposed method in terms of

acceptance rate.

Note: This advanced method provides a significant improvement
in sampling from distributions with very small shape parameters. 42



Example: Small-Shape Gamma (Cont’d)

I
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Figure 6: Left: The un-normalized density function (solid) for

Z = —vlog X with v = 0.005, compared to a carefully tailored envelope
(dashed). Right: Acceptance rates of various methods—Ahrens-Dieter,
Best, Kundu-Gupta, and rgamss—for sampling from distributions with
small shape parameters.
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Bounding Set

Suppose we want to sample from a pdf f(x).

e All that matters is the shape of f(x), so we can remove any
constants and consider h(x) = cf(x), for some ¢ > 0.

e Define the set in R?:
Sy = {(u, V) :0<u< (h(v/u))l/z} .
e If Sj is bounded, then we can find a bounding set that
encloses it.
o |deally, the bounding set should be simple, e.g., a rectangle.
This strategy helps in simplifying the sampling process by focusing

on the shape of the distribution, allowing for efficient sampling
methods.

45



Ratio Method

Given: Sy, is bounded, allowing for a rectangle that encloses it.

Sampling Process:

1. Sample (U, V) uniformly from the bounding rectangle.

2. If (U, V) € Sp, then X = V/U is a sample from f(x).
Proof: Requires some Jacobian-type calculations (see Lange).
Efficiency:

e Some draws from the rectangle will be rejected.

e The efficiency of the sampling algorithm depends on how
closely the bounding set matches S,.

46



Why Ratio Method Works?

Proposition (Lange): Suppose k, = sup,{/h(x)} and

k, = sup, {|x|\/h(x)} are finite. Then the rectangle

[0, ku] x [—ky, ky] encloses Sp. If h(x) = 0 for x < 0, then the
rectangle R, = [0, k,] x [0, k,] encloses Sj,. Finally, if the point
(U, V) sampled uniformly from the enclosing set (i.e. the rectangle
R..v) falls within S, then the ratio X = V//U is distributed
according to f(x).

Proof (modified from Lange):

e From the definition of Sy, it is clear that the permitted u lie in

[0, ku].
e Multiplying the inequality u < \/h(v/u) by |v|/u implies that
lv| < ky.

e If h(x) =0 for x < 0, then no v < 0 yields a pair (u, v) in Sh.
47



Proof (continued)

Finally, note that the transformation (u,v) — (v/u, u) has
Jacobian —1/u. Hence,

Fx(x0) = P(X = V/U < xg) (since X = V /U are accepted)

//1{ X0}1{0<u§\/@} dudv (unif. integration on Sp)
= //1{X<X0}1{0<u§\/@} ududx (change of var. x = v/u)

X0 1 X0
:/ 2h(x)dx:/ c'f(x)dx

is the distribution function of the accepted X up to a normalizing
constant. [

48



Example: Gamma Distribution

Objective: Sample X ~ Gamma(v,1) for non-integer v.

e To apply the ratio method, take h(x) = x*"1e™ for x > 0.

e |t can be shown that, in general, if h(x) = 0 for x < 0, then
the rectangle [0, k,] x [0, k], with:

k, = sup{h(x)%} and  k, =sup {|x]h(x)%}

encloses Sp.

e For the Gamma(v, 1) case:

1 v—1 1 v+l
J— 2 2
k, = <V > and k, = <I/+ )

e e
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Example: Gamma Distribution (Cont’d)

Ratio Method Implementation: Sampling X ~ Gamma(v, 1)

1. Sample U', V' ~ Unif(0,1), set U = k,U’ and V = k, V.
2. Set X = V/U.
3. If U< /h(X) = X(=1)/2=X/2 then accept X.

Example: v =7.7.

e The ratio method has an acceptance rate ~ 0.44.
e This example illustrates the density of accepted X values

across the range [5, 20].

Insight: The acceptance rate indicates the efficiency of the
sampling algorithm. Higher acceptance rates suggest a closer
match between the sampling method and the target distribution’s
characteristics.
50



Example: Gamma Distribution (Cont’d)

Region Sy, and The Bounding Rectangle

T T T T T
0 5 10 15 20

u

Figure 7: The region Sy, in the uv-plane (shaded region) for
Gamma(v = 7.7,1) distribution and the bounding rectangle (red)

encompassing Sp.
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Example: Gamma Distribution (C

Gamma Simulation vs Theoretical pdf

0.15
|

density

0.00
L

X

Figure 8: Histogram of 5000 simulated points from Gamma(rv =7.7,1)
distribution, generated using the ratio method. The theoretical Gamma

pdf curve is also overlaid (solid line).
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Sampling Importance Resampling

53



Motivation for Sampling Importance Resampling (SIR)

Exact Sampling;:

e Previous methods are “exact” in that the distribution of the
draw X (given that it's accepted) matches the target
distribution f.

Question:
e |s it necessary for the sampling to be exact?
An Approximate Sampling Approach:

e An interesting idea is to sample from a different distribution
g(x), similar to f(x), and weight these samples in such a way
that a resample according to the given weights resembles a
sample from f(x).

e This is the core idea behind Sampling Importance Resampling

(SIR) (note the similarity to acceptance-rejection sampling). 54



Sampling Importance Resampling (SIR) Algorithm

The target pdf f(x), which may be known only up to a
proportionality constant.

Preparation: Let g(x) be another pdf with the same support as
f(x).
SIR Algorithm Steps:

1. Take an independent sample Y1,...,Y,, from g.
2. Calculate the standardized importance weights
w(Y;) LN
ST w(Y) g(v)y T
3. Resample Xi,..., X, with replacement from {Y1,..., Y}
with probabilities w( Y1), ..., w(Ym).

w(Yj) = where w(Yj)) =

.y m.

Outcome: The resulting sample Xi, ..., X, is approximately

distributed as f(x). 55



Remarks on Sampling Importance Resampling (SIR)

Approximation Quality: As m — oo, P(X; € A) — / f(x) dx,
A
indicating the approximate nature of sampling.

Choice of Envelope g:

e The selection of g is critical; f(x)/g(x) should not be too
large to avoid dominance by a single weight.
e Violation may result in X-samples being almost identically a

single value.

Sample Size Considerations: Theory suggests m should be large,
where “large” depends on the desired sample size n from the

target.

Comparison with Other Methods: Monte Carlo estimates based
on the SIR sample typically have variances larger than those
obtained with direct sampling or importance sampling. 56



Example: Bayesian Inference via SIR

Problem Context: Want to sample from the posterior for the

following setup.

e Consider the likelihood function
L(0) o [T(1 = cos(x; — 0)), 0<6 <2
i=1

e Observed data (xi,...,x,) is provided in the R code.

Prior Distribution: Assume 6 is given a Unif(0, 27) prior

distribution, m(0) = 5=

Posterior Distribution: Then posterior o< prior x likelihood o
likelihood.

SIR Algorithm Application: Use the SIR algorithm with the prior

as the envelope; N = 1000.

e 57
Visualization: See the plots below.



Bayesian Inference via SIR (Cont’d)

Distribution of (Standardized) Weights Posterior Distribution (Histogram and pdf)
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Figure 9: Left: Histogram of the importance weights, showing the
distribution of weights assigned to each sampled point. Right: Histogram
of the SIR sample with a density plot overlaid, illustrating the distribution
of 6 after resampling according to importance weights.
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Bayesian Inference via SIR (Cont’d)

Interpretation:
e The left histogram provides insights into the variability and
distribution of importance weights across the sampled points.

e The right histogram, along with the density overlay,
demonstrates how the SIR process adjusts the prior
distribution to better reflect the observed data, resulting in a
posterior distribution of 6.

Note: This example showcases the practical application of SIR in
Bayesian inference, emphasizing the transformation from prior to
posterior distribution through the weighting and resampling
mechanism.
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Summary
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Remarks on Simulating Random Variables

Importance of Simulation:

e Simulating random variables is crucial for various applications
of the Monte Carlo method.

Methods of Simulation:

e Some distributions can be easily simulated via the inversion
method, while others require more intricate approaches.

Strategies and Implementations:

e The “Fundamental Theorem of Simulation” provides a general
strategy for simulating from non-standard distributions,
though its implementation may be complex.

e The accept-reject method is a practical implementation with
efficiency depending on how closely the envelope function
matches the target density. 61



Remarks on Simulating Random Variables

Challenges and Solutions:

e Identifying an effective envelope function is challenging.

e Various automatic/adaptive methods have been developed to
address this.

Recurring Concepts:

e The accept-reject idea not only plays a crucial role in
Rejection Sampling context, but will recur in future
discussions and applications.
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