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Introduction



e Sampling and integration are crucial for numerous statistical
inference problems.

e However, often the target distributions are too complicated, or
the integrands are too complex or high-dimensional for these
problems to be solved using basic methods.

e In this lecture, we will discuss a couple of clever but fairly
simple techniques for handling such difficulties, both based on
the concept of importance sampling.

e Some more powerful techniques, namely Markov Chain Monte
Carlo (MCMC), will be discussed in the upcoming lectures.



e Let f(x) be a pdf defined on a sample space X.
f(x) may be a Bayesian posterior density that's known only

up to a proportionality constant.
e Let h(x) be a function mapping X to R.
e The goal is to estimate E[h(X)] when X ~ f(x); i.e.,

E+[h(X)] :—/Xh(x)f(x) dx.

e The function h(x) can be almost anything — in general, we
will only assume that E¢|h(X)| < co.

e g(x) will denote a generic pdf on X, different from f(x).



LLN and CLT

e The general Monte Carlo method is based on the two most
important results of probability theory—the law of large
numbers (LLN) and the central limit theorem (CLT).

LLN: If Ef|h(X)| < oo and Xy, Xa,. .. are iid from f, then

Zh ) — E¢[h(X)], with probability 1.
CLT: If Ef[h?(X)] < o0 and X1, Xa, ... are iid from f, then
Vn(ha(X) — E¢[A(X)]) = N(0,c2(h(X))), in distribution.

e Note that the CLT requires a finite variance while the LLN
does not.



Basic Monte Carlo



Details on Estimation and Confidence Intervals

e Assume that we know how to sample from f(x). Let
Xi,..., X, be a random sample from f(x) and Y; = h(X;) for
i=1,2,....n.

e The LLN states that Y =157 | v; =157  h(X;) should
be a good estimate of E¢[h(X)] provided that n is large
enough. It's an unbiased estimate for all n.

o If Ef[h?(X)] < oo, then the CLT allows us to construct a
confidence interval for E¢[h(X)] based on our sample.

e In particular, a 100(1 — «)% Confidence Interval (CI) for
Ef[h(X)] is

Y + Zi_a X Sy,

where sy = % is the sample standard error of Y with Sy is

sample standard deviation of {Y1,..., Y,}.



Example: Estimating E[h(X)] with X from Uniform Distribution

Suppose X ~ Unif(—, ), so f(x) = o for —m < x < .

The goal is to estimate E¢[h(X)], where h(x) = sin(x), which we
know to be 0.

e Take an iid sample of size n = 1000 from the Unif(—m, )
distribution and evaluate Y; = sin(.X).
e Summary statistics for the Y-sample include:
e Mean = Y = —0.0167
e Standard deviation (SD) = Sy = 0.699

e Then a 99% CI for E¢[h(X)] is calculated as:

00167+ 2.576 x 229 _ 10.074,0.040]

+/1000




Example: p-value of the Likelihood Ratio Test

o Let Xi,..., X, % Poi(\).
e Goal is to test Hy : A = Ag versus Hy : A # Ao.

e One idea is the likelihood ratio test, but the formula is messy:

n 2%
A= LL(()\XO)) = exp (32X — mho) <ZA>O<:-)

where A = X (is the MLE).

e Need null distribution of the likelihood ratio statistic to

compute, say, a p-value, but this is not directly available.?
e Straightforward to get a Monte Carlo p-value.

e Note that A depends only on the sufficient statistic
3" X; = nX, which is distributed as Poi(n)\g) under Hp.

'Wilks's theorem gives us a large-sample approximation...




Null Distribution of the Test Statistic

The LRT statistic depends on the sufficient statistic
T = ZX,' = n)_(.

Under Hy, we have:

T ~ Poi(n)g).

No closed-form for the distribution of A.

For large n, Wilks's theorem implies:

—2log A\ LN X%

For small or moderate n, use Monte Carlo simulation.
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Monte Carlo p-value for LRT

Simulate B datasets from Poi(\g):

X x® < Poi(g), b=1,...,B.

Compute A®) (or —21og A(P)) for each dataset.

Let Tops = —2log Aops from original data.

Monte Carlo p-value:

Mm

( 2log A (b) > Tobs) .

o
Il
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Remarks on Monte Carlo Methods

Advantages of Monte Carlo:

e Does not depend on the dimension of the random variables.
e Basically works for all functions h(x).

e A number of different things can be estimated with the same

simulated X;'s.
Disadvantages of Monte Carlo:

e Can be slow.
e Need to be able to sample from f(x).

e Error bounds are not as tight as for numerical integration.
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Importance Sampling
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Motivation for Importance Sampling

e Importance sampling techniques are useful in a number of
situations; in particular:

e When the target distribution f(x) is difficult to sample from.
e To reduce the variance of basic Monte Carlo estimates.

e The next slides give a simple example of the latter.

e Importance sampling is the general idea of sampling from a
different distribution but weighting the observations to make
them look more like a sample from the target.

e This approach is similar in spirit to Sampling Importance
Resampling (SIR)...
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Motivating Example: Estimating Probabilities

e The goal is to estimate the probability that a fair die lands on
1. A basic Monte Carlo estimate X based on n iid Ber (3)
samples has mean % and variance %.

e Changing the die to have three 1's and three non-1's increases
the probability of observing a 1. To account for this, weight
each 1 observed with the new die by %

e So,if Y;= % x Ber (%) then:

o Expected value E(Y;) =1 x § =

e Variance Var(Y;) = (%)2 Xi=%

6

e Therefore, the new MC estimate, Y has the same mean as X,

1

but with a significantly smaller variance: 3¢~

compared to 32—,7.
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Details on Importance Sampling

e As before, f(x) is the target distribution and g(x) is a generic
envelope distribution. Define importance ratios

w*(x) = f(x)/g(x).
e Then the key observation for importance sampling is that
Er[h(X)] = Eg[h(X)w"(X)].
e This motivates the (modified) Monte Carlo approach:
1. Sample Xy, ..., X, iid from g(x).
. 1O .
2. Estimate E¢[h(X)] with ~ ’;h(x,-)w (X;).

e If f(x) is known only up to a proportionality constant, then
use

>y h(X)w*(Xi)
Do wH (X))

Ef[n(X)] = Y h(X;)w(X;) =
i=1
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Importance Sampling to Estimate an Integral

e Goal: Estimate the integral

/1 cos (%X) dx = 2 ~ 0.637.
0

7T
e Interpret the integral as an expectation (with respect to
Uniform distribution):

Er [cos <7T2X>} , X ~Unif(0,1)
since

Jocos (%) dx = [ cos () x fx(x)dx = [ cos (=) x 1dx.
e Monte Carlo (MC) estimator:

. 1< 7 X;
MMc:nz;cos< 2').
1=

X
e It can be shown that Varf [cos (2)] ~ 0.095.
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Importance Sampling with Non-Uniform Proposal

e Use importance sampling with proposal density:

3

=51-y%), yeo1].

g(y)

e Importance sampling estimator:

1 (YY)
s = — h(Yi), Yi~g,
n,z_;g(Yf)( )

where f(x) =1 on [0,1], and h(x) = cos (%¥).
e So, the estimator simplifies to:

R 1 2cos(“2y">

fis ==Y ——— L.
n 3(1-Y7)
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Variance Reduction via Importance Sampling

It can be shown that:

2 cos (ﬂ)
Var, [3(1 — 352)

This is significantly smaller than the variance under uniform

~ 0.00099.

sampling: 0.005

0.00099
= Importance sampling achieves over 95x variance reduction.

Intuition: g(y) concentrates sampling where cos (%) is

large, improving efficiency.
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Key Takeaways

e Importance sampling can significantly reduce variance when
the proposal distribution aligns well with the shape of the
integrand.

e Here, g(y) = 3(1 — y?) closely matches the shape of cos (%)
on [0,1].

e Same principle as seen in the die example: reweighting
improves precision.

e Variance reduction = faster convergence for same n, or

smaller n for same accuracy.
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Another Motivating Example for IS (Cont’d)

Comparison of target, envelope, and the integrand Plot of Weights

15

— 90
— Integrand
— Uniform

function value

Figure 1: Left: The integrand function cos (%*), the envelope

g(x) = 2(1 — x?), and target density f(x) = 1. Right: This plot
visualizes the weights w(y) = f(y)/g(y) = 1/g(y) for y € [0,0.99]. The
weights indicate the adjustment factor applied to each sampled value to

estimate the integral using importance sampling.
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Example: Size Estimation for a One-Sided Test

Suppose Xi,..., X i Poi(A).
We test:

Ho: A=2 vs. Hy:A>2.

Use test statistic:

,_X-2 _X-2
~V/2/10 V02

Large-sample theory: Reject Hy if Z > 1.645 for aw = 0.05.
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Concern: Is the True Size Really 0.05?

Poisson is discrete and skewed for small A\, and n = 10 is

small.

= Normal approximation may not yield correct Type | error.

Need to estimate the true size:

Qerwe = P(Z > 1.645|\ = 2).

Two simulation approaches used:

e Basic Monte Carlo sampling from Poi(2).
e Importance sampling with proposal g = Poi(2.4653).
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Monte Carlo and Importance Sampling Estimators

Basic Monte Carlo:

e Generate B samples of size 10 from Poi(2).
e Compute Z and estimate P(Z > 1.645) empirically.

Importance Sampling:

e Generate samples from g = Poi(2.4653).
e Reweight using likelihood ratio:

g(x) 3
e Estimate:
B
Pr(Z > 1.645) ~ Z (b) . (Z(b) > 1.645).
b:

24



Results: Estimated Type | Error Rates

e Basic Monte Carlo:

amc = 0.0508, 95% Cl : (0.0465,0.0551)
e Importance Sampling:

ais = 0.0533, 95% Cl: (0.0520,0.0611)

e Both methods suggest the actual size is slightly greater than
0.05.

e IS is more efficient: tighter confidence interval with fewer

samples.
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Key Takeaways

e Z-test assumes asymptotic normality of X.

e For small n and non-normal distributions, the actual test size

may differ from the nominal level.

e Simulation is a powerful tool to assess size and power
empirically.

e Importance sampling is especially useful for tail probabilities.
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Remarks on the Choice of Envelope g(x)

e The choice of envelope g(x) is crucial. In particular, the
importance ratio w*(x) = f(x)/g(x) must be well-behaved;
otherwise, the variance of the estimate could be too large.

e A general strategy is to take g(x) to be a heavy-tailed
distribution, like Student-t or a mixture thereof, to ensure
that w*(x) remains manageable.

e To get an idea of what makes a good proposal distribution,
consider a practically useless result:

“optimal” proposal o< |h(x)|f(x).
e Take-away message: We want the proposal distribution to
resemble f, but we are less concerned in places where h is
near or equal to zero.
e See Theorem 3.12 in Robert & Casella for more details.
27



Example: Estimating a Small Tail Probability

e Goal: Estimate the tail probability
p=P(Z >4.5), where Z~ N(0,1).

e Exact value:
p = 3.397673 x 107°.

e This is a rare event: it occurs about 3—4 times in a million

standard normal samples.

28



Naive Monte Carlo Estimation

Sample Z1,...,2Zy " N(0,1).

Estimate:

1 M
Puc =17 D liz>45).
j=1

With M = 10,000, we expect only 0.034 samples to exceed
4.5.

e So pyc is typically 0 — not a useful estimate.

29



Fixing the Problem with Importance Sampling

o Define h(z) = Ir,~45.
e Then:

p=E D)~ |55

where ¢ is the standard normal density, and g is a proposal
distribution.

e Since h(z) =0 for z < 4.5, we only need to sample from g

supported on (4.5, 00).

30



Choosing a Good Proposal Distribution

e Use a shifted exponential distribution as the proposal:
g(z) x e Z749) 7545

e This concentrates all sampling effort in the region where

Z > 4.5.
e Then the IS estimator becomes:
M
1 v(Z))
pis = sz_; g(Zj-)’ where Zj ~ g and Z; > 4.5.
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Results: Naive MC vs. Importance Sampling

For M = 10,000 samples:

Method Estimate True Value
Naive MC 0 3.397673 x 10~°
IS 3.316521 x 107° 3.397673 x 10°

o Naive MC fails to detect rare events with small sample sizes.

e Importance Sampling gives accurate estimates by targeting
the region of interest.
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Key Takeaways

e Naive Monte Carlo is ineffective for estimating rare-event

probabilities.

e Importance sampling improves efficiency by focusing sampling

in the rare-event region.

e Careful choice of proposal distribution g is crucial for IS to

work well.

e This technique is widely used in finance, reliability, and risk
analysis.
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Is the Chosen Proposal Good?

e |t is possible to use the weights to judge the proposal.

e For f known exactly, not just up to proportionality, define the
effective sample size (ESS)

n
Ne(f,8) = ———
where s2 is the sample variance of {w*(X1),..., w*(X,)}.

e N (f,g) is bounded by n and measures approximately how
many iid samples the weighted importance samples are worth.

e Ng(f,g) close to n indicates that g(x) is a good proposal,

e Close to 0 means g(x) is a poor proposal.

34



Rao-Blackwellization
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The Rao-Blackwell Theorem

e In statistics (e.g. in STAT 7610), the Rao-Blackwell Theorem
provides a method for reducing the variance of an unbiased
estimator by conditioning.

e The theorem is based on two simple formulas:
E(Y) = E[E(Y|X)]
Var(Y) = E[Var(Y|X)] + Var[E(Y|X)] > Var[E(Y|X)]

e Key point: Both Y and h(X) = E(Y|X) are unbiased
estimators of E(Y) = uy, but the latter has a smaller
variance.

e In the Monte Carlo context, replacing a naive estimator with
its conditional expectation is referred to as
Rao-Blackwellization.
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Example: Bivariate Normal Probabilities

e Consider computing P(Y > X) where (X, Y) is a (standard)
bivariate normal with correlation p.

e Naive Approach: Simulate (X], Y;) pairs and count instances
where Y; > X;.

e However, the conditional distribution of Y, given X = x, is
available, i.e., Y|X = x ~ N(px,1 — p?), so

- - 1-p
h(x) .—P(Y>X|X—X)—1—<D< 1+px>.
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Example: Bivariate Normal Probabilities

¢ Rao-Blackwellization: Simulate X; ~ N(0,1) and compute
the mean of h(X;).
e Comparison: M = 10,000 samples with p = 0.7:
Method Estimate
Naive 0.5012
Rao-Blackwell  0.4990414

e What about variances?

38



Example: Hierarchical Bayesian Model

Consider the model X; ~ N(u;,1), independent, i =1,...,n

¢ Exchangeable/Hierarchical Prior:

il N N(,7) fori=1,2,...,n and 7~ 7(7).
e Goal: Compute the posterior mean E(uj|X =x), i=1,...,n
for x = (x1,...,xpn). Simple, if we could sample (u1, ..., tn)

from the posterior.
e Rao-Blackwell Approach based on the identity:

TXi
E i1Xis = .
(i 7) =
e Suggests that we can just take a sample 7y, ..., 7y from the

posterior distribution of 7, given X = x, and compute

TmXi .
u,]x MZTm+1 1,...,n.
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Hierarchical Bayesian Model (Setup Details)

Consider independent observations X; ~ N(u;, 1), for
I=1...,n.

That is, the data model is: Xj|u; ~ N(pi, 1).
Hierarchical Prior:
e First Level: u;|7 g N(0,7) for i =1,2,...,n.
e Second Level: Prior w(7) for hyperparameter 7; i.e., 7 ~ 7(7).

Goal: Compute posterior mean E(u;|X = x), requires

(computationally difficult) integration over 7 and p;.

40



Hierarchical Bayesian Model — RB Approach and Derivation

e Rao-Blackwell Theorem: Use to reduce variance of
estimates by conditioning.
e Derivation of E(u|x;, 7):

e Posterior of u; given X; = x; and 7: By Bayes' Theorem,
combining the likelihood and the prior yields a posterior
distribution for u; that is also normal.

e That is, the likelihood function is
L(pilx;) o< exp (—3(xi — p)?), and the prior for y; is
p(pilT) o exp (—5)

e Multiplying the likelihood by the prior (omitting normalization
constants) and completing the square in y;, we find that the

TXi T

posterior for p; is pi|xi, 7 ~ N (T+17 T—H)
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Hierarchical Bayesian Model — RB Approach and Derivation

e Expected Value E(uj|x;,7): From the posterior distribution
of p;i, the expected value (mean) is directly the mean of the

+1

¢ Final Estimation with Rao-Blackwell: To estimate

posterior normal distribution:
-

E(ui|X = x), we first obtain samples 71, ..., 7y from the
posterior distribution of 7 given x. Then, we compute the

estimate of E(u;|x) by averaging over these samples:

TmXj
E E
(,u, [x) = I\/I | Tm +1

e This approach leverages the Rao—BIackweII Theorem to
efficiently compute the posterior mean of y; by conditioning
on 7 and using the derived expression for E(ui|x;, 7).
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How to Find the Posterior Distribution of 7 Given X?

Objective: Determine 7(7|X = x).

1. Joint Distribution of X and p Given 7:

p(x, p|7) = H(/V xi|pis 1) x N(p]0, 7))
2. Marginal Likelihood of X Given 7:

plxir) = [ plx. ulr)d

Generally not solvable in closed form.

3. Posterior of 7: 7(7|x) o< p(x|7)7(7). Computation of 7(7|x)
may require numerical integration or sampling (i.e. simulation
methods like MCMC) due to the lack of a closed-form
solution for the marginal likelihood.
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Root-finding and Optimization via Monte Carlo
Stochastic Approximation

Simulated Annealing
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Introduction

Basic Monte Carlo
Importance Sampling
Rao-Blackwellization

Root-finding and Optimization via Monte Carlo

Stochastic Approximation
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Root-Finding with Monte Carlo Estimates

e We discussed a number of methods for root-finding (in S2),
including:
e Bisection
e Newton's Method
e These methods are fast but require exact evaluation of the
target function.

e Challenge: Suppose the target function itself is not directly
available, but instead, we can compute a Monte Carlo
estimate of it.

o Question: How to find the root? Newton's method and other
traditional root-finding techniques may not be directly
applicable due to the stochastic nature of the estimates.
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Stochastic Approximation

e Suppose the goal is to find the root of a function f.

e However, f(x) cannot be observed exactly — we can only
measure or observe y = f(x) + ¢, where ¢ is a mean-zero
random error.

e Stochastic approximation is a sort of a stochastic version of
Newton's Method; the idea is to construct a sequence of

random variables that converges (probabilistically) to the root.

e Let {w;} be a vanishing sequence of positive numbers. Fix xp
and define

Xt+1 :Xt+Wt+1 X (f(Xt)+€t+1), t:071,2,...
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Stochastic Approximation (Continued)

e Intuition: Assume that f is monotone increasing and 0 is in
the target set (or codomain) of f...

e |t can be proven that f has a unique root x* and if w; satisfies

o 0
E wy = 00 and g Wt2 < o0;
t=1 t=1

then x; — x* as t — oo with probability 1.
e First studied by Robbins & Monro (1951).
¢ Modern theory employs a blend of probability theory
(martingales) and stability theory of differential equations.
e Applications in Statistical Computing:
e Stochastic Approximation-EM (SA-EM)
e Stochastic Approximation Monte Carlo (SAMC)
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Stochastic Approximation - Convergence Criteria

Key Conditions for Convergence
For a sequence of approximations x; to converge to the true root

x* of f, the weights w; used in the approximation must satisfy two
conditions:

e The sum of the weights over all iterations tends to infinity:
> toq Wy = co. This ensures that every point in the space is
given infinite attention over time, allowing for the exploration
of the function’s behavior thoroughly.

e The sum of the squares of the weights is finite:
pOpey w? < oo. This condition guarantees that the sequence
of updates does not oscillate indefinitely, allowing the
approximation process to stabilize and converge.
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Stochastic Approximation (Continued)

e Practical Application: How can the stochastic
approximation be applied in practice?

e Let h(x,z) be a function of two variables, and suppose the

goal is to find the root of
f(x) = E[h(x,Z)], where Z ~ Fz, with Fz known.
e If we can sample Z; from Fz, then h(X:, Z;) is an unbiased
estimator of f(x;), given X; = x;.
e Therefore, run stochastic approximation as

iid
Xt4+1 = Xt —+ Wit X h(Xt,Zt+1); Zl,ZQ, Y] FZ.
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Quantile Estimation for Student-t Distribution

e Goal: Estimate the 100a-th percentile of T,, i.e., find x,
such that
P(T, < x,) = a.

e Challenge: No closed-form expression for percentiles of
t-distributions (except for special /).
Scale-Mixture Representation of T,
e A Student-t variable can be written as
X v
T, = = X4/ =,
Y VZ/v V4

where X ~ N(0,1) and Z ~ x2, independent.
e This leads to a representation of P(T, < x) via expectations

over Z.
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Quantile Condition as an Expectation
> (w)] |
14

e So the quantile condition becomes:

P(T, <xy)=a = Ezlq)(xa Z)

14

e Observe that P(T, < x) =E

= Q.

Formulation as a Root-Finding Problem

h(x,z)—a_cp(x\f).
z

f(x) =E[h(x,Z)]=a—E [dD (x )

e Define

RN

Then

1%

e The target is to find x* such that f(x*) = 0.
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Stochastic Approximation Algorithm

o Let Z; e X2 and use Robbins-Monro update:
Xe41 = X¢ + Wegt - h(xe, Zey1).
e For example, choose
we=(1+1)""% t>1.

e Then x; — x, almost surely under standard assumptions.

Convergence Example

e Example parameters: v =3, a =0.8, xp = 1,
wy = (14 t)_0'75.
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Example: Student-t Percentile

Stochastic Approximation of Student-t Percentile

<
O_ —
—
c
s 8 |
© -
E
x
8 _
Q
Q
< g
o
—— Approximation
S ---+ True Quantile
(=}

T T T T T T
0 2000 4000 6000 8000 10000

Iteration

Figure 2: The convergence of x; to the 100a-th percentile over
iterations, indexed from 0 to 10,000, with x; values ranging from 0.92 to

1.06.
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Key Takeaways

e This method generalizes quantile estimation to settings where
the CDF is intractable.

e Leverages a known scale-mixture representation and
simulation-based approximation.

e Stochastic approximation offers a flexible and convergent
algorithm.
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Exact Confidence Regions via Hypothesis Test Inversion

e Consider testing Hp : 0 = 0y with a test statistic Ty.

e Reject Hp if Ty, is too large.
e Define p-value:

P(00) = Pa,(Toy > tobs)-
e Exact (1 — «a) x 100% confidence region:
Co ={0:p(0) > a}.

e To construct C,, solve p(f) = a.
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When is Stochastic Approximation Needed?

e In many problems, p(#) cannot be computed analytically.

e [nstead:
p(0) = Eq [h(6, 2)],

where h(0,Z) = lt1,(z)>t,.} and Z ~ Pe.

e Goal: Solve
f(0) =p@) —a=0.

e Use Robbins-Monro stochastic approximation:
Or11 = 0r — weyr - (h(0r, Ze11) — @),

where Z;11 ~ Py,.
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Gamma Model Example: Likelihood Ratio-Based Confidence

Region

Model Setup:

o Let Xi,..., X0 4 Gamma(6y,65).
e Test Hp : (01,02) = (7,13) using the Likelihood Ratio Test

(LRT).
e Define the test statistic Ty = —2 log (igzg) where 0 is the
MLE.
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Gamma Model Example: Likelihood Ratio-Based Confidence

Region

Computational Procedure:

e For each candidate 6 = (61, 6>):
e Generate B samples Z(?) ~ P,, compute T\ = T,(Z(®).
e Estimate the p-value via Monte Carlo:

B
Z (TP > tops}
b:

e Solve p(f) = a using stochastic approximation to trace the
boundary 0C,,.
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Visualization and Comparison

¢ Plot contents:
e LRT p-value contour where p(6) = 0.1 (i.e., boundary of the
90% confidence region),
e Bayesian posterior samples from prior over (61, 6,),
e Asymptotic 90% confidence ellipse based on MLE normal

approximation.
e Interpretation:
e Posterior cloud aligns with, but not identical to, the exact

region.
e Asymptotic ellipse may underestimate or misalign in small

samples.
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Example: Exact Confidence Regions (Cont.)

wn _]
o

20
|

0,
15

Gl

Figure 3: The plot showing the LRT p-value contour along with the
Bayesian posterior sample and the confidence ellipse. The axes represent

0y and 65, ranging from 5 to 25. 61



e Inverting hypothesis tests yields exact confidence regions.

e When p(0) is intractable, stochastic approximation enables
efficient root-finding.

e The method is broadly applicable in simulation-based

inference and non-standard models.

e Useful for comparing exact, Bayesian, and asymptotic

confidence regions.
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Simulated Annealing
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Optimization without Derivatives

We discussed various methods for optimization, particularly,
Newton's Method, which requires the objective function to have a
derivative.

e Challenge: What if the derivative isn't even defined? This
scenario arises when the function domain is discrete.

e Simple Case: If the discrete space is small, then optimization
is straightforward.

e Complex Case: What about when the discrete space is large,
making it impractical to enumerate all function values?

e Solution: A Monte Carlo-based optimization method can be
employed in these cases.
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Simulated Annealing: Towards the Global Minimum

e Simulated annealing strategically explores the solution space
to find the global minimum of a function f(x), inspired by the
metallurgical process of annealing.

e Though applicable to continuous variables, our discussion
centers on discrete variables for clarity.

e Decision Process at Each Step (t + 1):

e Generate a candidate Xy in a neighborhood of x; from a
distribution (possibly depending on t and x;)

e Accept Xpew With a probability, based on the flip of a (biased)
coin, that favors lower f(x) but allows for occasional increases
to escape local minima.

e Keys to Success:

1. A well-chosen proposal distribution.

2. An effective cooling schedule.
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“Cooling” in Simulated Annealing

e Origin of the Term: “Cooling” is inspired by the
metallurgical process of annealing, where controlled cooling
reduces defects in materials, enhancing their properties.

e Analogy in Optimization: In simulated annealing,
“temperature” controls the acceptance of solutions,
facilitating exploration of the solution space.

e High Temperature: Encourages exploration, allowing
acceptance of suboptimal solutions to avoid local minima.

e Cooling Down: Gradually focuses the search on promising
regions by being more selective in accepting solutions.

e Cooling Schedule: A strategy for decreasing temperature
over time, balancing between diversification (exploration) and
intensification (exploitation) to target the global minimum.
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Simulated Annealing Algorithm

1.

5.
6.

Specify a function §(t), a sequence of distributions 7(x), and
a starting point xp. Set t = 0.

Sample Xnew ~ Te(Xt)-

. Calculate

. Flip a coin with probability o of showing Heads and set

Xt4+1 = Xnew If the coin lands on Heads; otherwise, set

Xt4+1 = Xt-
Set t =t + 1 and return to Step 2.
Repeat until convergence.

For suitable 7¢(x) and S(t), x; will tend (probabilistically) toward

the global minimum of f(x).
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About the Cooling Function in the SA Algorithm

e In the above algorithm, the cooling function is represented by
B(t), which is crucial for the algorithm’s performance.

e |t controls the “temperature” parameter in the simulated
annealing algorithm, dictating how the acceptance probability
for new solutions changes over time.

e As t (often representing time or iteration number) increases,
B(t) typically increases in simulated annealing contexts,
effectively lowering the “temperature.”

e The gradual cooling ensures a transition from a broad,
explorative search across the solution space to a more focused,
exploitative search around promising areas, aiming to converge
to the global minimum of the objective function f(x).

e The cooling function must balance between sufficient
exploration at high temperatures and efficient exploitation as

the temperature decreases. 08



Example: Variable Selection in Regression

e Consider a regression model with p predictor variables.

e There are a total of 2P sub-models that one could consider,
and some are better than others — how to choose a good
one?

e Objective Criterion: One method is to choose the model
with the lowest Akaike Information Criterion (AIC).?

e This becomes a problem of minimizing a function over a
discrete set of indices — perfect for simulated annealing.

¢ Implementation in R:

e Use the optim routine with method="SANN".
e The proposal function is input as gr (the gradient).
e The “SANN" method in optim has an internal cooling schedule

adjustable via the function’s parameters.
2AIC balances the residual sum of squares with a penalty for the number of

variables.
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Variable Selection in Regression (Cont.)

e For a given set of indices x;, we sample xpew by choosing at
random to either add or delete an index.
e Procedure:
e Sample changes to the model indices essentially at random.
e Use the default cooling schedule in R for simulated annealing.
e Code available on Canvas uses a baseball data set from Givens
& Hoeting to identify a minimum collection of variables

explaining the variability in baseball player salaries.

e Run the code to observe the variable selection process via

simulated annealing.
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