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Motivation

� Sampling and integration are crucial for numerous statistical

inference problems.

� However, often the target distributions are too complicated, or

the integrands are too complex or high-dimensional for these

problems to be solved using basic methods.

� In this lecture, we will discuss a couple of clever but fairly

simple techniques for handling such difficulties, both based on

the concept of importance sampling.

� Some more powerful techniques, namely Markov Chain Monte

Carlo (MCMC), will be discussed in the upcoming lectures.
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Notation

� Let f (x) be a pdf defined on a sample space X .

f (x) may be a Bayesian posterior density that’s known only

up to a proportionality constant.

� Let h(x) be a function mapping X to R.

� The goal is to estimate E[h(X )] when X ∼ f (x); i.e.,

Ef [h(X )] :=

∫
X
h(x)f (x) dx .

� The function h(x) can be almost anything –— in general, we

will only assume that Ef |h(X )| < ∞.

� g(x) will denote a generic pdf on X , different from f (x).
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LLN and CLT

� The general Monte Carlo method is based on the two most

important results of probability theory—the law of large

numbers (LLN) and the central limit theorem (CLT).

LLN: If Ef |h(X )| < ∞ and X1,X2, . . . are iid from f , then

hn(X ) :=
1

n

n∑
i=1

h(Xi ) → Ef [h(X )], with probability 1.

CLT: If Ef [h
2(X )] < ∞ and X1,X2, . . . are iid from f , then

√
n(hn(X )− Ef [h(X )]) → N(0, σ2

f (h(X ))), in distribution.

� Note that the CLT requires a finite variance while the LLN

does not.
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Details on Estimation and Confidence Intervals

� Assume that we know how to sample from f (x). Let

X1, . . . ,Xn be a random sample from f (x) and Yi = h(Xi ) for

i = 1, 2, . . . , n.

� The LLN states that Y = 1
n

∑n
i=1 Yi =

1
n

∑n
i=1 h(Xi ) should

be a good estimate of Ef [h(X )] provided that n is large

enough. It’s an unbiased estimate for all n.

� If Ef [h
2(X )] < ∞, then the CLT allows us to construct a

confidence interval for Ef [h(X )] based on our sample.

� In particular, a 100(1− α)% Confidence Interval (CI) for

Ef [h(X )] is

Ȳ ± z 1−α
2

× sȲ ,

where sȲ := SY√
n
is the sample standard error of Ȳ with SY is

sample standard deviation of {Y1, . . . ,Yn}.
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Example: Estimating E[h(X )] with X from Uniform Distribution

Suppose X ∼ Unif(−π, π), so f (x) = 1
2π for −π ≤ x ≤ π.

The goal is to estimate Ef [h(X )], where h(x) = sin(x), which we

know to be 0.

� Take an iid sample of size n = 1000 from the Unif(−π, π)

distribution and evaluate Yi = sin(Xi ).

� Summary statistics for the Y -sample include:

� Mean = Ȳ = −0.0167

� Standard deviation (SD) = SY = 0.699

� Then a 99% CI for Ef [h(X )] is calculated as:

−0.0167± 2.576× 0.699√
1000

= [−0.074, 0.040]
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Example: p-value of the Likelihood Ratio Test

� Let X1, . . . ,Xn
iid∼ Poi(λ).

� Goal is to test H0 : λ = λ0 versus H1 : λ ̸= λ0.

� One idea is the likelihood ratio test, but the formula is messy:

Λ =
L(λ0)

L(λ̂)
= exp

(∑
Xi − nλ0

)( nλ0∑
Xi

)∑
Xi

where λ̂ = X̄ (is the MLE).

� Need null distribution of the likelihood ratio statistic to

compute, say, a p-value, but this is not directly available.1

� Straightforward to get a Monte Carlo p-value.

� Note that Λ depends only on the sufficient statistic∑
Xi = nX̄ , which is distributed as Poi(nλ0) under H0.

1Wilks’s theorem gives us a large-sample approximation...
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Null Distribution of the Test Statistic

� The LRT statistic depends on the sufficient statistic

T =
∑

Xi = nX̄ .

� Under H0, we have:

T ∼ Poi(nλ0).

� No closed-form for the distribution of Λ.

� For large n, Wilks’s theorem implies:

−2 log Λ
d−→ χ2

1.

� For small or moderate n, use Monte Carlo simulation.
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Monte Carlo p-value for LRT

� Simulate B datasets from Poi(λ0):

X
(b)
1 , . . . ,X

(b)
n ∼ Poi(λ0), b = 1, . . . ,B.

� Compute Λ(b) (or −2 log Λ(b)) for each dataset.

� Let Tobs = −2 log Λobs from original data.

� Monte Carlo p-value:

p̂ =
1

B

B∑
b=1

I
(
−2 log Λ(b) ≥ Tobs

)
.
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Remarks on Monte Carlo Methods

Advantages of Monte Carlo:

� Does not depend on the dimension of the random variables.

� Basically works for all functions h(x).

� A number of different things can be estimated with the same

simulated Xi ’s.

Disadvantages of Monte Carlo:

� Can be slow.

� Need to be able to sample from f (x).

� Error bounds are not as tight as for numerical integration.
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Motivation for Importance Sampling

� Importance sampling techniques are useful in a number of
situations; in particular:

� When the target distribution f (x) is difficult to sample from.

� To reduce the variance of basic Monte Carlo estimates.

� The next slides give a simple example of the latter.

� Importance sampling is the general idea of sampling from a

different distribution but weighting the observations to make

them look more like a sample from the target.

� This approach is similar in spirit to Sampling Importance

Resampling (SIR)...
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Motivating Example: Estimating Probabilities

� The goal is to estimate the probability that a fair die lands on

1. A basic Monte Carlo estimate X̂ based on n iid Ber
(
1
6

)
samples has mean 1

6 and variance 5
36n .

� Changing the die to have three 1’s and three non-1’s increases

the probability of observing a 1. To account for this, weight

each 1 observed with the new die by 1
3 .

� So, if Yi =
1
3 × Ber

(
1
2

)
, then:

� Expected value E(Yi ) =
1
3 × 1

2 = 1
6

� Variance Var(Yi ) =
(
1
3

)2 × 1
4 = 1

36

� Therefore, the new MC estimate, Ŷ has the same mean as X̂ ,

but with a significantly smaller variance: 1
36n compared to 5

36n .
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Details on Importance Sampling

� As before, f (x) is the target distribution and g(x) is a generic

envelope distribution. Define importance ratios

w∗(x) = f (x)/g(x).

� Then the key observation for importance sampling is that

Ef [h(X )] = Eg [h(X )w∗(X )].

� This motivates the (modified) Monte Carlo approach:

1. Sample X1, . . . ,Xn iid from g(x).

2. Estimate Ef [h(X )] with
1

n

n∑
i=1

h(Xi )w
∗(Xi ).

� If f (x) is known only up to a proportionality constant, then

use

Ef [h(X )] ≈
n∑

i=1

h(Xi )w(Xi ) =

∑n
i=1 h(Xi )w

∗(Xi )∑n
i=1 w

∗(Xi )
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Importance Sampling to Estimate an Integral

� Goal: Estimate the integral∫ 1

0
cos
(πx

2

)
dx =

2

π
≈ 0.637.

� Interpret the integral as an expectation (with respect to

Uniform distribution):

Ef

[
cos

(
πX

2

)]
, X ∼ Unif(0, 1)

since∫ 1
0 cos

(
πx
2

)
dx =

∫ 1
0 cos

(
πx
2

)
× fX (x)dx =

∫ 1
0 cos

(
πx
2

)
× 1dx .

� Monte Carlo (MC) estimator:

µ̂MC =
1

n

n∑
i=1

cos

(
πXi

2

)
.

� It can be shown that Varf

[
cos

(
πX

2

)]
≈ 0.095.
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Importance Sampling with Non-Uniform Proposal

� Use importance sampling with proposal density:

g(y) =
3

2
(1− y2), y ∈ [0, 1].

� Importance sampling estimator:

µ̂IS =
1

n

n∑
i=1

f (Yi )

g(Yi )
h(Yi ), Yi ∼ g ,

where f (x) = 1 on [0, 1], and h(x) = cos
(
πx
2

)
.

� So, the estimator simplifies to:

µ̂IS =
1

n

n∑
i=1

2 cos
(
πYi
2

)
3(1− Y 2

i )
.
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Variance Reduction via Importance Sampling

� It can be shown that:

Varg

[
2 cos

(
πY
2

)
3(1− Y 2)

]
≈ 0.00099.

� This is significantly smaller than the variance under uniform

sampling:
0.095

0.00099
≈ 96.

� ⇒ Importance sampling achieves over 95Ö variance reduction.

� Intuition: g(y) concentrates sampling where cos
(πy

2

)
is

large, improving efficiency.
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Key Takeaways

� Importance sampling can significantly reduce variance when

the proposal distribution aligns well with the shape of the

integrand.

� Here, g(y) = 3
2(1− y2) closely matches the shape of cos

(πy
2

)
on [0, 1].

� Same principle as seen in the die example: reweighting

improves precision.

� Variance reduction ⇒ faster convergence for same n, or

smaller n for same accuracy.
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Another Motivating Example for IS (Cont’d)
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Figure 1: Left: The integrand function cos
(
πx
2

)
, the envelope

g(x) = 3
2 (1− x2), and target density f (x) = 1. Right: This plot

visualizes the weights w(y) = f (y)/g(y) = 1/g(y) for y ∈ [0, 0.99]. The

weights indicate the adjustment factor applied to each sampled value to

estimate the integral using importance sampling.
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Example: Size Estimation for a One-Sided Test

� Suppose X1, . . . ,X10
iid∼ Poi(λ).

� We test:

H0 : λ = 2 vs. H1 : λ > 2.

� Use test statistic:

Z =
X̄ − 2√
2/10

=
X̄ − 2√

0.2
.

� Large-sample theory: Reject H0 if Z ≥ 1.645 for α = 0.05.
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Concern: Is the True Size Really 0.05?

� Poisson is discrete and skewed for small λ, and n = 10 is

small.

� ⇒ Normal approximation may not yield correct Type I error.

� Need to estimate the true size:

αtrue = P(Z ≥ 1.645|λ = 2).

� Two simulation approaches used:

� Basic Monte Carlo sampling from Poi(2).

� Importance sampling with proposal g = Poi(2.4653).
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Monte Carlo and Importance Sampling Estimators

Basic Monte Carlo:

� Generate B samples of size 10 from Poi(2).

� Compute Z and estimate P(Z ≥ 1.645) empirically.

Importance Sampling:

� Generate samples from g = Poi(2.4653).

� Reweight using likelihood ratio:

w(x) =
f (x)

g(x)
=

10∏
i=1

f (xi )

g(xi )
.

� Estimate:

Pf (Z ≥ 1.645) ≈ 1

B

B∑
b=1

w (b) · I (Z (b) ≥ 1.645).
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Results: Estimated Type I Error Rates

� Basic Monte Carlo:

α̂MC = 0.0508, 95% CI : (0.0465, 0.0551)

� Importance Sampling:

α̂IS = 0.0533, 95% CI : (0.0520, 0.0611)

� Both methods suggest the actual size is slightly greater than

0.05.

� IS is more efficient: tighter confidence interval with fewer

samples.
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Key Takeaways

� Z-test assumes asymptotic normality of X̄ .

� For small n and non-normal distributions, the actual test size

may differ from the nominal level.

� Simulation is a powerful tool to assess size and power

empirically.

� Importance sampling is especially useful for tail probabilities.
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Remarks on the Choice of Envelope g(x)

� The choice of envelope g(x) is crucial. In particular, the

importance ratio w∗(x) = f (x)/g(x) must be well-behaved;

otherwise, the variance of the estimate could be too large.

� A general strategy is to take g(x) to be a heavy-tailed

distribution, like Student-t or a mixture thereof, to ensure

that w∗(x) remains manageable.

� To get an idea of what makes a good proposal distribution,

consider a practically useless result:

“optimal” proposal ∝ |h(x)|f (x).

� Take-away message: We want the proposal distribution to

resemble f , but we are less concerned in places where h is

near or equal to zero.

� See Theorem 3.12 in Robert & Casella for more details.
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Example: Estimating a Small Tail Probability

� Goal: Estimate the tail probability

p = P(Z > 4.5), where Z ∼ N(0, 1).

� Exact value:

p = 3.397673× 10−6.

� This is a rare event: it occurs about 3–4 times in a million

standard normal samples.
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Naive Monte Carlo Estimation

� Sample Z1, . . . ,ZM
iid∼ N(0, 1).

� Estimate:

p̂MC =
1

M

M∑
j=1

I{Zj>4.5}.

� With M = 10,000, we expect only 0.034 samples to exceed

4.5.

� So p̂MC is typically 0 — not a useful estimate.
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Fixing the Problem with Importance Sampling

� Define h(z) = I{z>4.5}.

� Then:

p = Eφ[h(Z )] = Eg

[
h(Z )

φ(Z )

g(Z )

]
,

where φ is the standard normal density, and g is a proposal

distribution.

� Since h(z) = 0 for z ≤ 4.5, we only need to sample from g

supported on (4.5,∞).
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Choosing a Good Proposal Distribution

� Use a shifted exponential distribution as the proposal:

g(z) ∝ e−(z−4.5), z > 4.5.

� This concentrates all sampling effort in the region where

Z > 4.5.

� Then the IS estimator becomes:

p̂IS =
1

M

M∑
j=1

φ(Zj)

g(Zj)
, where Zj ∼ g and Zj > 4.5.
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Results: Naive MC vs. Importance Sampling

For M = 10,000 samples:

Method Estimate True Value

Naive MC 0 3.397673× 10−6

IS 3.316521× 10−6 3.397673× 10−6

� Naive MC fails to detect rare events with small sample sizes.

� Importance Sampling gives accurate estimates by targeting

the region of interest.
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Key Takeaways

� Naive Monte Carlo is ineffective for estimating rare-event

probabilities.

� Importance sampling improves efficiency by focusing sampling

in the rare-event region.

� Careful choice of proposal distribution g is crucial for IS to

work well.

� This technique is widely used in finance, reliability, and risk

analysis.
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Is the Chosen Proposal Good?

� It is possible to use the weights to judge the proposal.

� For f known exactly, not just up to proportionality, define the

effective sample size (ESS)

Neff (f , g) =
n

1 + s2w∗

where s2w∗ is the sample variance of {w∗(X1), . . . ,w
∗(Xn)}.

� Neff (f , g) is bounded by n and measures approximately how

many iid samples the weighted importance samples are worth.

� Neff (f , g) close to n indicates that g(x) is a good proposal,

� Close to 0 means g(x) is a poor proposal.
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The Rao-Blackwell Theorem

� In statistics (e.g. in STAT 7610), the Rao-Blackwell Theorem

provides a method for reducing the variance of an unbiased

estimator by conditioning.

� The theorem is based on two simple formulas:

E(Y ) = E[E(Y |X )]

Var(Y ) = E[Var(Y |X )] + Var[E(Y |X )] ≥ Var[E(Y |X )]

� Key point: Both Y and h(X ) = E(Y |X ) are unbiased

estimators of E(Y ) = µY , but the latter has a smaller

variance.

� In the Monte Carlo context, replacing a naive estimator with

its conditional expectation is referred to as

Rao-Blackwellization.
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Example: Bivariate Normal Probabilities

� Consider computing P(Y > X ) where (X ,Y ) is a (standard)

bivariate normal with correlation ρ.

� Naive Approach: Simulate (Xi ,Yi ) pairs and count instances

where Yi > Xi .

� However, the conditional distribution of Y , given X = x , is

available, i.e., Y |X = x ∼ N(ρx , 1− ρ2), so

h(x) := P(Y > X |X = x) = 1− Φ

(√
1− ρ

1 + ρ
x

)
.
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Example: Bivariate Normal Probabilities

� Rao-Blackwellization: Simulate Xi ∼ N(0, 1) and compute

the mean of h(Xi ).

� Comparison: M = 10, 000 samples with ρ = 0.7:

Method Estimate

Naive 0.5012

Rao-Blackwell 0.4990414

� What about variances?
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Example: Hierarchical Bayesian Model

Consider the model Xi ∼ N(µi , 1), independent, i = 1, . . . , n.

� Exchangeable/Hierarchical Prior:

µi |τ
iid∼ N(0, τ) for i = 1, 2, . . . , n and τ ∼ π(τ).

� Goal: Compute the posterior mean E(µi |X = x), i = 1, . . . , n

for x = (x1, . . . , xn). Simple, if we could sample (µ1, . . . , µn)

from the posterior.

� Rao-Blackwell Approach based on the identity:

E(µi |xi , τ) =
τxi
τ + 1

.

� Suggests that we can just take a sample τ1, . . . , τM from the

posterior distribution of τ , given X = x, and compute

Ê(µi |x) =
1

M

M∑
m=1

τmxi
τm + 1

, i = 1, . . . , n.
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Hierarchical Bayesian Model (Setup Details)

� Consider independent observations Xi ∼ N(µi , 1), for

i = 1, . . . , n.

� That is, the data model is: Xi |µi ∼ N(µi , 1).

� Hierarchical Prior:

� First Level: µi |τ
iid∼ N(0, τ) for i = 1, 2, . . . , n.

� Second Level: Prior π(τ) for hyperparameter τ ; i.e., τ ∼ π(τ).

� Goal: Compute posterior mean E(µi |X = x), requires

(computationally difficult) integration over τ and µi .
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Hierarchical Bayesian Model — RB Approach and Derivation

� Rao-Blackwell Theorem: Use to reduce variance of

estimates by conditioning.

� Derivation of E(µi |xi , τ):
� Posterior of µi given Xi = xi and τ : By Bayes’ Theorem,

combining the likelihood and the prior yields a posterior

distribution for µi that is also normal.

� That is, the likelihood function is

L(µi |xi ) ∝ exp
(
− 1

2 (xi − µi )
2
)
, and the prior for µi is

p(µi |τ) ∝ exp
(
−µ2

i

2τ

)
.

� Multiplying the likelihood by the prior (omitting normalization

constants) and completing the square in µi , we find that the

posterior for µi is µi |xi , τ ∼ N
(

τxi
τ+1 ,

τ
τ+1

)
.
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Hierarchical Bayesian Model — RB Approach and Derivation

� Expected Value E(µi |xi , τ): From the posterior distribution

of µi , the expected value (mean) is directly the mean of the

posterior normal distribution:
τxi
τ + 1

.

� Final Estimation with Rao-Blackwell: To estimate

E(µi |X = x), we first obtain samples τ1, . . . , τM from the

posterior distribution of τ given x. Then, we compute the

estimate of E(µi |x) by averaging over these samples:

Ê(µi |x) =
1

M

M∑
m=1

τmxi
τm + 1

.

� This approach leverages the Rao-Blackwell Theorem to

efficiently compute the posterior mean of µi by conditioning

on τ and using the derived expression for E(µi |xi , τ).

42



How to Find the Posterior Distribution of τ Given X?

Objective: Determine π(τ |X = x).

1. Joint Distribution of X and µ Given τ :

p(x,µ|τ) =
n∏

i=1

(N(xi |µi , 1)× N(µi |0, τ))

2. Marginal Likelihood of X Given τ :

p(x|τ) =
∫

p(x,µ|τ)dµ.

Generally not solvable in closed form.

3. Posterior of τ : π(τ |x) ∝ p(x|τ)π(τ). Computation of π(τ |x)
may require numerical integration or sampling (i.e. simulation

methods like MCMC) due to the lack of a closed-form

solution for the marginal likelihood.
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Root-Finding with Monte Carlo Estimates

� We discussed a number of methods for root-finding (in S2),
including:

� Bisection

� Newton’s Method

� These methods are fast but require exact evaluation of the

target function.

� Challenge: Suppose the target function itself is not directly

available, but instead, we can compute a Monte Carlo

estimate of it.

� Question: How to find the root? Newton’s method and other

traditional root-finding techniques may not be directly

applicable due to the stochastic nature of the estimates.
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Stochastic Approximation

� Suppose the goal is to find the root of a function f .

� However, f (x) cannot be observed exactly — we can only

measure or observe y = f (x) + ε, where ε is a mean-zero

random error.

� Stochastic approximation is a sort of a stochastic version of

Newton’s Method; the idea is to construct a sequence of

random variables that converges (probabilistically) to the root.

� Let {wt} be a vanishing sequence of positive numbers. Fix x0

and define

xt+1 = xt + wt+1 × (f (xt) + εt+1), t = 0, 1, 2, . . .
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Stochastic Approximation (Continued)

� Intuition: Assume that f is monotone increasing and 0 is in

the target set (or codomain) of f ...

� It can be proven that f has a unique root x∗ and if wt satisfies

∞∑
t=1

wt = ∞ and
∞∑
t=1

w2
t < ∞;

then xt → x∗ as t → ∞ with probability 1.

� First studied by Robbins & Monro (1951).

� Modern theory employs a blend of probability theory

(martingales) and stability theory of differential equations.

� Applications in Statistical Computing:

� Stochastic Approximation-EM (SA-EM)

� Stochastic Approximation Monte Carlo (SAMC)

� ...
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Stochastic Approximation - Convergence Criteria

Key Conditions for Convergence
For a sequence of approximations xt to converge to the true root

x∗ of f , the weights wt used in the approximation must satisfy two

conditions:

� The sum of the weights over all iterations tends to infinity:∑∞
t=1 wt = ∞. This ensures that every point in the space is

given infinite attention over time, allowing for the exploration

of the function’s behavior thoroughly.

� The sum of the squares of the weights is finite:∑∞
t=1 w

2
t < ∞. This condition guarantees that the sequence

of updates does not oscillate indefinitely, allowing the

approximation process to stabilize and converge.
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Stochastic Approximation (Continued)

� Practical Application: How can the stochastic

approximation be applied in practice?

� Let h(x , z) be a function of two variables, and suppose the

goal is to find the root of

f (x) = E[h(x ,Z )], where Z ∼ FZ , with FZ known.

� If we can sample Zt from FZ , then h(Xt ,Zt) is an unbiased

estimator of f (xt), given Xt = xt .

� Therefore, run stochastic approximation as

xt+1 = xt + wt+1 × h(xt ,Zt+1); Z1,Z2, . . .
iid∼ FZ .
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Quantile Estimation for Student-t Distribution

� Goal: Estimate the 100α-th percentile of Tν , i.e., find xα

such that

P(Tν ≤ xα) = α.

� Challenge: No closed-form expression for percentiles of

t-distributions (except for special ν).

Scale-Mixture Representation of Tν

� A Student-t variable can be written as

Tν =
X√
Z/ν

= X

√
ν

Z
,

where X ∼ N(0, 1) and Z ∼ χ2
ν , independent.

� This leads to a representation of P(Tν ≤ x) via expectations

over Z .
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Quantile Condition as an Expectation

� Observe that P(Tν ≤ x) = EZ

[
Φ

(
x

√
Z

ν

)]
.

� So the quantile condition becomes:

P(Tν ≤ xα) = α ⇒ EZ

[
Φ

(
xα

√
Z

ν

)]
= α.

Formulation as a Root-Finding Problem

� Define

h(x , z) = α− Φ

(
x

√
z

ν

)
.

Then

f (x) = E[h(x ,Z )] = α− E

[
Φ

(
x

√
Z

ν

)]
.

� The target is to find x∗ such that f (x∗) = 0.
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Stochastic Approximation Algorithm

� Let Zt
iid∼ χ2

ν and use Robbins-Monro update:

xt+1 = xt + wt+1 · h(xt ,Zt+1).

� For example, choose

wt = (1 + t)−0.75, t ≥ 1.

� Then xt → xα almost surely under standard assumptions.

Convergence Example

� Example parameters: ν = 3, α = 0.8, x0 = 1,

wt = (1 + t)−0.75.
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Example: Student-t Percentile
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Figure 2: The convergence of xt to the 100α-th percentile over

iterations, indexed from 0 to 10,000, with xt values ranging from 0.92 to

1.06.
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Key Takeaways

� This method generalizes quantile estimation to settings where

the CDF is intractable.

� Leverages a known scale-mixture representation and

simulation-based approximation.

� Stochastic approximation offers a flexible and convergent

algorithm.
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Exact Confidence Regions via Hypothesis Test Inversion

� Consider testing H0 : θ = θ0 with a test statistic Tθ.

� Reject H0 if Tθ0 is too large.

� Define p-value:

p(θ0) = Pθ0(Tθ0 > tobs).

� Exact (1− α)× 100% confidence region:

Cα = {θ : p(θ) > α} .

� To construct Cα, solve p(θ) = α.
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When is Stochastic Approximation Needed?

� In many problems, p(θ) cannot be computed analytically.

� Instead:

p(θ) = Eθ [h(θ,Z )] , .

where h(θ,Z ) = I{Tθ(Z)>tobs} and Z ∼ Pθ.

� Goal: Solve

f (θ) = p(θ)− α = 0.

� Use Robbins-Monro stochastic approximation:

θt+1 = θt − wt+1 · (h(θt ,Zt+1)− α) ,

where Zt+1 ∼ Pθt .
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Gamma Model Example: Likelihood Ratio-Based Confidence

Region

Model Setup:

� Let X1, . . . ,X20
iid∼ Gamma(θ1, θ2).

� Test H0 : (θ1, θ2) = (7, 13) using the Likelihood Ratio Test

(LRT).

� Define the test statistic Tθ = −2 log
(
L(θ)

L(θ̂)

)
, where θ̂ is the

MLE.
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Gamma Model Example: Likelihood Ratio-Based Confidence

Region

Computational Procedure:

� For each candidate θ = (θ1, θ2):

� Generate B samples Z (b) ∼ Pθ, compute T
(b)
θ = Tθ(Z

(b)).

� Estimate the p-value via Monte Carlo:

p̂(θ) =
1

B

B∑
b=1

I{T (b)
θ >tobs}

.

� Solve p̂(θ) = α using stochastic approximation to trace the

boundary ∂Cα.
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Visualization and Comparison

� Plot contents:

� LRT p-value contour where p(θ) = 0.1 (i.e., boundary of the

90% confidence region),

� Bayesian posterior samples from prior over (θ1, θ2),

� Asymptotic 90% confidence ellipse based on MLE normal

approximation.

� Interpretation:

� Posterior cloud aligns with, but not identical to, the exact

region.

� Asymptotic ellipse may underestimate or misalign in small

samples.
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Example: Exact Confidence Regions (Cont.)

Figure 3: The plot showing the LRT p-value contour along with the

Bayesian posterior sample and the confidence ellipse. The axes represent

θ1 and θ2, ranging from 5 to 25.
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Takeaways

� Inverting hypothesis tests yields exact confidence regions.

� When p(θ) is intractable, stochastic approximation enables

efficient root-finding.

� The method is broadly applicable in simulation-based

inference and non-standard models.

� Useful for comparing exact, Bayesian, and asymptotic

confidence regions.
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Optimization without Derivatives

We discussed various methods for optimization, particularly,

Newton’s Method, which requires the objective function to have a

derivative.

� Challenge: What if the derivative isn’t even defined? This

scenario arises when the function domain is discrete.

� Simple Case: If the discrete space is small, then optimization

is straightforward.

� Complex Case: What about when the discrete space is large,

making it impractical to enumerate all function values?

� Solution: A Monte Carlo-based optimization method can be

employed in these cases.
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Simulated Annealing: Towards the Global Minimum

� Simulated annealing strategically explores the solution space

to find the global minimum of a function f (x), inspired by the

metallurgical process of annealing.

� Though applicable to continuous variables, our discussion

centers on discrete variables for clarity.

� Decision Process at Each Step (t + 1):

� Generate a candidate xnew in a neighborhood of xt from a

distribution (possibly depending on t and xt)

� Accept xnew with a probability, based on the flip of a (biased)

coin, that favors lower f (x) but allows for occasional increases

to escape local minima.

� Keys to Success:

1. A well-chosen proposal distribution.

2. An effective cooling schedule.
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“Cooling” in Simulated Annealing

� Origin of the Term: “Cooling” is inspired by the

metallurgical process of annealing, where controlled cooling

reduces defects in materials, enhancing their properties.

� Analogy in Optimization: In simulated annealing,

“temperature” controls the acceptance of solutions,

facilitating exploration of the solution space.

� High Temperature: Encourages exploration, allowing

acceptance of suboptimal solutions to avoid local minima.

� Cooling Down: Gradually focuses the search on promising

regions by being more selective in accepting solutions.

� Cooling Schedule: A strategy for decreasing temperature

over time, balancing between diversification (exploration) and

intensification (exploitation) to target the global minimum.
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Simulated Annealing Algorithm

1. Specify a function β(t), a sequence of distributions πt(x), and

a starting point x0. Set t = 0.

2. Sample xnew ∼ πt(xt).

3. Calculate

α = min

{
1, exp

(
f (xt)− f (xnew)

β(t)

)}
.

4. Flip a coin with probability α of showing Heads and set

xt+1 = xnew if the coin lands on Heads; otherwise, set

xt+1 = xt .

5. Set t = t + 1 and return to Step 2.

6. Repeat until convergence.

For suitable πt(x) and β(t), xt will tend (probabilistically) toward

the global minimum of f (x).
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About the Cooling Function in the SA Algorithm

� In the above algorithm, the cooling function is represented by

β(t), which is crucial for the algorithm’s performance.

� It controls the “temperature” parameter in the simulated

annealing algorithm, dictating how the acceptance probability

for new solutions changes over time.

� As t (often representing time or iteration number) increases,

β(t) typically increases in simulated annealing contexts,

effectively lowering the“temperature.”

� The gradual cooling ensures a transition from a broad,

explorative search across the solution space to a more focused,

exploitative search around promising areas, aiming to converge

to the global minimum of the objective function f (x).

� The cooling function must balance between sufficient

exploration at high temperatures and efficient exploitation as

the temperature decreases. 68



Example: Variable Selection in Regression

� Consider a regression model with p predictor variables.

� There are a total of 2p sub-models that one could consider,

and some are better than others — how to choose a good

one?

� Objective Criterion: One method is to choose the model

with the lowest Akaike Information Criterion (AIC).2

� This becomes a problem of minimizing a function over a

discrete set of indices — perfect for simulated annealing.
� Implementation in R:

� Use the optim routine with method="SANN".

� The proposal function is input as gr (the gradient).

� The “SANN” method in optim has an internal cooling schedule

that is not directly adjustable via the function’s parameters.
2AIC balances the residual sum of squares with a penalty for the number of

variables.
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Variable Selection in Regression (Cont.)

� For a given set of indices xt , we sample xnew by choosing at

random to either add or delete an index.

� Procedure:

� Sample changes to the model indices essentially at random.

� Use the default cooling schedule in R for simulated annealing.

� Code available on Canvas uses a baseball data set from Givens

& Hoeting to identify a minimum collection of variables

explaining the variability in baseball player salaries.

� Run the code to observe the variable selection process via

simulated annealing.
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