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Motivation

� We know how to sample independent random variables from

the target distribution f (x), at least approximately.

� Monte Carlo uses these simulated random variables to

approximate integrals.

� But the random variables don’t need to be independent in

order to accurately approximate integrals!

� MCMC constructs a dependent sequence of random variables

that can be used to approximate the integrals just like for

ordinary Monte Carlo.

� The advantage of introducing this dependence is that various

general algorithms (and corresponding theory) are available to

perform the required simulations (via MCMC).
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Initial Remarks

� MCMC methods are powerful tools for sampling from complex

probability distributions and have broad applicability.

� But its effectiveness depends on proper implementation and

understanding of the problem context.

A Word of Caution

� It’s crucial not to use MCMC — without a clear understanding

of its applicability and limitations to your specific problem.

� That is, blindly applying MCMC (or any statistical tool) can

lead to misleading results.

Understanding MCMC

� We will discuss some basics of Markov chains and MCMC.

� While MCMC is a mature field with many successful

applications, ongoing research continues to explore its

theoretical boundaries and practical implications. 4



Initial Remarks

Ongoing Research

� MCMC is an active area of research.

� Recent advances have significantly improved our

understanding of MCMC convergence properties and

efficiency.

� Innovations include adaptive MCMC, Hamiltonian Monte

Carlo, and Variational Inference as a complementary approach.

Challenges and Frontiers in Research

� Despite advancements, challenges remain in ensuring

efficiency and convergence in high-dimensional spaces.

� Research continues to focus on developing more robust,

scalable, and efficient MCMC algorithms.

� Understanding the theoretical underpinnings of MCMC’s

convergence behavior in complex scenarios remains an open

research area.
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Markov Chains

A Markov chain is a sequence of random variables {X1,X2, . . .}
with a specific type of dependence structure, where:

� The future state Xn+1 given the past and present states

(X1, . . . ,Xn) depends only on the present state Xn:

P(Xn+1 ∈ B|X1, . . . ,Xn−1,Xn) = P(Xn+1 ∈ B|Xn)

� This property (called Markov Property) implies that the
probabilistic properties of the chain are completely
determined by:
1. The initial distribution of X0.

2. The transition distribution, i.e., the distribution of Xn+1 given

Xn (usually the chain is assumed to be homogeneous, the

transition distribution does not depend on n; i.e., the transition

probabilities do not change over time).

� A sequence of independent rv’s is a trivial special case of

Markov chains.
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Example: Simple Random Walk

� Let U1,U2, . . . be
iid∼ (Discrete) Unif({−1, 1}).

� Set X0 = 0 and define Xn =
n∑

i=1

Ui = Xn−1 + Un.

� Initial Distribution: P(X0 = 0) = 1.

� Transition Distribution: Given by

Xn =

Xn−1 − 1 with probability 1
2 ,

Xn−1 + 1 with probability 1
2 .

� Despite its simplicity, the random walk is a foundational

example in probability, with connections to more advanced

concepts like Brownian motion.
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Keywords1 for Markov Chains

� Recurrent State: A state A is recurrent if a chain starting in

A will eventually return to A with probability 1. A state is null

if the expected time to return is infinite and nonnull if it is

finite. A chain is recurrent if each state is recurrent.

� Irreducible Markov Chain: A Markov chain is irreducible if

there is a positive probability that a chain starting in any state

A can reach any other state B.

� Aperiodic Markov Chain: A Markov chain is aperiodic if, for

any starting state A, there is no fixed number of steps in

which the chain must return to A.

� Ergodic Markov Chain: An irreducible, aperiodic Markov

chain with all states being nonnull recurrent is called ergodic.
1Not mathematically precise but serve for a foundational understanding
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Limit Theory2 in Markov Chains

� Stationary Distribution: A distribution f is stationary if

X0 ∼ f implies Xn ∼ f for all n.

� An ergodic Markov chain has at most one stationary

distribution.

� Ergodic Theorem: For an ergodic Markov chain with
stationary distribution f :

� The limiting probability (distribution) of being in state B given

starting in state A is given by:

lim
n→∞

P(Xm+n ∈ B|Xm ∈ A) =

∫
B

f (x) dx ,

for all states A, B, and times m.

2Simplified for clarity and are not mathematically precise
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Limit Theory3 in Markov Chains (Cont’d)

� Ergodic Theorem (Cont’d):

� If φ(x) is integrable, then the time average of φ(Xt) converges

almost surely to the expected value under f :

1

n

n∑
t=1

φ(Xt) →
∫

φ(x)f (x) dx , as n → ∞

with probability 1.

This is a version of the famous ergodic theorem.

� Central Limit Theorems for Markov Chains: While not

detailed here, there are central limit theorems applicable to

Markov chains, extending some classic probability results to

the Markov chain context.
3Simplified for clarity and are not mathematically precise
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Why MCMC?

� In Monte Carlo simulations, our goal is to generate random

variables with a specific distribution f .

� This task could be difficult or impossible to achieve exactly.

� Solution: MCMC is designed to construct an ergodic Markov

chain for which f is its stationary distribution.

� Asymptotically, this chain will produce samples from f (but in

practice, your samples resemble draws from f ).

� By Ergodic Theorem, expectations with respect to f can be

approximated by averages of samples from the Markov chain.

� Surprisingly, constructing and simulating a suitable Markov

chain is quite manageable, which partly explains the

popularity of MCMC methods.

� However, implementing MCMC methods comes with its set of

practical and theoretical challenges...
13



Outline

Introduction

Crash Course on Markov Chains

Motivation, Revisited

Metropolis-Hastings Algorithm

Gibbs Sampler

Some MCMC Diagnostics

Conclusion

14



Implementing the Metropolis-Hastings Algorithm

� Let f (x) denote the target distribution pdf and

� q(x |y) a conditional pdf for X , given Y = y ; this pdf should

be easy to sample from.

� Given X0, the Metropolis-Hastings (MH) Algorithm produces
a sequence of random variables by:

1. Sample X ∗
t ∼ q(x |Xt−1).

2. Compute

R = min

{
1,

f (X ∗
t )q(Xt−1|X ∗

t )

f (Xt−1)q(X ∗
t |Xt−1)

}
.

3. Set Xt = X ∗
t with probability R; otherwise, Xt = Xt−1.

� General R code for implementing the Metropolis-Hastings

Algorithm is available on Canvas.
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Choosing the Proposal Distribution

� The choice of proposal distribution q(x |y) is crucial for the
algorithm’s performance but not easy.

� Two General Strategies:

1. Use an independent proposal q(x |y) = q(x), making X ∗
t

independent of Xt−1 at each stage of the MH algorithm.

2. Use a symmetric distribution q(x |y) = q0(||x − y ||), which
amounts to a random walk proposal.

� This aspect requires careful consideration for optimal

performance.

� In the examples, I will just pick a proposal that seems to work

reasonably well...
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Convergence and Approximation in MCMC4

� Assuming the proposal distribution is adequately chosen,
several properties about the sequence {Xt : t = 1, 2, . . .} can
be established:

� The chain is ergodic.

� The target distribution f is the stationary distribution.

� As a result, the sequence converges to the stationary

distribution. This means that for any integrable function

ϕ(x), we can approximate integrals with sample averages.

� By running the simulation long enough, we can obtain

arbitrarily good approximations.

� This presents an interesting opportunity for statisticians/data

scientists: The ability to control the sample size for better

approximation.
4Again, simplified and not mathematically precise
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Example: Cosine Model

� Problem Context: From previous slides, recall the likelihood

function defined as:

L(θ) ∝
n∏

i=1

(1− cos(Xi − θ)) , −π < θ ≤ π.

� Observed Data: Given as (X1, . . . ,Xn) in the provided code

on Canvas.

� Prior Distribution: Assume θ follows a uniform distribution,

Unif(−π, π).

� Use Metropolis-Hastings to sample from the posterior:

1. Proposal Distribution: q(θ′|θ) = Unif(θ′|θ ± 0.5).

2. Burn-in Period: Set B = 5000 to allow the chain to stabilize.

3. Sample Size: M = 10000
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Example: Cosine Model - Visualization of Results:

� Histogram with Posterior Density: The left figure shows

the histogram of the MCMC sample with the posterior density

overlaid.

� Trace Plot: The right figure displays a trace plot of the

chain, illustrating the convergence and mixing behavior of the

Markov chain over iterations.
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Figure 1: Left: Histogram of MCMC Sample. Right: Trace Plot of the

Chain.
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Example: Weibull Model

� Data and Likelihood: Data X1, . . . ,Xn iid from

Weibull(λ, κ) distribution has likelihood:

L(λ, κ) = λ−κnκn exp

(
(κ− 1)

n∑
i=1

log xi − λ−κ
n∑

i=1

xκi

)
.

� Prior Density: π(λ, κ) ∝ e−(λ+cκ)κb−1, for some constants

b, c .

� Posterior Density: Proportional to

λ−κnκn+b−1 exp

(
κ

(
n∑

i=1

log xi − c

)
− λ−κ

n∑
i=1

xκi − λ

)
.

� Goal:

Perform an informal Bayesian test of H0 : κ = 1, where κ = 1

corresponds to the exponential distribution as a special case of

the Weibull distribution.
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Weibull Model Overview and Prior

Data and Likelihood Function: Given data X1, . . . ,Xn is iid from

a Weibull(λ, κ) distribution, the pdf of Xi is given as

f (xi |λ, κ) =
κ

λ

(xi
λ

)κ−1
e−(xi/λ)

κ
, xi ≥ 0, λ > 0, κ > 0.

and the likelihood function is given by:

L(λ, κ|x1, . . . , xn) =
n∏

i=1

κ

λ

(xi
λ

)κ−1
e−(xi/λ)

κ

= λ−κnκn
n∏

i=1

xκ−1
i e−(

xi
λ )

κ

= λ−κnκn
n∏

i=1

exp
(
(κ− 1) log xi − λ−κxκi

)
∝ λ−κnκn exp

(
κ

n∑
i=1

log xi − λ−κ
n∑

i=1

xκi

)
.

21



Prior and Posterior Density

Prior Density: The prior density for parameters λ and κ is

assumed to be:

π(λ, κ) ∝ e−(λ+cκ)κb−1,

where b and c are constants. This reflects our prior beliefs about

the parameters before observing the data.

Posterior Density is proportional to:

λ−κnκn+b−1 exp

(
κ

(
n∑

i=1

log xi − c

)
− λ−κ

n∑
i=1

xκi − λ

)
.
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Bayesian Testing

Goal: Bayesian Test for κ = 1
We aim to perform an informal Bayesian test of the null hypothesis

H0 : κ = 1. Testing κ = 1 is of particular interest as it corresponds

to the Weibull distribution simplifying to an exponential

distribution, which has a constant failure rate. This test allows us

to evaluate if the exponential model is a suitable simplification

given the data.

Interpretation
A Bayesian approach to hypothesis testing involves computing the

posterior probability of the hypothesis given the data, which can be

more informative than traditional p-values. It provides a direct

probability statement about the hypothesis.
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Example: Weibull Model (Cont’d)

� Data Source: Problem 7.11 in Ghosh et al (2006).

� Sampling Method: Use MH to sample from the posterior of

(λ, κ).

� Proposal Distribution: (λ′, κ′)|(λ, κ) ∼ Exp(λ)× Exp(κ).

� Prior Parameters: b = 2 and c = 1; Burn-in (B) = 1000

and Sample Size (M) = 10000.

� Visualization: Histogram of the marginal posterior of κ.

� Evaluation: Is an exponential model (κ = 1) reasonable

based on the marginal posterior?
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Figure 2: Marginal Posterior of κ
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Example: Logistic Regression

� Background: Based on Examples 1.13 and 7.11 in Robert &

Casella’s book.

� Incident: In 1986, the Challenger space shuttle exploded due

to an “o-ring” failure, possibly influenced by the cold

temperature (31°F).

� Goal: Analyze the relationship between temperature and

o-ring failure.

� Approach: Fit a logistic regression model to understand the

impact of temperature on the probability of o-ring failure.
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Example: Logistic Regression (Cont’d)

� Model Specification:
� Model: Y |x ∼ Ber(p(x)), where x represents temperature.

� Failure probability, p(x), modeled as:

p(x) =
exp(β + γx)

1 + exp(β + γx)
.

� Model Fitting:
� Fitted using glm in R with available data.

� Coefficients:

Estimate Std. Error z value Pr(>|z|)

Intercept 15.0429 7.3786 2.039 0.0415 *

x -0.2322 0.1082 -2.145 0.0320 *
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

� Observation: Probability of failure at 31°F is approximately

0.999!!!
26



Example: Logistic Regression (Cont’d)

� Bayesian Analysis:

� Can also do a Bayesian analysis of this logistic model.

� Use MH to obtain samples from the posterior of (β, γ).

� These samples can be used to approximate the posterior

distribution of p(x0) for any fixed x0, e.g., 65°F and 31°F.

� Details:

� Prior and proposal construction details are available in the R

code posted on Canvas.

� Posterior Distributions:

� Plots for p(65) and p(31) (see next slide) demonstrate the

density of the posterior probabilities at these temperatures.
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Posterior Plots for p(65) and p(31)
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Figure 3: Posterior (predictive) distributions of p(65) and p(31).
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Setup for Multivariate Distributions

� Problem Context: Given a multivariate target distribution f .

� Challenge with MH: Applying MH to multivariate

distributions introduces challenges, particularly in constructing

effective proposals across multiple dimensions.

� Proposed Solution: Sample one dimension at a time to

mitigate the complexity of multi-dimensional proposal

construction.

� Key Question: How can we ensure that such sampling

accurately approximates the target distribution, especially in

the limit?

� Gibbs Sampler: Identified as an optimal approach for this

task, the Gibbs sampler systematically samples each

dimension, effectively approximating the multivariate target

distribution.
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Details on the Gibbs Sampler

� Target Distribution: Consider a trivariate target distribution

f (x) = f (x1, x2, x3).

� Full Conditionals: Assume that we can express the

distribution in terms of its full conditionals:

f (x1|x2, x3), f (x2|x1, x3), f (x3|x1, x2)

� Sampling Process: Assuming we can sample from these

conditionals, the Gibbs sampler iterates as follows:

X
(t)
1 ∼ f (x1|X (t−1)

2 ,X
(t−1)
3 )

X
(t)
2 ∼ f (x2|X (t)

1 ,X
(t−1)
3 )

X
(t)
3 ∼ f (x3|X (t)

1 ,X
(t)
2 )

� Each step involves sampling from the conditional distribution

of one variable, holding the others at their current values.
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Details on Gibbs Sampler (Cont’d)

� Markov Chain: The sequence generated by the Gibbs

sampler forms a Markov chain.

� Relationship to MH:

� The Gibbs sampler is a special case of MH!

� It can be viewed as an MH sequence that updates one

component of X at a time.

� Acceptance Probability:

� The acceptance probability for updates in the Gibbs sampler is

exactly 1.

� This characteristic explains the absence of an accept/reject

step in the Gibbs sampler.

� Convergence:

� Since the Gibbs sampler is a special kind of MH, the

convergence properties of MH also apply to Gibbs.
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Example: Bivariate Normal with Gibbs Sampling

� A simple Gibbs sampling example: Sampling from a bivariate

normal distribution.

� Suppose X = (X1,X2) is bivariate normal with µ1 = µ2 = 0,

σ1 = σ2 = 1, and correlation ρ.

� Full conditionals: The full conditionals are straightforward to

derive in this context.

� Gibbs Sampling Steps:

X
(t)
1 ∼ N(ρX

(t−1)
2 , 1− ρ2)

X
(t)
2 ∼ N(ρX

(t)
1 , 1− ρ2)

� While not as efficient as direct sampling from the bivariate

normal distribution, Gibbs sampling performs well in this

scenario.
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Example: Many-Normal-Means Model (Hierarchical Bayes)

� Model Specification:

� Consider Xi
ind∼ N(θi , 1), for i = 1, . . . , n.

� Hierarchical Prior Distribution:

� θ1, . . . , θn|σ2 iid∼ N(0, σ2); σ−2 ∼ Gamma(a, b).

� Full (Posterior) Conditionals: Takes some work5, but it can
be shown that the full conditionals are

�

θi |(xi , σ2)
ind∼ N

(
xi

1 + σ2
,

1

1 + σ2

)
, for i = 1, . . . , n.

�

σ−2|(θ, x) ∼ Gamma

(
a+

n

2
, b +

1

2

n∑
i=1

θ2i

)
.

� Gibbs Sampler Implementation: The Gibbs sampler can be

straightforwardly implemented using these full conditionals.
5It can be shown based on standard conjugate priors.
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Example: Many-Normal-Means Model (Cont’d)

� Suppose the goal is to estimate ∥θ∥2 =
∑n

i=1 θ
2
i .

� The MLE ∥X∥2 performs poorly for this purpose.

� The Bayes estimator, E(∥θ∥2|X), provides a superior

alternative and can be evaluated using the Gibbs sampler.

� Rao-Blackwellization:

� Using the Rao-Blackwellized estimator for E(θ2i |x) can further

reduce variance.

� Simulation Study:

� Objective: Compare the Bayes estimator with MLE.

� Settings: n = 10, θ = (1, 1, . . . , 1), 1000 repetitions, 5000

Monte Carlo simulations, a = b = 1.

� Results:
mle mse bayes mse

180.1721 32.93027
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Example: Many-Normal-Means Model (Details)

� Model Specification:

� Consider a sequence of observations X1,X2, . . . ,Xn where each

Xi is normally distributed with mean θi and variance 1.

Mathematically, this is expressed as Xi
ind∼ N(θi , 1) for

i = 1, . . . , n. This specification suggests that each observation

has its own unique mean but shares the same error variance.

� Hierarchical Prior Distribution:

� The means θi are assumed to be drawn from a common

normal distribution, indicating a shared underlying process but

allowing individual differences. Specifically,

θ1, . . . , θn|σ2 iid∼ N(0, σ2). The variance parameter σ2 is itself a

random variable, following an Inverse Gamma distribution,

σ−2 ∼ Gamma(a, b), providing a flexible prior that can adapt

based on the observed data.
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Example: Many-Normal-Means Model (Details)

� Full Conditionals:
� The posterior distributions or full conditionals for each

parameter are derived using Bayesian conjugacy. For θi , given

the variance σ2 and the data xi , the posterior is also normal:

θi |(xi , σ2)
ind∼ N

(
xi

1 + σ2
,

1

1 + σ2

)
, for i = 1, . . . , n.

� The posterior for σ−2, conditional on all θi and the data x, is a

Gamma distribution:

σ−2|(θ, x) ∼ Gamma

(
a+

n

2
, b +

1

2

n∑
i=1

θ2i

)
.

� Gibbs Sampler Implementation:
� The Gibbs sampler is particularly useful here due to the

tractability of the full conditionals. Step-by-step, this involves

alternately updating θi and σ2 using their respective

distributions, facilitating efficient Bayesian inference.
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Example: Many-Normal-Means Model (Details)

Estimating ∥θ∥2:
� The objective is to estimate the squared norm of the

parameter vector θ, ∥θ∥2 =
∑n

i=1 θ
2
i . This quantity measures

the overall magnitude of the effects in many statistical models.

� Maximum Likelihood Estimator (MLE): ∥X∥2 is a natural

estimator, but it tends to be biased upwards, especially in

small samples or when variance is high.

� Bayesian Estimator: E(∥θ∥2|X) leverages the posterior

distributions of θi and provides a more reliable estimate by

incorporating prior information and the uncertainty inherent in

the observed data.

Rao-Blackwellization: Used to refine the estimator for E(θ2i |x), thereby
reducing the variance of the estimator compared to the unconditioned

estimator. This method effectively integrates out the Monte Carlo noise

associated with the Gibbs sampling, leading to a more stable estimate.
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Example: Many-Normal-Means Model (Details)

� Simulation Study:
� Objective: The goal of this study is to empirically compare

the performance of the Bayes estimator against the MLE in

terms of mean squared error (MSE).

� Settings: The simulation setup includes n = 10 variables, all θ

values set to 1 (representing a simplified scenario where all

effects are equal), 1000 repetitions to ensure stability of the

results, and 5000 Monte Carlo simulations to approximate the

MSE accurately.

� Results:
MLE MSE Bayes MSE

180.1721 32.93027
� These results demonstrate that the Bayesian estimator

substantially outperforms the MLE in this setting, having a

much lower MSE and thus providing more accurate and

reliable estimates.
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Example: Capture-Recapture Study

� Context: Example 7.6 in G&H. Study designed to estimate

the population size (N) of fur seal pups in a coastal region in

NZ, where N is unknown.
� Capture-Recapture Study:

� Conducted over n occasions, with fur seal pups being caught,

marked, and then returned to the ocean (in NZ).

� At each occasion i = 1, . . . , n:

� Ci = number of pups caught at time i .

� Ri = number of “recaptures” at time i .

� Ci − Ri = number of new pups caught at time i .

� Define Ui =
i∑

j=1

(Cj − Rj), the cumulative count of new pups

caught up to time i .

� Model Assumptions:
� The model assumes independent binomial sampling for the

capture-recapture process.
40



Example: Capture-Recapture Study (Cont’d)

� Binomial Success Probabilities:

� Introduce ω1, ω2, . . . , ωn as the binomial success probabilities.

� Likelihood for (N,ω):

L(N,ω) =

n∏
i=1

(
Ui−1

Ri

)
ωRi
i (1− ωi )

Ui−1−Ri

(
N − Ui−1

Ci − Ri

)
ωCi−Ri
i (1− ωi )

N−Ui−1−Ci+Ri

=
n∏

i=1

(
Ui−1

Ri

)(
N − Ui−1

Ci − Ri

)
ωCi
i (1− ωi )

N−Ci

=
N!

(N − Un)!
×

n∏
i=1

(
Ui−1

Ri

)
ωCi
i (1− ωi )

N−Ci .

� Priors:

� N ∼ Poi(m) for the unknown population size.

� ωi
iid∼ Beta(a, b) for the success probabilities.
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Example: Capture-Recapture Study (Cont’d)

� Posterior Distribution of (N,ω):

∝ N!

(N − Un)!

mN

N!
×

n∏
i=1

(
Ui−1

Ri

)
ωCi+a−1
i (1− ωi )

N−Ci+b−1.

� Full Conditionals: To run a Gibbs sampler, we need the full
conditionals.

� For ωi |(N, data) independently follows:

ωi |(N, data) ∼ Beta(a+ Ci , b + N − Ci ), i = 1, . . . , n.

� For N|(ω, data):

N|(ω, data) ∼ Un + Poi

(
m ×

n∏
i=1

(1− ωi )

)
.

� Gibbs Sampler Implementation:
� With these full conditionals, implementing the Gibbs sampler is

straightforward.
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Example: Probit Regression

� Model Specification: Observations Yi
ind∼ Ber(pi = Φ(x⊤i β)),

Bernoulli distribution with probability pi for i = 1, . . . , n,

where Φ denotes the standard normal cdf.

� Prior for β: A normal prior.

� Gibbs Sampling Challenge: It is not immediately clear how

to implement Gibbs sampling to obtain samples from the

posterior distribution of β.
� Introduction of “Missing Data”:

� Recall from EM slides that the model can be simplified by

introducing some “missing data.”

� The conditional distribution of the missing data, given the

observed data and β, constitutes one part of the full

conditionals.

� The model for the complete data is, by construction, nice,

simplifying the other part of the full conditionals.
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Example: Probit Regression (Cont’d)

� Missing Data:

Zi
ind∼ N(xTi β, 1) and Yi = I (Zi > 0), i = 1, . . . , n.

� Full Conditionals:

� Distribution of β, given (Y,Z), depends only on Z and is

straightforward due to the conjugate normal prior for β.

� Distribution of Z, given (Y,β), is a truncated normal.

� Gibbs Sampler Construction:

� While exact details are not provided here, constructing a Gibbs

sampler for this setup is manageable6.

� See Section 8.3.2 in Ghosh et al (2006) for a detailed guide.
6The only potential difficulty is simulating from a truncated normal when the

truncation point is extreme, but remember we have talked about extreme

normal tail probabilities before...
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Example: Probit Regression (Detailed Take)

Model Specification:

� Probabilistic Framework: Each observation Yi is

independently modeled as a Bernoulli distributed random

variable, Yi
ind∼ Ber(pi ), where pi = Φ(x⊤i β). Here, Φ

represents the cumulative distribution function (cdf) of the

standard normal distribution, mapping the linear predictor

x⊤i β to a probability between 0 and 1.

� Predictors and Parameters: The model incorporates n

observations, with each observation i having an associated

vector of predictors xi and a shared parameter vector β.

Prior Distribution for β:

� Normal Prior: The parameter vector β is assumed to follow

a multivariate normal distribution. This prior reflects our

beliefs about the parameter values before observing any data.
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Example: Probit Regression (Detailed Take)

Challenges in Gibbs Sampling:

� Complexity in Posterior Sampling: Directly sampling from

the posterior distribution of β using Gibbs sampling is

challenging due to the nonlinear transformation involved in

the Bernoulli probabilities through the normal cdf.

Introduction of Missing Data to Simplify the Model:

� Latent Variable Approach: By introducing latent variables,

we can transform the probit regression into a model with a

simpler complete-data likelihood, which is more amenable to

the application of Gibbs sampling.

� Conditional Distributions: The missing data approach

leverages the latent variable structure to separate the complex

dependency into simpler, conditional distributions that are

easier to sample from using standard Gibbs sampling

techniques.
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Example: Probit Regression (Continued)

Missing Data Formulation:

� Latent Variable Definition: Each latent variable Zi for

i = 1, . . . , n is independently drawn from a normal distribution

centered around the linear combination of predictors,

Zi
ind∼ N(xTi β, 1).

� Observation Model: The observed binary outcomes Yi are

determined by the sign of Zi , specifically Yi = I (Zi > 0),

where I is an indicator function that converts the latent

variable into a binary outcome.
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Example: Probit Regression (Continued)

Full Conditional Distributions:

� For β: Given the latent variables Z, the distribution of β

conditional on Z and Y relies solely on Z. It is a normal

distribution, which simplifies due to the conjugate relationship

between the normal prior and the normal likelihood.

� For Z: The distribution of Z given β and Y is a truncated

normal, where the truncation limits are determined by the

corresponding Yi values (truncated below zero if Yi = 0 and

above zero if Yi = 1).

Gibbs Sampler Implementation:

� Implementation Strategy: The Gibbs sampler alternates

between sampling β from its full conditional using the normal

distribution and Z from the truncated normal distribution.
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Example: Dirichlet Process Mixture Model

� Context: In Bayesian nonparametrics, the Dirichlet process

mixture (DPM) model probably the most widely used.
� Model Flexibility:

� Offers a flexible approach for density estimation.

� Utilizes a normal mixture density without specifying

component means, variances, or the number of components.

� Main Challenge:
� Traditional mixture models struggle with choosing the optimal

number of components.

� DPM models select the number of components automatically,

addressing this challenge.

� Computational Feasibility: Despite its “nonparametric”

label, computations for DPM models are manageable,

typically involving a Gibbs sampler.
� References:

� Escobar & West (JASA, 1995) present the simplest algorithm for DPM.

� Kalli et al. (Stat Comp, 2011) propose an efficient slice sampler for DPM. 49



Application: Dirichlet Process Mixture Model

� Application: Implementing the slice sampler from Kalli et al

to fit a normal mixture model to galaxy data.
� Visualization:

� Density estimation and posterior mean comparison with kernel

density estimates.

� Analysis of the number of components and their probability

distribution.

Figure 4: Left: Density Estimation with DPM. Right: Number of

Components Probability.
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Diagnostic Plots: Sample Path (Trace) Plot

� Purpose: To reveal any residual dependence after the burn-in

period.

� Idea:

� A sample path of iid samples should show no trend.

� Minimal trend in our sample plot suggests we can treat

samples as independent.

� Usage: Analyze the trace plot for absence of trends or

patterns, indicating successful burn-in.
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Diagnostic Plots: Autocorrelation (acf) Plot

� Purpose: To assess the dependence structure along the chain.

� Method: Plotting sample correlation of

{(Xt ,Xt+r ) : t = 1, 2, . . .} as a function of the “lag” r .

� Desired Outcome: Rapid decay in the autocorrelation plot,

indicating weak dependence along the chain.

� Actions for Non-Convergence: If the trace and acf plots

suggest the chain has not converged to stationarity, consider

running the chain longer or applying modifications such as

transformations or “thinning”.
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Other Considerations in MCMC Convergence

� Rate of Convergence: Practical/theoretical convergence

rates can vary with parametrization. (Refer to homework for

examples.)

� Community Consensus: No unified agreement exists in the

statistical community regarding the optimal number of chains,

length of burn-in, etc.

� Perspectives on Chain Management:

� Charles Geyer (University of Minnesota) advocates for running

a single, long chain. (See his “rants” for more insight.)

� Gelman & Rubin recommend running several shorter chains

from different starting points, providing a diagnostic test in

their textbook.
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Remarks on MCMC Methods

� Power of MCMC Methods: They offer general procedures

for solving a variety of important problems.

� (Classical) Software Implementations:

� R’s mcmc package for random walk Metropolis-Hastings.

� SAS’s PROC MCMC has similar capabilities.

� BUGS (Bayesian inference Using Gibbs Sampling) for Gibbs

sampling.

� See next slide for state-of-the-art current implementations.

� Caveat: Blind reliance on software without understanding the

underlying methodology and its appropriateness for your

specific problem can lead to misleading results.

� Convergence Diagnostics: Essential to assess convergence

through diagnostics before utilizing simulation results for

inference.
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Modern MCMC Software (for Bayesian Inference)

� Stan: Advanced statistical modeling platform supporting

methods like Hamiltonian Monte Carlo (HMC) and NUTS

(No-U-Turn Sampler, an extension of the HMC method) for

efficient analysis of complex models.

� PyMC: Python library for probabilistic programming, with

PyMC3 offering automatic differentiation and GPU

acceleration for advanced algorithms.

� Turing.jl: Flexible and fast Julia library for Bayesian

inference, supporting diverse sampling methods including

HMC and NUTS.

� JAGS: Extensible Gibbs sampler for complex Bayesian

analysis, offering a versatile alternative to BUGS.

� R’s brms package: User-friendly and high-level interface

primarily built on top of Stan, for fitting Bayesian regression

models using R’s formula syntax, simplifying Bayesian

modeling.
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Integrating MCMC Methods

� Our discussion primarily centered on the simpler forms of

MCMC methods.

� Integration of Methods:

� Methods like Metropolis-Hastings (MH) and Gibbs sampling

are not mutually exclusive and can be combined for enhanced

flexibility and efficiency.

� For instance, an MH step can be incorporated within a Gibbs

cycle sampling to address full conditionals that are challenging

to sample from directly.

� Further Reading: The book by Robert & Casella provides

insights into more advanced MCMC techniques, including

various combinations of standard methods.
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