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Introduction



¢ We know how to sample independent random variables from
the target distribution f(x), at least approximately.

e Monte Carlo uses these simulated random variables to
approximate integrals.

e But the random variables don't need to be independent in
order to accurately approximate integrals!

o MCMC constructs a dependent sequence of random variables
that can be used to approximate the integrals just like for
ordinary Monte Carlo.

e The advantage of introducing this dependence is that various
general algorithms (and corresponding theory) are available to
perform the required simulations (via MCMC).



Initial Remarks

o MCMC methods are powerful tools for sampling from complex
probability distributions and have broad applicability.
e But its effectiveness depends on proper implementation and

understanding of the problem context.

A Word of Caution
e It's crucial not to use MCMC — without a clear understanding

of its applicability and limitations to your specific problem.
e That is, blindly applying MCMC (or any statistical tool) can
lead to misleading results.

Understanding MCMC
o We will discuss some basics of Markov chains and MCMC.

o While MCMC is a mature field with many successful
applications, ongoing research continues to explore its
theoretical boundaries and practical implications. 4



Initial Remarks

Ongoing Research
e MCMC is an active area of research.

e Recent advances have significantly improved our
understanding of MCMC convergence properties and
efficiency.

e Innovations include adaptive MCMC, Hamiltonian Monte

Carlo, and Variational Inference as a complementary approach.

Challenges and Frontiers in Research
e Despite advancements, challenges remain in ensuring
efficiency and convergence in high-dimensional spaces.
e Research continues to focus on developing more robust,
scalable, and efficient MCMC algorithms.
e Understanding the theoretical underpinnings of MCMC's
convergence behavior in complex scenarios remains an open

research area.



Crash Course on Markov Chains



Markov Chains

A Markov chain is a sequence of random variables { X1, Xo,...}
with a specific type of dependence structure, where:

e The future state X, 41 given the past and present states
(Xi,...,Xn) depends only on the present state X,:

P(Xps1 € BIX1, ..., Xn1, Xn) = P(Xps1 € B|Xp)

e This property (called Markov Property) implies that the
probabilistic properties of the chain are completely
determined by:

1. The initial distribution of Xj.

2. The transition distribution, i.e., the distribution of X, 11 given
X, (usually the chain is assumed to be homogeneous, the
transition distribution does not depend on n; i.e., the transition
probabilities do not change over time).

e A sequence of independent rv's is a trivial special case of
Markov chains.



Example: Simple Random Walk

o Let U, Us,... be X (Discrete) Unif({—1,1}).

e Set Xo = 0 and define X, = Z U= X,_1 + U,.
=1
e Initial Distribution: P(Xp, =0) = 1.

e Transition Distribution: Given by

Xn—1—1 ith probabilit
X, — 1 with p ility

Nl N

Xpn—1+ 1 with probability

e Despite its simplicity, the random walk is a foundational
example in probability, with connections to more advanced

concepts like Brownian motion.



Keywords! for Markov Chains

e Recurrent State: A state A is recurrent if a chain starting in
A will eventually return to A with probability 1. A state is null
if the expected time to return is infinite and nonnull if it is
finite. A chain is recurrent if each state is recurrent.

e lrreducible Markov Chain: A Markov chain is irreducible if
there is a positive probability that a chain starting in any state

A can reach any other state B.

e Aperiodic Markov Chain: A Markov chain is aperiodic if, for
any starting state A, there is no fixed number of steps in

which the chain must return to A.

e Ergodic Markov Chain: An irreducible, aperiodic Markov

chain with all states being nonnull recurrent is called ergodic.
!Not mathematically precise but serve for a foundational understanding




Limit Theory? in Markov Chains

e Stationary Distribution: A distribution f is stationary if
Xo ~ f implies X, ~ f for all n.

e An ergodic Markov chain has at most one stationary
distribution.

e Ergodic Theorem: For an ergodic Markov chain with
stationary distribution f:

e The limiting probability (distribution) of being in state B given
starting in state A is given by:

lim P(Xomsn € B|Xo € A) :/ F(x) dx,
B

n—o00

for all states A, B, and times m.

2Simplified for clarity and are not mathematically precise
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Limit Theory® in Markov Chains (Cont’d)

¢ Ergodic Theorem (Cont’d):

e If ¢(x) is integrable, then the time average of ¢(X;) converges
almost surely to the expected value under f:

%Z@(Xt) - /(p(x)f(x) dx, asn— oo

with probability 1.
This is a version of the famous ergodic theorem.

e Central Limit Theorems for Markov Chains: While not
detailed here, there are central limit theorems applicable to
Markov chains, extending some classic probability results to
the Markov chain context.

3Simplified for clarity and are not mathematically precise

11



Motivation, Revisited
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Why MCMC?

In Monte Carlo simulations, our goal is to generate random
variables with a specific distribution f.

This task could be difficult or impossible to achieve exactly.
Solution: MCMC is designed to construct an ergodic Markov
chain for which f is its stationary distribution.

Asymptotically, this chain will produce samples from f (but in
practice, your samples resemble draws from f).

By Ergodic Theorem, expectations with respect to f can be
approximated by averages of samples from the Markov chain.
Surprisingly, constructing and simulating a suitable Markov
chain is quite manageable, which partly explains the
popularity of MCMC methods.

However, implementing MCMC methods comes with its set of

practical and theoretical challenges...
13



Metropolis-Hastings Algorithm

14



Implementing the Metropolis-Hastings Algorithm

e Let f(x) denote the target distribution pdf and
e g(x|y) a conditional pdf for X, given Y = y; this pdf should

be easy to sample from.
e Given Xp, the Metropolis-Hastings (MH) Algorithm produces
a sequence of random variables by:
1. Sample X; ~ q(x|X;-1).
2. Compute

R = min {1, O 1

F(Xe—1)q(X¢ [ Xe-1)
3. Set X; = X/ with probability R; otherwise, X; = X;_1.

e General R code for implementing the Metropolis-Hastings

Algorithm is available on Canvas.
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Choosing the Proposal Distribution

e The choice of proposal distribution g(x|y) is crucial for the
algorithm's performance but not easy.
e Two General Strategies:
1. Use an independent proposal q(x|y) = g(x), making X'
independent of X;_; at each stage of the MH algorithm.
2. Use a symmetric distribution g(x|y) = qo(||x — y||), which
amounts to a random walk proposal.
e This aspect requires careful consideration for optimal
performance.

e In the examples, | will just pick a proposal that seems to work
reasonably well...

16



Convergence and Approximation in MCMC*

e Assuming the proposal distribution is adequately chosen,
several properties about the sequence {X; : t =1,2,...} can
be established:

e The chain is ergodic.
e The target distribution f is the stationary distribution.

e As a result, the sequence converges to the stationary
distribution. This means that for any integrable function
¢(x), we can approximate integrals with sample averages.

e By running the simulation long enough, we can obtain
arbitrarily good approximations.

e This presents an interesting opportunity for statisticians/data
scientists: The ability to control the sample size for better

approximation.
4Again, simplified and not mathematically precise

17



Example: Cosine Model

e Problem Context: From previous slides, recall the likelihood
function defined as:

L(0) x ﬁ(l —cos(X;i —0)), —m<6<m.
i=1

e Observed Data: Given as (Xi,...,X,) in the provided code
on Canvas.

e Prior Distribution: Assume 0 follows a uniform distribution,
Unif(—m, 7).
e Use Metropolis-Hastings to sample from the posterior:
1. Proposal Distribution: g(¢’|0) = Unif(¢’'|60 & 0.5).
2. Burn-in Period: Set B = 5000 to allow the chain to stabilize.
3. Sample Size: M = 10000

18



Example: Cosine Model - Visualization of Results:

e Histogram with Posterior Density: The left figure shows
the histogram of the MCMC sample with the posterior density
overlaid.

e Trace Plot: The right figure displays a trace plot of the
chain, illustrating the convergence and mixing behavior of the

Markov chain over iterations.
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Figure 1: Left: Histogram of MCMC Sample. Right: Trace Plot of the

Chain.
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Example: Weibull Model

e Data and Likelihood: Data Xi,..., X, iid from
Weibull(\, k) distribution has likelihood:

LA k) = X"k exp ((Fc -1) Z logx;i — A" Zx,”) .
i=1 i=1

e Prior Density: 7(\, k) o< e~ M%) b= for some constants
b, c.
e Posterior Density: Proportional to

AT e </<; (Z log x; — c> —\7F Zxﬁ — A) )
i=1 i=1

e Goal:
Perform an informal Bayesian test of Hp : Kk = 1, where Kk = 1
corresponds to the exponential distribution as a special case of

the Weibull distribution. 20



Weibull Model Overview and Prior

Data and Likelihood Function: Given data Xi,..., X, is iid from
a Weibull(\, k) distribution, the pdf of X is given as

-\ k—1 K
f(xil A, k) = ; (%) eG5> 0,A>0,5>0.

and the likelihood function is given by:
n KR Xi - K
_ [ —(xi/A)
L(/\,I{|X1,...,Xn)—‘||)\<)\) e

n
= \T"R" fo{_le_(i) = \"T"g" H exp ((KJ —1)log x; — )f”xf)
i=1 i=1

n n
o AR exp </€ Z log x; — A™F Zx}“) :
i=1 i=1
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Prior and Posterior Density

Prior Density: The prior density for parameters A and & is

assumed to be:
71'()\7 K) o ef()\+cm)ll<dbfl7

where b and ¢ are constants. This reflects our prior beliefs about

the parameters before observing the data.

Posterior Density is proportional to:

ARt e </€ (Z log x; — c) — A" Zxﬁ — /\> :
i=1 i=1

22



Bayesian Testing

Goal: Bayesian Test for x = 1
We aim to perform an informal Bayesian test of the null hypothesis

Ho : k = 1. Testing k = 1 is of particular interest as it corresponds
to the Weibull distribution simplifying to an exponential
distribution, which has a constant failure rate. This test allows us
to evaluate if the exponential model is a suitable simplification
given the data.

Interpretation
A Bayesian approach to hypothesis testing involves computing the

posterior probability of the hypothesis given the data, which can be
more informative than traditional p-values. It provides a direct
probability statement about the hypothesis.

23



Example: Weibull Model (Cont’d)

e Data Source: Problem 7.11 in Ghosh et al (2006).

¢ Sampling Method: Use MH to sample from the posterior of
(A, K).

e Proposal Distribution: (N, x")|()\, k) ~ Exp(\) x Exp(k).

e Prior Parameters: b =2 and ¢ = 1; Burn-in (B) = 1000
and Sample Size (M) = 10000.

e Visualization: Histogram of the marginal posterior of .

e Evaluation: Is an exponential model (x = 1) reasonable

based on the marginal posterior?

Marginal Posterior Distribution of Kappa

. ST i 24
Figure 2: Marginal Posterior of k



Example: Logistic Regression

e Background: Based on Examples 1.13 and 7.11 in Robert &
Casella’s book.

¢ Incident: In 1986, the Challenger space shuttle exploded due
to an “o-ring” failure, possibly influenced by the cold
temperature (31°F).

e Goal: Analyze the relationship between temperature and
o-ring failure.

e Approach: Fit a logistic regression model to understand the
impact of temperature on the probability of o-ring failure.

25



Example: Logistic Regression (Cont’d)

e Model Specification:
e Model: Y|x ~ Ber(p(x)), where x represents temperature.
e Failure probability, p(x), modeled as:
() = - exp(f+7x)
+ exp(f + 7x)
e Model Fitting:
e Fitted using glm in R with available data.

e Coefficients:

Estimate Std. Error =z value Pr(>|zl|)
Intercept 15.0429 7.3786 2.039 0.0415 *

X -0.2322 0.1082 -2.145 0.0320 *
Signif. «codes: O *¥x 0.001 **x 0.01 *x 0.05 . 0.1 1

e Observation: Probability of failure at 31°F is approximately

0.9991!11
26



Example: Logistic Regression (Cont’d)

e Bayesian Analysis:
e Can also do a Bayesian analysis of this logistic model.
e Use MH to obtain samples from the posterior of (/3,7).
e These samples can be used to approximate the posterior
distribution of p(xg) for any fixed xo, e.g., 65°F and 31°F.
e Details:
e Prior and proposal construction details are available in the R
code posted on Canvas.
¢ Posterior Distributions:

e Plots for p(65) and p(31) (see next slide) demonstrate the
density of the posterior probabilities at these temperatures.

27



Posterior Plots for p(65) and p(31)
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Figure 3: Posterior (predictive) distributions of p(65) and p(31).
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Gibbs Sampler

29



Setup for Multivariate Distributions

e Problem Context: Given a multivariate target distribution f.

e Challenge with MH: Applying MH to multivariate
distributions introduces challenges, particularly in constructing
effective proposals across multiple dimensions.

e Proposed Solution: Sample one dimension at a time to
mitigate the complexity of multi-dimensional proposal
construction.

¢ Key Question: How can we ensure that such sampling
accurately approximates the target distribution, especially in
the limit?

e Gibbs Sampler: Identified as an optimal approach for this
task, the Gibbs sampler systematically samples each
dimension, effectively approximating the multivariate target

distribution.
30



Details on the Gibbs Sampler

e Target Distribution: Consider a trivariate target distribution
f(x) = f(x1, x2, x3).
e Full Conditionals: Assume that we can express the
distribution in terms of its full conditionals:
f(xilxe,x3), flxlx,x3), f(xslx1,x2)

e Sampling Process: Assuming we can sample from these
conditionals, the Gibbs sampler iterates as follows:

XU O xS, xSy
X5~ flelX(P X))
X5 ~ FalX{0, X{9)

e Each step involves sampling from the conditional distribution

of one variable, holding the others at their current values.
31



Details on Gibbs Sampler (Cont’d)

e Markov Chain: The sequence generated by the Gibbs
sampler forms a Markov chain.
e Relationship to MH:
e The Gibbs sampler is a special case of MH!
e |t can be viewed as an MH sequence that updates one
component of X at a time.
e Acceptance Probability:
e The acceptance probability for updates in the Gibbs sampler is
exactly 1.
e This characteristic explains the absence of an accept/reject
step in the Gibbs sampler.
e Convergence:
e Since the Gibbs sampler is a special kind of MH, the
convergence properties of MH also apply to Gibbs.

32



Example: Bivariate Normal with Gibbs Sampling

e A simple Gibbs sampling example: Sampling from a bivariate
normal distribution.

e Suppose X = (Xi, X2) is bivariate normal with p; = pup =0,
01 = 0 = 1, and correlation p.

o Full conditionals: The full conditionals are straightforward to
derive in this context.

e Gibbs Sampling Steps:
X~ N(pXSTY 1 - p?)
X$D ~ N(px(D 1~ p?)
e While not as efficient as direct sampling from the bivariate

normal distribution, Gibbs sampling performs well in this
scenario.

33



Example: Many-Normal-Means Model (Hierarchical Bayes)

e Model Specification:
e Consider X; nd N(0;,1), fori=1,...,n.
e Hierarchical Prior Distribution:
o 01,...,0002 % N(0,02); 02 ~ Gamma(a, b).
e Full (Posterior) Conditionals: Takes some work®, but it can
be shown that the full conditionals are

in i 1 .
6,‘|(X,‘,O'2) ’\S] N (]:0_2,]-4—0’2) 5 for i = 1./...,”.

-2 n AN 2
o )(8,x) Gamma<a+2,b+2;9,>.

e Gibbs Sampler Implementation: The Gibbs sampler can be

straightforwardly implemented using these full conditionals.
®It can be shown based on standard conjugate priors.

34



Example: Many-Normal-Means Model (Cont’d)

e Suppose the goal is to estimate [|0|]> = >0, 62.
e The MLE ||X||? performs poorly for this purpose.
e The Bayes estimator, E(]|@]|?|X), provides a superior
alternative and can be evaluated using the Gibbs sampler.
¢ Rao-Blackwellization:

e Using the Rao-Blackwellized estimator for E(6?|x) can further
reduce variance.

e Simulation Study:

e Objective: Compare the Bayes estimator with MLE.
e Settings: n =10, 0 = (1,1,...,1), 1000 repetitions, 5000
Monte Carlo simulations, a=b = 1.
e Results:
mle_mse  bayes_mse
180.1721  32.93027

35



Example: Many-Normal-Means Model (Details)

e Model Specification:

e Consider a sequence of observations Xy, X, ..., X, where each
X; is normally distributed with mean 6; and variance 1.
Mathematically, this is expressed as X; nd N(0;,1) for
i =1,...,n. This specification suggests that each observation

has its own unique mean but shares the same error variance.
e Hierarchical Prior Distribution:

e The means #; are assumed to be drawn from a common
normal distribution, indicating a shared underlying process but
allowing individual differences. Specifically,
01,...,0,|0? g N(0,02). The variance parameter o2 is itself a
random variable, following an Inverse Gamma distribution,
0~2 ~ Gamma(a, b), providing a flexible prior that can adapt
based on the observed data.

36



Example: Many-Normal-Means Model (Details)

¢ Full Conditionals:

e The posterior distributions or full conditionals for each
parameter are derived using Bayesian conjugacy. For 6;, given
the variance o2 and the data x;, the posterior is also normal:

(o, 2y ind Xi 1 .
9,|(X,70' ) ~ /\/(1_’_0_271_"_0_2>7 fOr I = 1,...,”.

2

e The posterior for c~¢, conditional on all #; and the data x, is a

Gamma distribution:

-2 n 1q- o
o |(0,x)~Gamma<a+2,b+2;9,>.

e Gibbs Sampler Implementation:
e The Gibbs sampler is particularly useful here due to the
tractability of the full conditionals. Step-by-step, this involves
alternately updating 6; and o2 using their respective

distributions, facilitating efficient Bayesian inference.
37



Example: Many-Normal-Means Model (Details)

Estimating |6]2:

e The objective is to estimate the squared norm of the
parameter vector 0, [|0]|2 = >_7_; #2. This quantity measures
the overall magnitude of the effects in many statistical models.

e Maximum Likelihood Estimator (MLE): || X||? is a natural
estimator, but it tends to be biased upwards, especially in
small samples or when variance is high.

e Bayesian Estimator: E(||0||2|X) leverages the posterior
distributions of #; and provides a more reliable estimate by
incorporating prior information and the uncertainty inherent in
the observed data.

Rao-Blackwellization: Used to refine the estimator for E(6?|x), thereby
reducing the variance of the estimator compared to the unconditioned
estimator. This method effectively integrates out the Monte Carlo noise

associated with the Gibbs sampling, leading to a more stable estimate. 33



Example: Many-Normal-Means Model (Details)

e Simulation Study:

e Objective: The goal of this study is to empirically compare
the performance of the Bayes estimator against the MLE in
terms of mean squared error (MSE).

e Settings: The simulation setup includes n = 10 variables, all ¢
values set to 1 (representing a simplified scenario where all
effects are equal), 1000 repetitions to ensure stability of the
results, and 5000 Monte Carlo simulations to approximate the
MSE accurately.

e Results:
MLE MSE Bayes MSE

180.1721 32.93027
e These results demonstrate that the Bayesian estimator

substantially outperforms the MLE in this setting, having a
much lower MSE and thus providing more accurate and
reliable estimates.
39



Example: Capture-Recapture Study

e Context: Example 7.6 in G&H. Study designed to estimate
the population size (N) of fur seal pups in a coastal region in

NZ, where N is unknown.
e Capture-Recapture Study:
e Conducted over n occasions, with fur seal pups being caught,
marked, and then returned to the ocean (in NZ).

e At each occasion i =1,... n:
e C; = number of pups caught at time /.
e R; = number of “recaptures” at time /.
e C — R = number of new pups caught at time /.

1
e Define U; = Z(CJ — R;), the cumulative count of new pups
j=1
caught up to time .
e Model Assumptions:
e The model assumes independent binomial sampling for the

capture-recapture process. 20



Example: Capture-Recapture Study (Cont’d)

e Binomial Success Probabilities:

e Introduce wy,wy,...,w, as the binomial success probabilities.

e Likelihood for (N, w):

L(N,w) =

. Ui R; AVic1—R; N = Ui Ci—R; AN=Ui_1—Ci+R;
H( R )w,- (1) ¢ g iAW)

i=1
z Uf1> (N - Uf1> c N—G
= w; (1 —wi)™
i=1 ( Ri Ci B Ri
N! . U/1> C N—C;
:7XH wi’(l—w,') .
w11 (%

e Priors:
e N ~ Poi(m) for the unknown population size.

o w X Beta(a, b) for the success probabilities.

41



Example: Capture-Recapture Study (Cont’d)

e Posterior Distribution of (N, w):

N! mN (Ui Cita—1 N—Ci+b—1

e Full Conditionals: To run a Gibbs sampler, we need the full
conditionals.
e For wj|(N,data) independently follows:

wil(N,data) ~ Beta(a+ C;, b+ N—-C), i=1,...,n.
e For N|(w,data):

N|(w,data) ~ U, + Poi (m X f[(l - w;)) .

i=1
e Gibbs Sampler Implementation:
e With these full conditionals, implementing the Gibbs sampler is
straightforward.
42



Example: Probit Regression

e Model Specification: Observations Y; " Ber(p; = d(x/ 3)),
Bernoulli distribution with probability p; for i =1,...,n,
where ® denotes the standard normal cdf.

e Prior for 3: A normal prior.

e Gibbs Sampling Challenge: It is not immediately clear how
to implement Gibbs sampling to obtain samples from the
posterior distribution of 3.

e Introduction of “Missing Data”:

e Recall from EM slides that the model can be simplified by
introducing some “missing data.”

e The conditional distribution of the missing data, given the
observed data and 3, constitutes one part of the full
conditionals.

e The model for the complete data is, by construction, nice,

simplifying the other part of the full conditionals.
43



Example: Probit Regression (Cont’d)

e Missing Data:
Z" N(xTB,1)and Y; = I(Z;>0), i=1,....n.
e Full Conditionals:
e Distribution of 3, given (Y, Z), depends only on Z and is
straightforward due to the conjugate normal prior for 3.
e Distribution of Z, given (Y, 3), is a truncated normal.
e Gibbs Sampler Construction:

e While exact details are not provided here, constructing a Gibbs
sampler for this setup is manageable®.
e See Section 8.3.2 in Ghosh et al (2006) for a detailed guide.

®The only potential difficulty is simulating from a truncated normal when the

truncation point is extreme, but remember we have talked about extreme
normal tail probabilities before...

44



Example: Probit Regression (Detailed Take)

Model Specification:

e Probabilistic Framework: Each observation Y; is
independently modeled as a Bernoulli distributed random
variable, Y; % Ber(p;), where p; = ®(x 3). Here, ®
represents the cumulative distribution function (cdf) of the
standard normal distribution, mapping the linear predictor
x,—-rﬁ to a probability between 0 and 1.

e Predictors and Parameters: The model incorporates n
observations, with each observation i/ having an associated
vector of predictors x; and a shared parameter vector (3.

Prior Distribution for 3:
e Normal Prior: The parameter vector 3 is assumed to follow

a multivariate normal distribution. This prior reflects our

beliefs about the parameter values before observing any data. 45



Example: Probit Regression (Detailed Take)

Challenges in Gibbs Sampling:

e Complexity in Posterior Sampling: Directly sampling from
the posterior distribution of 3 using Gibbs sampling is
challenging due to the nonlinear transformation involved in
the Bernoulli probabilities through the normal cdf.

Introduction of Missing Data to Simplify the Model:

e Latent Variable Approach: By introducing latent variables,
we can transform the probit regression into a model with a
simpler complete-data likelihood, which is more amenable to
the application of Gibbs sampling.

e Conditional Distributions: The missing data approach
leverages the latent variable structure to separate the complex
dependency into simpler, conditional distributions that are
easier to sample from using standard Gibbs sampling

_ 46
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Example: Probit Regression (Continued)

Missing Data Formulation:

e Latent Variable Definition: Each latent variable Z; for
i=1,...,nis independently drawn from a normal distribution
centered around the linear combination of predictors,

Z, " N(xTB,1).

e Observation Model: The observed binary outcomes Y; are
determined by the sign of Z;, specifically Y; = I(Z; > 0),
where [ is an indicator function that converts the latent

variable into a binary outcome.

47



Example: Probit Regression (Continued)

Full Conditional Distributions:

e For 3: Given the latent variables Z, the distribution of 3
conditional on Z and Y relies solely on Z. It is a normal
distribution, which simplifies due to the conjugate relationship
between the normal prior and the normal likelihood.

e For Z: The distribution of Z given B and Y is a truncated
normal, where the truncation limits are determined by the
corresponding Y; values (truncated below zero if Y; =0 and
above zero if Y; = 1).

Gibbs Sampler Implementation:

¢ Implementation Strategy: The Gibbs sampler alternates
between sampling B from its full conditional using the normal

distribution and Z from the truncated normal distribution.
48



Example: Dirichlet Process Mixture Model

e Context: In Bayesian nonparametrics, the Dirichlet process

mixture (DPM) model probably the most widely used.
e Model Flexibility:
e Offers a flexible approach for density estimation.
e Utilizes a normal mixture density without specifying
component means, variances, or the number of components.
e Main Challenge:
e Traditional mixture models struggle with choosing the optimal
number of components.
e DPM models select the number of components automatically,
addressing this challenge.

o Computational Feasibility: Despite its “nonparametric”
label, computations for DPM models are manageable,
typically involving a Gibbs sampler.

e References:
® Escobar & West (JASA, 1995) present the simplest algorithm for DPM.

e Kalli et al. (Stat Comp, 2011) propose an efficient slice sampler for DPM. 49



Application: Dirichlet Process Mixture Model

e Application: Implementing the slice sampler from Kalli et al

to fit a normal mixture model to galaxy data.
e Visualization:
e Density estimation and posterior mean comparison with kernel
density estimates.
e Analysis of the number of components and their probability
distribution.
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Figure 4: Left: Density Estimation with DPM. Right: Number of
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Some MCMC Diagnostics
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Diagnostic Plots: Sample Path (Trace) Plot

e Purpose: To reveal any residual dependence after the burn-in
period.
o ldea:
e A sample path of iid samples should show no trend.
e Minimal trend in our sample plot suggests we can treat
samples as independent.
e Usage: Analyze the trace plot for absence of trends or
patterns, indicating successful burn-in.
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Diagnostic Plots: Autocorrelation (acf) Plot

e Purpose: To assess the dependence structure along the chain.
e Method: Plotting sample correlation of

{(X¢, Xeyr) : t =1,2,...} as a function of the “lag” r.
e Desired Outcome: Rapid decay in the autocorrelation plot,

indicating weak dependence along the chain.

e Actions for Non-Convergence: If the trace and acf plots
suggest the chain has not converged to stationarity, consider
running the chain longer or applying modifications such as

transformations or “thinning”.
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Other Considerations in MCMC Convergence

¢ Rate of Convergence: Practical/theoretical convergence
rates can vary with parametrization. (Refer to homework for

examples.)

e Community Consensus: No unified agreement exists in the
statistical community regarding the optimal number of chains,
length of burn-in, etc.

e Perspectives on Chain Management:

e Charles Geyer (University of Minnesota) advocates for running
a single, long chain. (See his “rants” for more insight.)

e Gelman & Rubin recommend running several shorter chains
from different starting points, providing a diagnostic test in
their textbook.
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Conclusion
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Remarks on MCMC Methods

¢ Power of MCMC Methods: They offer general procedures
for solving a variety of important problems.

e (Classical) Software Implementations:

e R’s mcmc package for random walk Metropolis-Hastings.

e SAS's PROC MCMC has similar capabilities.

e BUGS (Bayesian inference Using Gibbs Sampling) for Gibbs
sampling.

e See next slide for state-of-the-art current implementations.

e Caveat: Blind reliance on software without understanding the
underlying methodology and its appropriateness for your
specific problem can lead to misleading results.

e Convergence Diagnostics: Essential to assess convergence
through diagnostics before utilizing simulation results for
inference.
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Modern MCMC Software (for Bayesian Inference)

e Stan: Advanced statistical modeling platform supporting
methods like Hamiltonian Monte Carlo (HMC) and NUTS
(No-U-Turn Sampler, an extension of the HMC method) for
efficient analysis of complex models.

e PyMC: Python library for probabilistic programming, with
PyMC3 offering automatic differentiation and GPU
acceleration for advanced algorithms.

e Turing.jl: Flexible and fast Julia library for Bayesian
inference, supporting diverse sampling methods including
HMC and NUTS.

e JAGS: Extensible Gibbs sampler for complex Bayesian
analysis, offering a versatile alternative to BUGS.

e R’s brms package: User-friendly and high-level interface
primarily built on top of Stan, for fitting Bayesian regression

models using R's formula syntax, simplifying Bayesian >7



Integrating MCMC Methods

e Qur discussion primarily centered on the simpler forms of
MCMC methods.
e Integration of Methods:

e Methods like Metropolis-Hastings (MH) and Gibbs sampling
are not mutually exclusive and can be combined for enhanced
flexibility and efficiency.

e For instance, an MH step can be incorporated within a Gibbs
cycle sampling to address full conditionals that are challenging
to sample from directly.

e Further Reading: The book by Robert & Casella provides
insights into more advanced MCMC techniques, including

various combinations of standard methods.
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