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Motivation for Bootstrap Methods

Statistical Foundation:

� In hypothesis testing and confidence intervals, a key quantity

is a statistic whose sampling distribution is required.

� For instance, to test the null hypothesis H0 : µ = µ0 based on

a random sample from a normal distribution N(µ, σ2) where

σ2 is unknown, we typically use the t-statistic:

T =
X − µ0

S/
√
n
,

whereX is the sample mean, S is the sample standard

deviation, and n is the sample size.

� Under the stated conditions, the null distribution of T is a

Student’s t-distribution.
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Motivation for Bootstrap Methods

Challenges with Non-Standard Conditions:

� Deviations from this basic setup, such as different

distributions or assumption violations, lead to complex

distributional calculations.

Bootstrap Solution:

� The goal of the bootstrap method is to provide a simple,

approximate solution to these challenges using simulations.

� This method leverages resampling techniques to estimate the

sampling distribution of the statistic, thereby facilitating more

flexible statistical inference.

4



Statistical Notation and Empirical cdf

Introduction to Statistical Functionals:

� Let F be a cumulative distribution function (cdf) of a random

variable.

� Consider a parameter θ = φ(F ), written as a functional of F .

Examples of Functionals:

� Mean: φ(F ) =
∫
x dF (x)

� Median: φ(F ) = inf{x : F (x) ≥ 0.5}

Empirical cdf: Given data X = {X1, . . . ,Xn} sampled from F , the

empirical cdf is defined as: F̂ (x) =
1

n

n∑
i=1

I (Xi ≤ x), x ∈ R,

where I is the indicator function.

Estimation of θ: A natural estimate of θ is θ̂ = φ(F̂ ), applying

the same functional φ to the empirical cdf.
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Notation and Bootstrap Methodology (Cont’d)

Statistical Inference with Statistic T (X ,F ):

� For inference, a statistic T (X ,F ) is utilized, defined as:

T (X ,F ) =
X − µ0

S/
√
n

whereX is the sample mean, S is the sample standard

deviation, µ0 is a hypothesized mean, and n is the sample size.

Challenges with Sampling Distribution:

� The sampling distribution of T (X ,F ) can be complicated,

unknown, or dependent on the unknown true cdf F .
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Notation and Bootstrap Methodology (Cont’d)

Bootstrap Approach:

� Replacing the True cdf: The unknown cdf F is replaced

with the empirical cdf F̂ for analysis.

� Numerical Approximation: By repeatedly iid sampling from

F̂ , produce a numerical approximation of the sampling

distribution of T (X ,F ).

� This approach allows for estimating the distribution of the

statistic T without knowing the true distribution F .
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Bootstrap Methodology

Bootstrap Sampling:

� Let X ∗ = {X ∗
1 , . . . ,X

∗
n } be an i.i.d. sample from the empirical

cdf F̂ , drawn by sampling size n (with replacement) from the

original sample X .

� Given X ∗, the statistic T ∗ = T (X ∗, F̂ ) can be evaluated.

Bootstrap Distribution:

� Repeated sampling of X ∗ produces a sample of T ∗’s,

T ∗ = {T ∗
1 , . . . ,T

∗
B} where B is the number of bootstrap

samples.

� T ∗ can be used to approximate the distribution of T (X ,F ).

� For instance, the variance of T (X ,F ) can be approximated by

the variance of {T ∗
1 , . . . ,T

∗
B}, i.e., Var(T (X ,F )) ≈ Var(T ∗)
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Bootstrap — Theoretical Justification

Theoretical Justification:

� Glivenko-Cantelli Theorem: States that F̂ → F almost

surely as n → ∞, supporting the idea that i.i.d. sampling

from F̂ approximates i.i.d. sampling from F when n is large.

� Numerous rigorous studies have explored the limits of this

approximation, identifying conditions under which the

bootstrap is effective and its potential pitfalls.
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Basic Setup of Nonparametric Bootstrap

Overview: The nonparametric bootstrap approximates the

sampling distribution of a statistic T (X ,F ) directly using the

empirical distribution derived from bootstrap samples T ∗
1 , . . . ,T

∗
B .

Approximation Examples:

� Quantiles: Quantiles of T (X ,F ) are approximated by the

sample quantiles from the bootstrap samples (i.e., from T ∗).

� Variance: The variance of T (X ,F ) is approximated by

calculating the sample variance of the bootstrap replicates

T ∗ = {T ∗
1 , . . . ,T

∗
B}.

Bootstrap Sample Size:

� Typically, the number of bootstrap replicates B is quite large,

often around 1000, to ensure a good approximation of the

distribution.

� Despite the large number, this process is computationally

manageable with modern software and hardware capabilities.
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Example: Variance of a Sample Median

Context and Problem:

� Example 29.4 from DasGupta (2008): Consider X1, . . . ,Xn as

i.i.d. Cauchy distributed variables with median µ.

� The sample meanX is unreliable for estimating µ due to the

heavy tails of the Cauchy distribution, leading to a preference

for the sample median Mn.

Variance of the Sample Median:

� For an odd n, say n = 2k + 1, there is an exact formula for

the variance:

Var(Mn) =
2 n!

(k!)2 πn

∫ π/2

0
xk(π − x)k(cot x)2 dx

� An asymptotic approximation using a Central Limit Theorem

(CLT) type approach gives:

̂Var(Mn) =
π2

4n 12



Example: Variance of Sample Median (Cont’d)

Bootstrap Approximation:

� To assess the effectiveness of the bootstrap method in

approximating this variance, one can repeatedly sample from

the empirical distribution of X and compute the variance of

the resulting sample medians.

� This provides a practical approach to estimate Var(Mn) when

the theoretical distribution is challenging to work with.

Empirical Results with n = 21:

� Theoretical Variance: Var(Mn) = 0.1367

� CLT Approximation: ̂Var(Mn) = 0.1175
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Example: Variance of Sample Median (Cont’d)

Bootstrap Estimation:

� Using B = 5000 bootstrap samples, the bootstrap estimate of

the variance is:
̂Var(Mn)boot = 0.1102

� This result is a slight underestimate compared to the

theoretical value but is quite close, demonstrating the utility

of the bootstrap method.

Conclusion:

� The main advantage of the bootstrap method is obtaining a

reliable estimate with minimal effort — the computer handles

the computational complexity.

� Note: For reproducibility, the random seed was set using

set.seed(77) in the computation.
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Technical Points on Bootstrap Method

Bootstrap Consistency:

� Let Hn(x) be the true distribution function for the estimator

θ̂n, and H∗
n(x) for θ̂

∗
n.

� The bootstrap is considered consistent if the distance

between Hn(x) and H∗
n(x) converges to 0 in probability as

n → ∞, i.e., for all x where Hn(x) is continuous,

Pr(|Hn(x)− H∗
n(x)| > ϵ) → 0 as n → ∞.

Limitations of Bootstrap: The bootstrap is successful in many

problems, but there are known situations when it may fail:

(i) Support Dependency: Support of the estimator depends on

the parameter.

(ii) Boundary Issues: The true parameter lies on the boundary

of the parameter space.
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Technical Points on Bootstrap Method

Limitations of Bootstrap (Cont’d):

(iii) Non-standard Rates: If the estimator’s convergence rate is

not the standard rate of n−1/2, bootstrap may not perform

well.

� These conditions may lead to the failure of bootstrap

methods.

Advantages and Drawbacks:

� Detection of Skewness: Unlike CLT approximations, the

bootstrap can detect skewness in the distribution of θ̂n and

often has a second-order accuracy property.

� Underestimation of Variances: Bootstrap methods often

underestimate variances, which can mislead inference,

especially in cases where precise variance estimation is critical.
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Bootstrap Confidence Intervals

cp

Introduction to Bootstrap CIs: Bootstrap methods are

commonly used to construct confidence intervals (CIs) for

statistical estimators.

Percentile Method:

� Consider θ̂∗1, . . . , θ̂
∗
B as a bootstrap sample of point estimators.

� A two-sided 100(1− α)

[θ∗α/2, θ
∗
1−α/2],

where θ∗p is the 100pth percentile in the bootstrap sample.

� This method is straightforward and intuitive, making it a

popular choice for initial bootstrap CI analyses.

Alternative Methods:

� While the percentile method is simple, there are “better”

methods in terms of coverage accuracy and robustness, such

as the BCa (bias-corrected and accelerated) method.
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Definition: Parametric Bootstrap

Variation of Bootstrap: The parametric bootstrap is a variant of

the standard (nonparametric) bootstrap, designed for use with

parametric models.

Parametric Model: Consider a parametric model F = Fθ, where

θ represents the parameters of the model.

Methodology:

� Instead of sampling independently and identically distributed

(iid) from the empirical distribution F̂ as in nonparametric

bootstrap,

� The parametric bootstrap samples iid from F
θ̂
, where θ̂ is an

estimator of θ.

Complexity Considerations:

� This approach can be more complex than the nonparametric

method,

� Particularly because sampling from F
θ̂
might involve more

complicated methods than sampling from F̂ .
19



Example: Parametric Bootstrap for Variance of Sample Me-

dian

Setup:

� Consider a sample X1, . . . ,Xn of i.i.d. observations from a

Cauchy distribution with median µ.

� Let Mn denote the sample median.

Parametric Bootstrap Method:

� Samples X ∗
1 , . . . ,X

∗
n are drawn from a Cauchy distribution

with median Mn, effectively using Mn as the parameter

estimate.

� This method assumes that the model parameter (median) can

be accurately estimated by Mn.
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Example: Parametric Bootstrap for Variance of Sample Me-

dian

Bootstrap Results:

� Using B = 5000 bootstrap replicates, the estimated variance

of Mn using the parametric bootstrap is:

̂Var(Mn)p−boot = 0.1356

� This estimate is closer to the true variance,

Var(Mn) = 0.1367, compared to the estimate obtained via

nonparametric bootstrap.
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Example: Random Effects Model

Hierarchical Model Setup:
� Consider a hierarchical (random effects) model where:

� ν1, . . . , νn
iid∼ N(µ, σ2).

� Yi |νi
ind∼ N(νi , τ

2
i ) for i = 1, . . . , n, with νi as the random

effect for each observation.

� This model is a classic example of a hierarchical linear
model where the first level involves individual random effects:

� Random effects ν1, . . . , νn are assumed to be iid N(µ, σ2).

That is, each random effect νi has a mean µ and variance σ2,

representing the variation between groups or clusters.

� The second level of the model addresses the
observation-specific variability:

� Given the random effect νi , the observation Yi is modeled as

normally distributed as, Yi |νi ∼ N(νi , τ
2
i ), where τ 2i is the

known variance of each observation within its group. This

captures the within-group variability. 22



Example: Random Effects Model

Model Parameters and Interest:

� Parameters µ and σ are unknown, but τ2i known. The global

parameters µ (the overall mean) and σ (the standard

deviation of the random effects) are unknown and need to be

estimated from the data.
� The parameter of interest is σ, particularly testing if σ ≈ 0 to
suggest homogeneity across groups. Estimating σ provides
insights into the variability between groups:

� A small value of σ (close to 0) would suggest homogeneity

across groups, indicating that the random effects do not vary

much from the overall mean µ, and thus, the groups are

similar.

� A larger value of σ suggests significant differences between

groups, highlighting the importance of the random effects in

the model.
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Example: Random Effects Model (Cont’d)

Non-Hierarchical Version:

� In a simplified non-hierarchical model, the observations Yi

for i = 1, . . . , n are modeled as independent:

� Each Yi follows a normal distribution N(µ, τ 2i + σ2), which

combines both the inherent variability (τ 2i ) within each group

and the variability across groups (σ2).

� This model structure allows for the estimation of the variance
σ2 using maximum likelihood estimation (MLE):

� MLE provides a way to estimate model parameters that

maximizes the likelihood of observing the given data under the

assumed model.
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Example: Random Effects Model (Cont’d)

Parametric Bootstrap Application:

� To evaluate the reliability and precision of the σ estimate, we
consider using the parametric bootstrap:

� This technique involves repeatedly sampling from the

estimated model to generate new datasets.

� For each sampled dataset, σ is re-estimated to create a

distribution of σ estimates.

� The variability of these estimates is used to construct

confidence intervals for σ, providing insights into the stability

and confidence of our original estimate.
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Random Effects Model: Coverage of Confidence Intervals

Scenario:

� Want to see what happens when σ ≈ 0 (i.e., how bootstrap

CIs fare for σ around 0).

� Exploring cases when the parameter σ = O(n−1/2), which

implies that σ decreases at the rate of n−1/2, near the

boundary of σ ≥ 0.

Coverage Performance of Confidence Intervals

� We use two-sided 95% parametric bootstrap percentile CIs to

estimate the coverage probability.
� Our results indicate low coverage rates for these intervals
when σ is near zero:

� This suggests that the CIs are often narrower than needed,

failing to include the true σ value 95% of the time as expected.

� Such poor performance persists even as the sample size n

increases, highlighting a potential limitation of the parametric

bootstrap method in boundary scenarios. 26



Random Effects Model: Coverage of Confidence Intervals

Empirical Coverage and Interval Length:

n Coverage Length

50 0.758 0.183

100 0.767 0.138

250 0.795 0.079

500 0.874 0.039

Table 1: Coverage and length of confidence intervals for different sample

sizes.

Remedy:

� While it is possible to achieve intervals with exact coverage,

common bootstrap methods may need adjustments for

parameters near the boundary of the parameter space.
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Paired Bootstrap in Observational Studies

Setup:

� In observational studies, pairs zi = (x⊤i , yi )
⊤ are sampled from

a joint predictor-response distribution.

� Let Z = {z1, . . . , zn}.

Paired Bootstrap Method:

� Following the basic bootstrap principle, repeatedly sample

Z∗ = {z∗1, . . . , z∗n} with replacement from Z.

� Use these samples to approximate the sampling distributions

based on the empirical distribution from the bootstrap

sample. This approach is termed the paired bootstrap.

29



Paired Bootstrap in Observational Studies

Fixed Design Complications: What about for a fixed design?

� In fixed design settings, yi values are not i.i.d., introducing

complexities.

� Bootstrap Approach for Fixed Design:

� First, resample the residuals ei = yi − ŷi from the original least

squares (LS) fit.

� Then set y∗
i = x⊤i β̂ + e∗i , where β̂ is the estimated coefficient

from the LS model.
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Example: Ratio of Slope Coefficients in Regression - Observa-

tional Data

Model and Parameter of Interest:

� Consider the simple linear regression model for observational

data:

yi = β0 + β1xi + ϵi , i = 1, . . . , n,

where ϵi are i.i.d. with mean zero, not necessarily normal.

� The parameter of interest is θ = β1/β0.

� A natural estimate of θ is θ̂ = β̂1/β̂0.

Paired Bootstrap Method:

� To obtain the bootstrap distribution of θ̂:

� Sample Z∗ = {z∗1, . . . , z∗n} with replacement from Z, where Z
consists of the pairs (xi , yi ).

� Fit the regression model to the bootstrap sample Z∗ to

estimate β̂∗
0 and β̂∗

1 .

� Evaluate θ̂∗ = β̂∗
1/β̂

∗
0 .
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Bootstrap Distribution of Ratio of Slope Coefficients

Purpose of the Bootstrap:

� This bootstrap method allows us to estimate the variability

and construct confidence intervals for θ under the model

assumption.

� It accounts for the correlation between β̂1 and β̂0 by using the

paired bootstrap approach.

Visualization of Bootstrap Distribution:

� The histogram below shows the bootstrap distribution of

θ̂ = β̂1/β̂0, representing the ratio of slope coefficients.

� The distribution illustrates how θ̂ varies across bootstrap

samples.
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Bootstrap Distribution of Ratio of Slope Coefficients

Bootstrap Confidence Interval:

� Based on the bootstrap samples, a 95% confidence interval

for θ is calculated as: (−0.205,−0.173)

� This interval indicates the range in which the true ratio of

slope coefficients is likely to fall with 95% confidence.

Paired Bootstrap Distribution
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Figure 1: Bootstrap Distribution of θ̂ 33
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Constructing Confidence Intervals for Parameters

Context of Confidence Intervals:

� Aim to construct a 100(1− α)% confidence interval (CI) for a

parameter θ.

� Commonly used for the mean µ of a normal population.

Traditional t-Distribution Method:

� The formula for the t confidence interval is:

X ± tα/2,n−1
S√
n

whereX is the sample mean, S is the sample standard

deviation, n is the sample size, and tα/2,n−1 are the critical

values from the Student’s t-distribution.

� This approach is appropriate because the standardized mean,

(X − µ)/(S/
√
n), exactly follows a Student’s t-distribution.
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Constructing Confidence Intervals for Parameters

Bootstrap Methods for CIs:

� Previously discussed: Bootstrap Percentile Method.

� Now introducing: Bootstrap t Method.

� Similar to the traditional t-method but uses bootstrap samples

to estimate the distribution of (X − µ)/(S/
√
n).

Comparison of Methods:

� Various approaches offer different advantages depending on

assumptions about the data distribution and sample size.
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Bootstrap t Method for Confidence Intervals

Bootstrap t Statistics:

� Let θ̂n be a given estimate of the parameter θ from the

original sample.

� Suppose σ̂n is an estimate of the standard deviation of θ̂n,

typically σ̂n = S√
n
in the normal mean problem.

� Delta Method can often be used to approximate σ̂n.

Construction of Bootstrap t-Statistic:

� Define the t-statistic as Tn = θ̂n−θ
σ̂n

.

� Its bootstrap counterpart is T ∗
n = θ̂∗n−θ̂n

σ̂n
, where θ̂∗n is obtained

from bootstrap sample and σ̂n are obtained from the original

sample.

� We could also use σ̂∗
n (obtained from bootstrap samples)

instead of σ̂n. However, using σ̂n stabilizes the variance

estimate (which can be particularly useful when the sample

size is small, or the parameter estimate is complex). 37



Bootstrap t Method for Confidence Intervals

Bootstrap t Confidence Interval:

� The bootstrap t confidence interval for θ is calculated as:[
θ̂n + cα/2σ̂n, θ̂n + c1−α/2σ̂n

]
� Here, cp is the 100pth percentile of the bootstrap distribution

of T ∗
n .

Advantages of Bootstrap t Method:

� This method provides a more robust estimate of confidence

intervals by incorporating variability from the bootstrap

distribution, making it suitable for more complex or

non-standard distributions.
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Bootstrap Methods in Regression Analysis: Example Cont’d

Linear Model and Parameter Estimation:

� Linear model parameter of interest: θ = β1/β0.

� MLE estimate: θ̂ = β̂1/β̂0.

� Use any available approximation to estimate the variance σ2

of θ̂.

Variance Estimation Using Delta Theorem:

� Delta theorem approximation gives:

σ̂2 = θ̂2

 V̂ar(β̂1)

β̂2
1

+
V̂ar(β̂0)

β̂2
0

− 2
̂

Cov(β̂0, β̂1)

β̂0β̂1


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Bootstrap Methods in Regression Analysis: Example Cont’d

Bootstrap t-Statistics and Confidence Intervals:

� Compute bootstrap estimates (θ̂∗, σ̂2∗) and t-statistics

T ∗ = θ̂∗−θ̂
σ̂∗ .

� Bootstrap Confidence Intervals for θ:

� Percentile method: [−0.205,−0.174]

� t-method: [−0.203,−0.167]

Implications:

� These confidence intervals provide insights into the precision

and reliability of the parameter estimates under the model

assumptions.
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Alternative Bootstrap Confidence Intervals

Limitations of Bootstrap Percentile CIs:

� In some cases, bootstrap percentile confidence intervals may

not provide accurate coverage due to inherent biases in the

bootstrap distribution.

Bias-Corrected Bootstrap Percentile CI:

� To improve accuracy, one can correct for the bootstrap bias

using the bias-corrected (BC) method.

� The two-sided 100(1−α)% BC bootstrap CI involves selecting

different quantiles from the bootstrap distribution of θ̂.

� Instead of the standard
[
θ̂α/2, θ̂1−α/2

]
, use

[
θ̂z1 , θ̂z2

]
, where

z1 and z2 are adjusted quantiles based on user-specified

constants (a, b).

41



Alternative Bootstrap Confidence Intervals

Formulas and Parameter Choices:

� The textbook provides specific formulas for calculating z1 and

z2 and discusses how to choose the constants (a, b) effectively.

� For detailed guidance and examples, refer to G&H, Section

9.3.2.1.

Implications:

� Using bias-corrected methods can significantly enhance the

reliability and validity of confidence intervals derived from

bootstrap methods, especially in skewed distributions or small

sample sizes.
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Example: Bootstrap Failure

Setup and Statistic Definition:

� Consider X1, . . . ,Xn
iid∼ Uniform(0, θ).

� Define Tn = n(θ − θ̂n), where θ̂n = X(n) = max{Xi}.

Bootstrap Resampling Statistic:

� Let θ̂∗n = X ∗
(n) from the bootstrap sample X ∗.

� Define T ∗
n = n(θ̂n − θ̂∗n).
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Example: Bootstrap Failure

Bootstrap Failure:

� The distributions of T ∗
n and Tn are not close as n → ∞.

� Specifically, for any t ≥ 0,

P(T ∗
n ≤ t) ≥ P(T ∗

n = 0) =

(
n − 1

n

)n

→ 1−e−1 as n → ∞.

� If θ = 1, then as t becomes small, P(Tn ≤ t) → 1− e−t ,

approaching 0 for small t.

� Conversely, P(T ∗
n ≤ t) remains significantly larger,

approximately 0.63, indicating a failure in approximation.

Conclusion:

� This example illustrates a scenario where the bootstrap

method does not effectively approximate the sampling

distribution of a statistic, particularly as the sample size

increases.
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Remedy for Bootstrap Failures: m-out-of-n Bootstrap

Observation of Bootstrap Failures:

� In some statistical settings, the standard bootstrap method,

which samples the full data set size n, fails to provide

accurate results.

m-out-of-n Bootstrap Method:

� A modified approach involves taking bootstrap samples of size

m where m = o(n) (i.e., m grows slower than n).

� This method is termed the m-out-of-n bootstrap.

� It can be particularly effective in scenarios where the regular

bootstrap fails, such as with certain distributions like

Uniform(0, θ).
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Remedy for Bootstrap Failures: m-out-of-n Bootstrap

Theoretical Justification and Further Reading:

� The m-out-of-n bootstrap has been shown to be consistent in

cases where the standard bootstrap method is not.

� For a detailed theoretical foundation and empirical studies,
refer to:

� DasGupta, Sections 29.7–29.8.

� Bickel, Gotze, and van Zwet (1997) in Statistica Sinica.

Implications:

� Adopting the m-out-of-n bootstrap method can improve the

reliability of bootstrap confidence intervals and other

statistical estimates in challenging scenarios.
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Bootstrap Failure and m-out-of-n Bootstrap Remedy

Revisiting the Uniform Distribution Problem:

� Reconsidering the bootstrap failure in the uniform distribution

example.

� The previous example used full sample size n for

bootstrapping.

Modified Bootstrap Approach:

� Introduce m-out-of-n bootstrap where m = o(n) (grows

slower than n).

� Define the statistic:

T ∗
n,m = m(θ̂n − θ̂∗n,m),

where θ̂∗n,m = max{X ∗
1 , . . . ,X

∗
m}.
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Bootstrap Failure and m-out-of-n Bootstrap Remedy

Consistency of m-out-of-n Bootstrap:

� Theory guarantees that the distributions P(T ∗
n,m ≤ t) and

P(Tn ≤ t) become similar as n → ∞, i.e., m-out-of-n

bootstrap is consistent.

� This approach addresses the consistency issues observed in the

regular bootstrap for this specific problem.

Practical Implementation:

� A rule of thumb for choosing m is approximately m ≈ 2
√
n.

� Simulation details will be presented on the next slide to

illustrate the effectiveness of this approach.

49



Bootstrap Failure Cont’d: Uniform Distribution Example

Simulation Setup:

� Revisiting the uniform distribution problem with sample size

n = 100 and bootstrap sample size m = 20.

Histogram Comparison:

� The left histogram shows the distribution of T ∗
n (ordinary

bootstrap), and the right histogram shows T ∗
n,m (modified

m-out-of-n bootstrap).

� Both histograms include the true limiting distribution of Tn

overlaid for comparison.
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Bootstrap Failure Cont’d: Uniform Distribution Example

Bootstrap Distribution vs. Theoretical
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Figure 2: Left: Histogram for regular bootstrap. Right: Histogram for

m-out-of-n bootstrap.

Observations:

� Note how the histograms compare to the theoretical

distribution.

� Compare the effectiveness of the m-out-of-n method in

addressing bootstrap failure observed with the ordinary

method. 51
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Bootstrap Methods in Hypothesis Testing

Role of Bootstrap in Hypothesis Testing (HT):

� Hypothesis testing often requires knowledge of the sampling

distribution under the null hypothesis to set rejection

thresholds or compute p-values.

Limitations of Nonparametric Bootstrap:

� Since the nonparametric bootstrap samples from the observed

data, it may not accurately reflect the null hypothesis

distribution if the null does not correspond to the observed

data distribution.

� This makes nonparametric bootstrap inappropriate for most

HT where the null distribution is distinct from the observed.
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Bootstrap Methods in Hypothesis Testing

Parametric Bootstrap Approach:

� A more suitable approach in hypothesis testing is the

parametric bootstrap, which involves sampling from Pθ0 , the

assumed true distribution under the null hypothesis.

� Aligns with Monte Carlo approximation techniques, providing

a rigorous way to simulate the null distribution.

Adjustments for Nonparametric Bootstrap:

� Section 9.3.3 in G&H discusses adjustments to nonparametric

bootstrap methods that can make them suitable for HT.

� These adjustments often involve modifications to ensure that

the bootstrap distribution mirrors the theoretical null

distribution more closely.

Implications: Using bootstrap methods in HT can enhance the

accuracy of p-values and decision rules but requires careful

consideration of the bootstrap type and adjustments for the

specific testing scenario.
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Related Idea: Permutation Tests for Testing for Identical Dis-

tributions

Hypothesis of Interest: The goal is to test whether two groups

are “identical” in terms of their statistical distributions.

Conceptual Framework:

� Consider two datasets, X = {X1, . . . ,Xn} and

Y = {Y1, . . . ,Ym}.
� Under the null hypothesis that both groups are from the same

distribution, any re-grouping of these combined data into two

new groups of sizes n and m should be statistically equivalent.

Implementation of Permutation Tests:

� By permuting the group labels of the combined dataset

{X ,Y}, one can generate new samples that respect the null

hypothesis.

� Test statistics (like means, variances, etc.) are computed for

each permutation, forming a distribution of these statistics

under the null hypothesis.
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Permutation Tests: Testing for Identical Distributions

Approximation of Sampling Distributions:

� The permutation test approximates the sampling distribution

of the test statistic by considering all (or a significant sample

of) possible partitions of the combined data.

� This method is particularly effective for assessing the

significance of observed differences between the two groups

without making assumptions about the underlying

distributions.

Practical Considerations:

� This test is non-parametric and does not require the

assumption of normal distributions or equal variances, making

it robust and widely applicable.
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Bootstrapping Dependent Data

Review of Bootstrap Methods:

� Previously, we discussed bootstrap methods for:

� Independent and identically distributed (iid) data.

� Independent but not identically distributed (not-iid) data, such

as in regression problems.

� In these cases, the order of data presentation does not affect

the analysis.

Challenges with Dependent Data:

� For dependent data, such as time series, the sequence or order

of data points is crucial.

� Standard bootstrap methods that reshuffle data points lose

the dependency structure, making them inappropriate.
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Bootstrapping Dependent Data

Adjustments for Dependent Data:

� Adjustments involve bootstrapping blocks of data to preserve

the internal dependency.

� Known as “block bootstrapping,” this method works with

sequences of data rather than individual points.

Further Reading:

� For more detailed theoretical and practical guidance on
bootstrap methods for dependent data:

� See Section 9.5 in G&H.

Note:

� The specifics of bootstrapping for dependent data can be

complex, and still an open area of research.
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Conclusion: Reflections on Bootstrap Methods

Bootstrap as a Tool:

� Bootstrap is a powerful statistical tool that provides a simple

and effective way to approximate sampling distributions

numerically.

� This method circumvents the need for complex analytical

calculations, making it accessible and practical for a wide

range of applications.

Cautions in Using Bootstrap:
� Despite its apparent simplicity and automation, bootstrap
methods require careful application:

� Sample Size Considerations: The effectiveness of bootstrap

approximations heavily depends on the sample size (n). Small

sample sizes may not provide reliable results.

� Potential for Failure: There are scenarios where bootstrap

methods can fail, particularly when the underlying assumptions

required for the bootstrap are not met. 59



Conclusion: Reflections on Bootstrap Methods

The Need for Theoretical Understanding:

� It is crucial not to use bootstrap methods blindly. A solid

understanding of the underlying statistical theory and the

specific data context is essential to ensure valid results.

� Researchers and practitioners must remain vigilant and assess

the suitability of bootstrap for their specific problem,

considering both theoretical and practical aspects.

Final Thoughts:

� While bootstrap is an invaluable tool in statistics, its

application must be guided by both statistical theory and

empirical evidence to avoid misuse and to harness its full

potential effectively.
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