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Introduction



Motivation for Bootstrap Methods

Statistical Foundation:
e In hypothesis testing and confidence intervals, a key quantity
is a statistic whose sampling distribution is required.
e For instance, to test the null hypothesis Hy : 1 = o based on
a random sample from a normal distribution N(u,o?) where

o2 is unknown, we typically use the t-statistic:

S/

where X is the sample mean, S is the sample standard

T

deviation, and n is the sample size.

e Under the stated conditions, the null distribution of T is a
Student’s t-distribution.



Motivation for Bootstrap Methods

Challenges with Non-Standard Conditions:
e Deviations from this basic setup, such as different
distributions or assumption violations, lead to complex

distributional calculations.

Bootstrap Solution:
e The goal of the bootstrap method is to provide a simple,
approximate solution to these challenges using simulations.
e This method leverages resampling techniques to estimate the
sampling distribution of the statistic, thereby facilitating more
flexible statistical inference.



Statistical Notation and Empirical cdf

Introduction to Statistical Functionals:
e Let F be a cumulative distribution function (cdf) of a random

variable.
e Consider a parameter 0§ = p(F), written as a functional of F.

Examples of Functionals:
e Mean: ¢(F) = [ xdF(x)
e Median: ¢(F) =inf{x: F(x) > 0.5}

Empirical cdf: Given data X = {Xl, ..., Xn} sampled from F, the
empirical cdf is defined as: F Zl (Xi <x), xeR,
where [ is the indicator function.

Estimation of 0: A natural estimate of 6 is 6 = (p(/?) applying
the same functional ¢ to the empirical cdf.



Notation and Bootstrap Methodology (Cont’d)

Statistical Inference with Statistic 7 (X, F):

e For inference, a statistic T(X, F) is utilized, defined as:

X — po
SV

where X is the sample mean, S is the sample standard

T(X,F) =

deviation, g is a hypothesized mean, and n is the sample size.

Challenges with Sampling Distribution:
e The sampling distribution of T (X', F) can be complicated,
unknown, or dependent on the unknown true cdf F.



Notation and Bootstrap Methodology (Cont’d)

Bootstrap Approach:

¢ Replacing the True cdf: The unknown cdf F is replaced
with the empirical cdf F for analysis.

e Numerical Approximation: By repeatedly iid sampling from
I-:, produce a numerical approximation of the sampling
distribution of T(X, F).

e This approach allows for estimating the distribution of the
statistic T without knowing the true distribution F.



Bootstrap Methodology

Bootstrap Sampling:

o Let X* = {X],..., X} be an i.i.d. sample from the empirical

cdf F, drawn by sampling size n (with replacement) from the
original sample X.

e Given X*, the statistic T* = T(X™, l-:) can be evaluated.

Bootstrap Distribution:

e Repeated sampling of X'* produces a sample of T*'s,
T*={T{,..., T§} where B is the number of bootstrap
samples.

e 7 can be used to approximate the distribution of T (X, F).

e For instance, the variance of T(X', F) can be approximated by
the variance of {T7,..., T4} ie, Var(T(X,F)) ~ Var(T™)



Bootstrap — Theoretical Justification

Theoretical Justification:
e Glivenko-Cantelli Theorem: States that F — F almost
surely as n — oo, supporting the idea that i.i.d. sampling
from F approximates i.i.d. sampling from F when n is large.

e Numerous rigorous studies have explored the limits of this
approximation, identifying conditions under which the
bootstrap is effective and its potential pitfalls.



Nonparametric Bootstrap
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Basic Setup of Nonparametric Bootstrap

Overview: The nonparametric bootstrap approximates the
sampling distribution of a statistic T (X, F) directly using the
empirical distribution derived from bootstrap samples T{,..., T5.

Approximation Examples:
e Quantiles: Quantiles of T (X, F) are approximated by the

sample quantiles from the bootstrap samples (i.e., from 7*).

e Variance: The variance of T (X, F) is approximated by
calculating the sample variance of the bootstrap replicates
T ={T{,..., T§}.

Bootstrap Sample Size:

e Typically, the number of bootstrap replicates B is quite large,
often around 1000, to ensure a good approximation of the
distribution.

e Despite the large number, this process is computationally

. e 11
manageable with modern software and hardware capabilities.



Example: Variance of a Sample Median

Context and Problem:
e Example 29.4 from DasGupta (2008): Consider Xi, ..., X, as

i.i.d. Cauchy distributed variables with median .

e The sample mean X is unreliable for estimating ;. due to the
heavy tails of the Cauchy distribution, leading to a preference
for the sample median M,,.

Variance of the Sample Median:
e For an odd n, say n = 2k + 1, there is an exact formula for
the variance:
/2
Var(M,) = (klz)glwn/o / xK( — x)¥(cot x)? dx
e An asymptotic approximation using a Central Limit Theorem
(CLT) type approach gives:
o 2

s
Var(M,) = an 1



Example: Variance of Sample Median (Cont’d)

Bootstrap Approximation:
e To assess the effectiveness of the bootstrap method in
approximating this variance, one can repeatedly sample from
the empirical distribution of X and compute the variance of

the resulting sample medians.

e This provides a practical approach to estimate Var(M,) when
the theoretical distribution is challenging to work with.

Empirical Results with n = 21:
e Theoretical Variance: Var(M,) = 0.1367

—

e CLT Approximation: Var(M,) = 0.1175
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Example: Variance of Sample Median (Cont’d)

Bootstrap Estimation:
e Using B = 5000 bootstrap samples, the bootstrap estimate of

the variance is:

o —

Var(Mp)poor = 0.1102

boot

e This result is a slight underestimate compared to the
theoretical value but is quite close, demonstrating the utility
of the bootstrap method.

Conclusion:

e The main advantage of the bootstrap method is obtaining a
reliable estimate with minimal effort — the computer handles
the computational complexity.

e Note: For reproducibility, the random seed was set using
set.seed(77) in the computation.

14



Technical Points on Bootstrap Method

Bootstrap Consistency:
e Let H,(x) be the true distribution function for the estimator
0, and H*(x) for 0.
e The bootstrap is considered consistent if the distance
between H,(x) and H}(x) converges to 0 in probability as
n — oo, i.e., for all x where H,(x) is continuous,

Pr(|Hn(x) — H;(x)| > €) — 0 as n — oc.

Limitations of Bootstrap: The bootstrap is successful in many
problems, but there are known situations when it may fail:
(i) Support Dependency: Support of the estimator depends on
the parameter.
(i) Boundary Issues: The true parameter lies on the boundary
of the parameter space.

15



Technical Points on Bootstrap Method

Limitations of Bootstrap (Cont’d):

(iii) Non-standard Rates: If the estimator's convergence rate is
not the standard rate of n=1/2, bootstrap may not perform
well.

e These conditions may lead to the failure of bootstrap

methods.

Advantages and Drawbacks:

e Detection of Skewness: Unlike CLT approximations, the
bootstrap can detect skewness in the distribution of 5,, and
often has a second-order accuracy property.

e Underestimation of Variances: Bootstrap methods often
underestimate variances, which can mislead inference,
especially in cases where precise variance estimation is critical.

16



Bootstrap Confidence Intervals

cp
Introduction to Bootstrap Cls: Bootstrap methods are
commonly used to construct confidence intervals (Cls) for
statistical estimators.
Percentile Method:

e Consider 07,...,05 as a bootstrap sample of point estimators.

e A two-sided 100(1 — «)

[0/2:01_a 2
where 0 is the 100pth percentile in the bootstrap sample.

e This method is straightforward and intuitive, making it a
popular choice for initial bootstrap Cl analyses.

Alternative Methods:
o While the percentile method is simple, there are “better” 17
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Parametric Bootstrap
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Definition: Parametric Bootstrap

Variation of Bootstrap: The parametric bootstrap is a variant of
the standard (nonparametric) bootstrap, designed for use with
parametric models.

Parametric Model: Consider a parametric model F = Fy, where
0 represents the parameters of the model.

Methodology:

e Instead of sampling independently and identically distributed
(iid) from the empirical distribution F as in nonparametric
bootstrap,

e The parametric bootstrap samples iid from F;, where 0 is an
estimator of 6.

Complexity Considerations:

e This approach can be more complex than the nonparametric
method,

e Particularly because sampling from Fj might involve more

complicated methods than sampling from F. 19



Example: Parametric Bootstrap for Variance of Sample Me-

IET

Setup:
e Consider a sample Xi,..., X, of i.i.d. observations from a
Cauchy distribution with median .

e Let M, denote the sample median.

Parametric Bootstrap Method:

e Samples X{, ..., X, are drawn from a Cauchy distribution
with median M, effectively using M, as the parameter
estimate.

e This method assumes that the model parameter (median) can
be accurately estimated by M,.

20



Example: Parametric Bootstrap for Variance of Sample Me-

IET

Bootstrap Results:
e Using B = 5000 bootstrap replicates, the estimated variance

of M, using the parametric bootstrap is:

Var(M,) — 0.1356

p—boot

e This estimate is closer to the true variance,
Var(M,) = 0.1367, compared to the estimate obtained via

nonparametric bootstrap.

21



Example: Random Effects Model

Hierarchical Model Setup:
e Consider a hierarchical (random effects) model where:

iid
° Vi, vp ~ N(p, 0?)
o Vi X N(z/,, 72) for i = 1,...,n, with v; as the random

effect for each observation.

e This model is a classic example of a hierarchical linear
model where the first level involves individual random effects:

e Random effects 11, ...,v, are assumed to be iid N(u,o?).
That is, each random effect v; has a mean y and variance o2,
representing the variation between groups or clusters.

e The second level of the model addresses the
observation-specific variability:

e Given the random effect v;, the observation Y; is modeled as
normally distributed as, Y;|v; ~ N(v;, 7?), where 72 is the
known variance of each observation within its group. This
captures the within-group variability. 22



Example: Random Effects Model

Model Parameters and Interest:
e Parameters ;i and o are unknown, but 7',-2 known. The global

parameters p (the overall mean) and o (the standard
deviation of the random effects) are unknown and need to be

estimated from the data.

e The parameter of interest is o, particularly testing if 0 ~ 0 to
suggest homogeneity across groups. Estimating o provides
insights into the variability between groups:

e A small value of o (close to 0) would suggest homogeneity
across groups, indicating that the random effects do not vary
much from the overall mean p, and thus, the groups are
similar.

o A larger value of o suggests significant differences between
groups, highlighting the importance of the random effects in
the model.

23



Example: Random Effects Model (Cont’d)

Non-Hierarchical Version:

e In a simplified non-hierarchical model, the observations Y;
for i =1,...,n are modeled as independent:
e Each Y; follows a normal distribution N(p, 72 + 02), which
combines both the inherent variability (7?) within each group
and the variability across groups (02).
e This model structure allows for the estimation of the variance
o2 using maximum likelihood estimation (MLE):

e MLE provides a way to estimate model parameters that
maximizes the likelihood of observing the given data under the

assumed model.

24



Example: Random Effects Model (Cont’d)

Parametric Bootstrap Application:

e To evaluate the reliability and precision of the o estimate, we
consider using the parametric bootstrap:

e This technique involves repeatedly sampling from the
estimated model to generate new datasets.

e For each sampled dataset, o is re-estimated to create a
distribution of o estimates.

e The variability of these estimates is used to construct
confidence intervals for o, providing insights into the stability
and confidence of our original estimate.

25



Random Effects Model: Coverage of Confidence Intervals

Scenario:

e Want to see what happens when o = 0 (i.e., how bootstrap
Cls fare for o around 0).

e Exploring cases when the parameter & = O(n~1/2), which
implies that o decreases at the rate of n_l/z, near the
boundary of o > 0.

Coverage Performance of Confidence Intervals

e We use two-sided 95% parametric bootstrap percentile Cls to
estimate the coverage probability.

e Our results indicate low coverage rates for these intervals
when ¢ is near zero:

e This suggests that the Cls are often narrower than needed,
failing to include the true o value 95% of the time as expected.

e Such poor performance persists even as the sample size n
increases, highlighting a potential limitation of the parametric
bootstrap method in boundary scenarios. 26



Random Effects Model: Coverage of Confidence Intervals

Empirical Coverage and Interval Length:

n | Coverage | Length
50 0.758 0.183
100 0.767 0.138
250 0.795 0.079
500 0.874 0.039

Table 1: Coverage and length of confidence intervals for different sample

sizes.

Remedy:
e While it is possible to achieve intervals with exact coverage,
common bootstrap methods may need adjustments for
parameters near the boundary of the parameter space.
27



Bootstrap in Regression

28



Paired Bootstrap in Observational Studies

Setup:
e In observational studies, pairs z; = (x,-T,y,-)T are sampled from

a joint predictor-response distribution.

o Let Z={z1,...,2,}.

Paired Bootstrap Method:
e Following the basic bootstrap principle, repeatedly sample
Z2* ={zj,...,z}} with replacement from Z.
o Use these samples to approximate the sampling distributions
based on the empirical distribution from the bootstrap
sample. This approach is termed the paired bootstrap.

29



Paired Bootstrap in Observational Studies

Fixed Design Complications: What about for a fixed design?
e In fixed design settings, y; values are not i.i.d., introducing
complexities.
e Bootstrap Approach for Fixed Design:

e First, resample the residuals e; = y; — y; from the original least
squares (LS) fit.

e Then set y* = X,TB+ e/, where B is the estimated coefficient
from the LS model.

30



Example: Ratio of Slope Coefficients in Regression - Observa-

tional Data

Model and Parameter of Interest:
e Consider the simple linear regression model for observational
data:
yi=Po+ Bixi+e, i=1,...,n,
where ¢€; are i.i.d. with mean zero, not necessarily normal.
e The parameter of interest is 8 = 31/ fp.
e A natural estimate of 0 is § = 31/30-

Paired Bootstrap Method:
e To obtain the bootstrap distribution of 0:
e Sample Z* ={zj,...,z},} with replacement from Z, where Z
consists of the pairs (x;, yi).
o Fit the regression model to the bootstrap sample Z* to
estimate B{; and Eik
e Evaluate §* = Bf/ﬁg 31



Bootstrap Distribution of Ratio of Slope Coefficients

Purpose of the Bootstrap:

e This bootstrap method allows us to estimate the variability
and construct confidence intervals for # under the model
assumption.

e |t accounts for the correlation between Bl and Bo by using the
paired bootstrap approach.

Visualization of Bootstrap Distribution:

e The h|stogram below shows the bootstrap distribution of
= Bl/ﬂo, representing the ratio of slope coefficients.

e The distribution illustrates how @ varies across bootstrap
samples.

32



Bootstrap Distribution of Ratio of Slope Coefficients

Bootstrap Confidence Interval:
e Based on the bootstrap samples, a 95% confidence interval
for 6 is calculated as: (—0.205,—0.173)
e This interval indicates the range in which the true ratio of
slope coefficients is likely to fall with 95% confidence.

Paired Bootstrap Distribution
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Figure 1: Bootstrap Distribution of ) 33



Better Bootstrap Cls

34



Constructing Confidence Intervals for Parameters

Context of Confidence Intervals:
e Aim to construct a 100(1 — )% confidence interval (ClI) for a
parameter 6.

e Commonly used for the mean p of a normal population.

Traditional t-Distribution Method:
e The formula for the t confidence interval is:

)_< + ta/Z,nle
where X is the sample mean, S is the sample standard
deviation, n is the sample size, and t,/> ,_1 are the critical
values from the Student's t-distribution.

e This approach is appropriate because the standardized mean,

(X — n)/(S/+/n), exactly follows a Student’s t-distribution.

35



Constructing Confidence Intervals for Parameters

Bootstrap Methods for Cls:
e Previously discussed: Bootstrap Percentile Method.
e Now introducing: Bootstrap t Method.

e Similar to the traditional t-method but uses bootstrap samples
to estimate the distribution of (X — )/(S/+/n).

Comparison of Methods:

e Various approaches offer different advantages depending on
assumptions about the data distribution and sample size.

36



Bootstrap t Method for Confidence Intervals

Bootstrap t Statistics:

o Let é\n be a given estimate of the parameter 0 from the
original sample.
e Suppose 0, is an estimate of the standard deviation of 5,,,
typically o, = % in the normal mean problem.
e Delta Method can often be used to approximate .
Construction of Bootstrap t-Statistic:
e Define the t-statistic as T, = %.
e |ts bootstrap counterpart is T = Q;a_ne”, where é\;‘; is obtained
from bootstrap sample and &, are obtained from the original

sample.
e We could also use 7}, (obtained from bootstrap samples)
instead of &,. However, using o, stabilizes the variance
estimate (which can be particularly useful when the sample
size is small, or the parameter estimate is complex). 37



Bootstrap t Method for Confidence Intervals

Bootstrap t Confidence Interval:

e The bootstrap t confidence interval for 6 is calculated as:
On + Ca/2anv 0n + Cl—a/2an
e Here, ¢, is the 100pth percentile of the bootstrap distribution
of T;.

Advantages of Bootstrap t Method:

e This method provides a more robust estimate of confidence
intervals by incorporating variability from the bootstrap
distribution, making it suitable for more complex or
non-standard distributions.

38



Bootstrap Methods in Regression Analysis: Example Cont’'d

Linear Model and Parameter Estimation:
e Linear model parameter of interest: 6 = 31/ [o.
e MLE estimate: § = 51/50.

e Use any available approximation to estimate the variance o
of 0.

2

Variance Estimation Using Delta Theorem:

e Delta theorem approximation gives:

2 _ 2 VafA(Bl) n VarA(Bo) B 2C0V£BE, B)
Eh A3 Bobr

39



Bootstrap Methods in Regression Analysis: Example Cont’'d

Bootstrap t-Statistics and Confidence Intervals:

e Compute bootstrap estimates (5*,82*) and t-statistics
T* — é\i—/\
o*
e Bootstrap Confidence Intervals for 6:
e Percentile method: [—0.205, —0.174]

e t-method: [—0.203,—0.167]

Implications:

e These confidence intervals provide insights into the precision
and reliability of the parameter estimates under the model
assumptions.

40



Alternative Bootstrap Confidence Intervals

Limitations of Bootstrap Percentile Cls:

e In some cases, bootstrap percentile confidence intervals may
not provide accurate coverage due to inherent biases in the
bootstrap distribution.

Bias-Corrected Bootstrap Percentile Cl:
e To improve accuracy, one can correct for the bootstrap bias
using the bias-corrected (BC) method.

e The two-sided 100(1 — )% BC bootstrap Cl involves selecting
different quantiles from the bootstrap distribution of 9.

e Instead of the standard [ga/z,é\l_ap] use [521,522}, where
z1 and zp are adjusted quantiles based on user-specified
constants (a, b).

41



Alternative Bootstrap Confidence Intervals

Formulas and Parameter Choices:
e The textbook provides specific formulas for calculating z; and
7 and discusses how to choose the constants (a, b) effectively.

e For detailed guidance and examples, refer to G&H, Section
9.3.2.1.

Implications:
e Using bias-corrected methods can significantly enhance the
reliability and validity of confidence intervals derived from
bootstrap methods, especially in skewed distributions or small

sample sizes.

42



Remedies for Bootstrap Failure

43



Example: Bootstrap Failure

Setup and Statistic Definition:

e Consider X1,..., X, " Uniform(0, 6).

e Define T,, = n(6 — 5,,) where 0, = X(m) = max{Xi}.
Bootstrap Resampling Statistic:

o Let gﬁ = X(*n) from the bootstrap sample X*.

e Define T* = n(6, — 0%).

44



Example: Bootstrap Failure

Bootstrap Failure:

The distributions of T, and T, are not close as n — oo.

Specifically, for any t > 0,

n—1
n

P(T,’;<t)>P(T,f=0)=< ) —1-e! asn— 0.

If & = 1, then as t becomes small, P(T, <t) > 1—e
approaching 0 for small t.
Conversely, P(T; < t) remains significantly larger,

approximately 0.63, indicating a failure in approximation.

Conclusion:

This example illustrates a scenario where the bootstrap
method does not effectively approximate the sampling
distribution of a statistic, particularly as the sample size

increases. 45



Remedy for Bootstrap Failures: m-out-of-n Bootstrap

Observation of Bootstrap Failures:

e |n some statistical settings, the standard bootstrap method,
which samples the full data set size n, fails to provide
accurate results.

m-out-of-n Bootstrap Method:

e A modified approach involves taking bootstrap samples of size
m where m = o(n) (i.e., m grows slower than n).

e This method is termed the m-out-of-n bootstrap.

e |t can be particularly effective in scenarios where the regular
bootstrap fails, such as with certain distributions like
Uniform(0, 6).

46



Remedy for Bootstrap Failures: m-out-of-n Bootstrap

Theoretical Justification and Further Reading:
e The m-out-of-n bootstrap has been shown to be consistent in
cases where the standard bootstrap method is not.

e For a detailed theoretical foundation and empirical studies,
refer to:

e DasGupta, Sections 29.7-29.8.
e Bickel, Gotze, and van Zwet (1997) in Statistica Sinica.
Implications:

e Adopting the m-out-of-n bootstrap method can improve the
reliability of bootstrap confidence intervals and other
statistical estimates in challenging scenarios.

47



Bootstrap Failure and m-out-of-n Bootstrap Remedy

Revisiting the Uniform Distribution Problem:
e Reconsidering the bootstrap failure in the uniform distribution
example.
e The previous example used full sample size n for

bootstrapping.

Modified Bootstrap Approach:
e Introduce m-out-of-n bootstrap where m = o(n) (grows

slower than n).

e Define the statistic:
T:,m = m(en - Hz,m)v
where 85, = max{ X, ..., X5 }.

48



Bootstrap Failure and m-out-of-n Bootstrap Remedy

Consistency of m-out-of-n Bootstrap:

e Theory guarantees that the distributions P( T} ,, < t) and
P(T, < t) become similar as n — oo, i.e., m-out-of-n
bootstrap is consistent.

e This approach addresses the consistency issues observed in the
regular bootstrap for this specific problem.
Practical Implementation:
e A rule of thumb for choosing m is approximately m ~ 2./n.

e Simulation details will be presented on the next slide to
illustrate the effectiveness of this approach.

49



Bootstrap Failure Cont’d: Uniform Distribution Example

Simulation Setup:
e Revisiting the uniform distribution problem with sample size
n = 100 and bootstrap sample size m = 20.
Histogram Comparison:

e The left histogram shows the distribution of T (ordinary
bootstrap), and the right histogram shows T (modified
m-out-of-n bootstrap).

e Both histograms include the true limiting distribution of T,
overlaid for comparison.

50



Bootstrap Failure Co : Uniform Distribution Example

Bootstrap Distribution vs. Theoretical Bootstrap Distribution vs. Theoretical
o @ Emp. Bootstrap O Emp. Bootstrap
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Figure 2: Left: Histogram for regular bootstrap. Right: Histogram for
m-out-of-n bootstrap.

Observations:
e Note how the histograms compare to the theoretical
distribution.
o Compare the effectiveness of the m-out-of-n method in
addressing bootstrap failure observed with the ordinary

method. 51



Further Remarks
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Bootstrap Methods in Hypothesis Testing

Role of Bootstrap in Hypothesis Testing (HT):
e Hypothesis testing often requires knowledge of the sampling
distribution under the null hypothesis to set rejection
thresholds or compute p-values.

Limitations of Nonparametric Bootstrap:

e Since the nonparametric bootstrap samples from the observed
data, it may not accurately reflect the null hypothesis
distribution if the null does not correspond to the observed
data distribution.

e This makes nonparametric bootstrap inappropriate for most
HT where the null distribution is distinct from the observed.

53



Bootstrap Methods in Hypothesis Testing

Parametric Bootstrap Approach:

e A more suitable approach in hypothesis testing is the
parametric bootstrap, which involves sampling from Py,, the
assumed true distribution under the null hypothesis.

e Aligns with Monte Carlo approximation techniques, providing
a rigorous way to simulate the null distribution.

Adjustments for Nonparametric Bootstrap:

e Section 9.3.3 in G&H discusses adjustments to nonparametric
bootstrap methods that can make them suitable for HT.

e These adjustments often involve modifications to ensure that
the bootstrap distribution mirrors the theoretical null
distribution more closely.

Implications: Using bootstrap methods in HT can enhance the
accuracy of p-values and decision rules but requires careful
consideration of the bootstrap type and adjustments for the

- . . 54
specific testing scenario.



Related Idea: Permutation Tests for Testing for Identical Dis-

tributions

Hypothesis of Interest: The goal is to test whether two groups
are “identical” in terms of their statistical distributions.
Conceptual Framework:

e Consider two datasets, X = {Xi,...,X,} and
Y=A{Y1,...,Ym}.

e Under the null hypothesis that both groups are from the same
distribution, any re-grouping of these combined data into two
new groups of sizes n and m should be statistically equivalent.

Implementation of Permutation Tests:

e By permuting the group labels of the combined dataset
{X, YV}, one can generate new samples that respect the null
hypothesis.

e Test statistics (like means, variances, etc.) are computed for
each permutation, forming a distribution of these statistics

55
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Permutation Tests: Testing for Identical Distributions

Approximation of Sampling Distributions:

e The permutation test approximates the sampling distribution
of the test statistic by considering all (or a significant sample
of) possible partitions of the combined data.

e This method is particularly effective for assessing the
significance of observed differences between the two groups
without making assumptions about the underlying
distributions.

Practical Considerations:
e This test is non-parametric and does not require the
assumption of normal distributions or equal variances, making
it robust and widely applicable.
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Bootstrapping Dependent Data

Review of Bootstrap Methods:
e Previously, we discussed bootstrap methods for:

e Independent and identically distributed (iid) data.
e Independent but not identically distributed (not-iid) data, such
as in regression problems.

e In these cases, the order of data presentation does not affect

the analysis.

Challenges with Dependent Data:
e For dependent data, such as time series, the sequence or order
of data points is crucial.
e Standard bootstrap methods that reshuffle data points lose

the dependency structure, making them inappropriate.
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Bootstrapping Dependent Data

Adjustments for Dependent Data:
e Adjustments involve bootstrapping blocks of data to preserve

the internal dependency.

e Known as “block bootstrapping,” this method works with
sequences of data rather than individual points.

Further Reading;:
e For more detailed theoretical and practical guidance on
bootstrap methods for dependent data:

e See Section 9.5 in G&H.

Note:

e The specifics of bootstrapping for dependent data can be
complex, and still an open area of research.
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Conclusion: Reflections on Bootstrap Methods

Bootstrap as a Tool:

e Bootstrap is a powerful statistical tool that provides a simple
and effective way to approximate sampling distributions
numerically.

e This method circumvents the need for complex analytical
calculations, making it accessible and practical for a wide
range of applications.

Cautions in Using Bootstrap:
e Despite its apparent simplicity and automation, bootstrap
methods require careful application:

e Sample Size Considerations: The effectiveness of bootstrap
approximations heavily depends on the sample size (n). Small
sample sizes may not provide reliable results.

e Potential for Failure: There are scenarios where bootstrap
methods can fail, particularly when the underlying assumptions
required for the bootstrap are not met. 59



Conclusion: Reflections on Bootstrap Methods

The Need for Theoretical Understanding:

e It is crucial not to use bootstrap methods blindly. A solid
understanding of the underlying statistical theory and the
specific data context is essential to ensure valid results.

o Researchers and practitioners must remain vigilant and assess
the suitability of bootstrap for their specific problem,
considering both theoretical and practical aspects.

Final Thoughts:

e While bootstrap is an invaluable tool in statistics, its
application must be guided by both statistical theory and
empirical evidence to avoid misuse and to harness its full
potential effectively.

60



	Introduction
	Nonparametric Bootstrap
	Parametric Bootstrap
	Bootstrap in Regression
	Better Bootstrap CIs
	Remedies for Bootstrap Failure
	Further Remarks

