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INTRODUCTION

In recent years, starting with the articles of

Burdzy (1993) and (1994), researchers had in-

terest in iterated processes in which one changes

the time parameter with one-dimensional Brown-

ian motion.

To define iterated Brownian motion Zt, due

to Burdzy (1993), started at z ∈ IR, let X+
t , X−

t

and Yt be three independent one-dimensional

Brownian motions, all started at 0. Two-

sided Brownian motion is defined to be

Xt =

 X+
t , t ≥ 0

X−
(−t), t < 0.

Then iterated Brownian motion started at z ∈
IR is

Zt = z +X(Yt), t ≥ 0.
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BM versus IBM: This process has many
properties analogous to those of Brownian mo-
tion; we list a few

(1) Zt has stationary (but not independent)
increments, and is a self-similar process of
index 1/4.

(2) Laws of the iterated logarithm (LIL)
holds: usual LIL by Burdzy (1993)

lim sup
t→∞

Z(t)

t1/4(log log(1/t))3/4
=

25/4

33/4
a.s.

Chung-type LIL by Khoshnevisan and Lewis
(1996) and Hu et al. (1995).

(3) Khoshnevisan and Lewis (1999) extended
results of Burdzy (1994), to develop a sto-
chastic calculus for iterated Brownian mo-
tion.

(4) In 1998, Burdzy and Khosnevisan showed
that IBM can be used to model diffusion in a
crack.
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(5) Local times of this process was studied by

Burdzy and Khosnevisan (1995), Csáki, Csörgö,

Földes, and Révész (1996), Shi and Yor (1997),

Xiao (1998), and Hu (1999).

(6) Bañuelos and DeBlassie (2006) studied the

distribution of exit place for iterated Brown-

ian motion in cones.

(7) DeBlassie (2004) studied the lifetime as-

ymptotics of iterated Brownian motion in cones

and Bounded domains. Nane (2006), in a se-

ries of papers, extended some of the results of

DeBlassie. He also studied the lifetime asym-

totics of iterated Brownian motion in several

unbounded domains(parabola-shaped domains,

twisted domains...).
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PDE connection

The classical well-known connection of a PDE

and a stochastic process is the Brownian mo-

tion and heat equation connection. Let Xt ∈
IRn be Brownian motion started at x. Then the

function

u(t, x) = Ex[f(Xt)]

solves the Cauchy problem

∂

∂t
u(t, x) = ∆u(t, x), t > 0, x ∈ IRn

u(0, x) = f(x), x ∈ IRn.

In addition to the above properties of IBM

there is an interesting connection between it-

erated Brownian motion and the biharmonic

operator ∆2; the function
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u(t, x) = Ex[f(Zt)]

solves the Cauchy problem (Allouba and Zheng

(2001) and DeBlassie (2004))

∂

∂t
u(t, x) =

∆f(x)√
2πt

+
1

2
∆2u(t, x); (1)

u(0, x) = f(x).

for t > 0 and x ∈ Rd. The non-Markovian

property of IBM is reflected by the appearance

of the initial function f(x) in the PDE.

Given a Banach space and a bounded continu-

ous semigroup T (t) on that space with genera-

tor Lx, it is well known that p(t, x) = T (t)f(x)

is the unique solution to the abstract Cauchy

problem

∂

∂t
p(t, x) = Lxp(t, x); p(0, x) = f(x) (2)

for any f in the domain of Lx see for example

Pazy (1983).
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For a Markov process X, the family of linear

operators

T (t)f(x) = Ex[f(X(t))] = E[f(X(t))|X(0) = x]

forms a bounded continuous semigroup on the

Banach space L1(Rd), and the generator

Lxf(x) = lim
h↓0

h−1(T (h)f(x)− f(x))

is defined on a dense subset of that space, see

for example Hille and Phillips (1957). Then

u(t, x) = T (t)f(x) solves the Cauchy problem

∂

∂t
u(t, x) = Lxf(x); u(0, x) = f(x) (3)

for t > 0 and x ∈ Rd.
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Allouba and Zheng (2001) show that if we re-

place the outer process X(t) in the definiton

of iterated Brownian motion with a continu-

ous Markov process, the same result holds,

except that we replace the Laplacian in the

PDE (1) with the generator Lx of the contin-

uous semigroup associated with this Markov

process. That is

u(t, x) = Ex[f(Zt)] := E[f(Zt)|Z0 = x]

solves the Cauchy initial value problem

∂

∂t
u(t, x) =

Lxf(x)√
πt

+Lx
2u(t, x); u(0, x) = f(x)

(4)

for t > 0 and x ∈ Rd.

Let q(t, s) = 2√
4πt

exp
(
−s

2

4t

)
be the transition

density of one-dimensional Brownian motion.

The essential argument, using integration by

parts twice, is that
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∂
∂tu(t, x)

=
∫ ∞
0

T (s)f(x)
∂

∂t
q(t, s)ds

=
∫ ∞
0

T (s)f(x)
∂2

∂s2
q(t, s)ds

= q(t, s)
∂

∂s
[T (s)f(x)]

∣∣∣∣∣
s=0

+
∫ ∞
0

∂2

∂s2
[T (s)f(x)] q(t, s)ds

= q(t,0)Lx[T (0)f(x)] +
∫ ∞
0

L2
x [T (s)f(x)] q(t, s)ds

=
1√
πt
Lxf(x) + L2

x

∫ ∞
0

T (s)f(x) q(t, s)ds
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Fractional Cauchy problems

Zaslavsky (1994) introduced the fractional ki-

netic equation

∂β

∂tβ
u(t, x) = Lxu(t, x); u(0, x) = f(x) (5)

for Hamiltonian chaos, where 0 < β < 1 and

Lx is the generator of some continuous Markov

process X0(t) started at x = 0. Here ∂βg(t)/∂tβ

is the Caputo fractional derivative in time, which

can be defined as the inverse Laplace trans-

form of sβg̃(s)−sβ−1g(0), with g̃(s) =
∫∞
0 e−stg(t)dt

the usual Laplace transform.

Baeumer and Meerschaert (2001) and Meer-

schaert and Scheffler (2004) show that the

fractional Cauchy problem (5) is related to a

certain class of subordinated stochastic processes.
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Take Dt to be the stable subordinator, a Lévy
process with strictly increasing sample paths
such that E[e−sDt] = e−ts

β
, see for example

Bertoin (1996). Define the inverse or hitting
time or first passage time process

Et = inf{x > 0 : D(x) > t}. (6)

The subordinated process Zt = X0(Et) occurs
as the scaling limit of a continuous time ran-
dom walk (also called a renewal reward process),
in which iid random jumps are separated by iid
positive waiting times (Meerschaert and Schef-
fler (2004)).

Theorem 3.1 in Baeumer and Meerschaert (2001)
shows that, in the case p(t, x) = T (t)f(x) is a
bounded continuous semigroup on a Banach
space, the formula

u(t, x) =
∫ ∞
0

p((t/s)β, x)gβ(s) ds

=
t

β

∫ ∞
0

p(x, s)gβ(
t

s1/β
)s−1/β−1ds
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yields a solution to the fractional Cauchy prob-

lem:

∂β

∂tβ
u(t, x) = Lxu(t, x); u(0, x) = f(x) (7)

Here gβ(t) is the smooth density of the stable

subordinator, such that the Laplace transform

g̃β(s) =
∫∞
0 e−stgβ(t) dt = e−s

β
.

Choose x ∈ Rd and let X(t) = x+X0(t). In the

case Xt is a Levy process, essential idea is tak-

ing Fourier-Laplace transform and inverting.
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BROWNIAN SUBORDINATORS

Theorem 1 [Baeumer, Meerschaert and Nane

(2007)]

Let Lx be the generator of a Markov semigroup

T (t)f(x) = Ex[f(Xt)], and take f ∈ D(Lx)

the domain of the generator. Then, both the

Cauchy problem

∂

∂t
u(t, x) =

Lxf(x)√
πt

+Lx
2u(t, x); u(0, x) = f(x),

(8)

and the fractional Cauchy problem

∂β

∂tβ
u(t, x) = Lxu(t, x); u(0, x) = f(x) (9)

with β = 1/2, have the same solution

u(t, x) = Ex[f(Zt)] (10)

=
2√
4πt

∫ ∞
0

T (s)f(x) exp

(
−
s2

4t

)
ds.
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If the outer process is an independent Brown-

ian motion we get the following corollary: For

f ∈ D(∆x), both the Cauchy problem

∂

∂t
u(t, x) =

∆xf(x)√
πt

+∆2
xu(t, x); u(0, x) = f(x)

(11)

and the fractional Cauchy problem

∂1/2

∂t1/2
u(t, x) = ∆xu(t, x); u(0, x) = f(x)

(12)

have the same unique solution given by

u(t, x) =
2√
4πt

∫ ∞
0

T (s)f(x) exp

(
−
s2

4t

)
ds,

(13)

where

T (t)f(x) =
∫
Rd
f(x+y)(4πt)−d/2 exp

(
−
‖y‖2

4t

)
dy.

(14)

The essential idea is showing that Et and |Yt|
have the same density.
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We obtain the following corollary of our theo-

rem

Corollary. For any continuous Markov process

X(t), both the Brownian-time subordinated process

X(|Yt|) and the process X(Et) subordinated to

the inverse 1/2-stable subordinator have the

same one-dimensional distributions. Hence they

are both stochastic solutions to the fractional

Cauchy problem (9), or equivalently, to the

higher order Cauchy problem (8).
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Fourier-Laplace method

The next result is a restatement of Theorem
1 for Lévy semigroups. The proof does not
use Theorem 0.1 in Allouba and Zheng (2001),
rather it relies on a Laplace-Fourier transform
argument.

Theorem 2 [Baeumer, et. al. 2007]

Suppose that X(t) = x + X0(t) where X0(t)
is a Lévy process starting at zero. If Lx is
the generator of the semigroup T (t)f(x) =
Ex[(f(Xt))] on L1(Rd), then for any f ∈ D(Lx),
both the initial value problem (8), and the frac-
tional Cauchy problem (9) with β = 1/2, have
the same unique solution given by

u(t, x) =
2√
4πt

∫ ∞
0

T (s)f(x) exp

(
−
s2

4t

)
ds.

(15)
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We will use the following notation for the Laplace,

Fourier, and Fourier-Laplace transforms (re-

spectively):

ũ(s, x) =
∫ ∞
0

e−stu(t, x)dt;

û(t, k) =
∫
IRd
e−ik·xu(t, x)dx;

ū(s, k) =
∫
IRd
e−ik·x

∫ ∞
0

e−stu(t, x)dtdx.

Take Fourier transforms on both sides of (4)

to get

∂û(t, k)

∂t
=

1√
πt
ψ(k)f̂(k) + ψ(k)2û(t, k)

using the fact that ψ(k)f̂(k) is the Fourier

transform of Lxf(x). Then take Laplace trans-

forms on both sides to get

sū(s, k)−û(t = 0, k) = s−1/2ψ(k)f̂(k)+ψ(k)2ū(s, k),
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using the well-known Laplace transform for-

mula ∫ ∞
0

t−β

Γ(1− β)
e−stdt = sβ−1

for β < 1. Since û(t = 0, k) = f̂(k), collecting

like terms yields

ū(s, k) =
(1 + s−1/2ψ(k))f̂(k)

s− ψ(k)2
(16)

for s > 0 sufficiently large.

On the other hand, taking Fourier transforms

on both sides of (5) with β = 1/2 gives

∂1/2û(t, k)

∂t1/2
= ψ(k)û(t, k)

Take Laplace transforms on both sides, using

the fact that sβg̃(s))− sβ−1g(0) is the Laplace

transform of the Caputo fractional derivative

∂βg(t)/∂tβ, to get

s1/2ū(s, k)− s−1/2f̂(k) = ψ(k)ū(s, k)
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and collect terms to obtain

ū(s, k) =
s−1/2f̂(k)

s1/2 − ψ(k)

=
s−1/2f̂(k)

s1/2 − ψ(k)
·
s1/2 + ψ(k)

s1/2 + ψ(k)

=
(1 + s−1/2ψ(k))f̂(k)

s− ψ(k)2

(17)

which agrees with (16). For any fixed k ∈ Rd,
the two formulas are well-defined and equal for

all s > 0 sufficiently large.
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An easy extension of the argument for Theo-

rem 2 shows that, under the same conditions,

for any n = 2,3,4, . . . both the Cauchy problem

∂u(t, x)

∂t
=

n−1∑
j=1

t1−j/n

Γ(j/n)
Ljxf(x) + Lnxu(t, x);

u(0, x) = f(x)
(18)

and the fractional Cauchy problem:

∂1/n

∂t1/n
u(t, x) = Lxu(t, x); u(0, x) = f(x),

(19)

have the same unique solution given by

u(t, x) =
∫ ∞
0

p((t/s)β, x)gβ(s) ds

with β = 1/n. Hence the process Zt = X(Et)

is also the stochastic solution to this higher

order Cauchy problem.

21



OTHER SUBORDINATORS

α-time process is a Markov process subordi-

nated to the absolute value of an independent

one-dimensional symmetric α-stable process:

Zt = B(|St|), where Bt is a Markov process

and St is an independent symmetric α-stable

process both started at 0.

This process is self similar with index 1/2α

when the outer process X is a Brownian mo-

tion. In this case Nane (2006) defined the Lo-

cal time of this process and obtained Laws of

the iterated logarithm for the local time for

large time.
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PDE-connection:

Theorem 3 [Nane 2005]

Let T (s)f(x) = E[f(Xx(s))] be the semigroup

of the continuous Markov process Xx(t) and

let Lx be its generator. Let α = 1. Let f be a

bounded measurable function in the domain of

Lx, with Dijf bounded and Hölder continuous

for all 1 ≤ i, j ≤ n. Then u(t, x) = E[f(Zxt )]

solves

∂2

∂t2
u(t, x) = −

2Lxf(x)

πt
− L2

xu(t, x);

u(0, x) = f(x).

In particular, if Xx(t) is Brownian motion started

at x and ∆ is the standard Laplacian, then u

solves

∂2

∂t2
u(t, x) = −

2∆f(x)

πt
− ∆2u(t, x);

u(0, x) = f(x).
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For α = l/m 6= 1 rational: the PDE is more

complicated since kernels of symmetric α-stable

processes satisfy a higher order PDE:

(
∂2

∂s2
)l + (−1)l+1 ∂

2m

∂t2m
)pαt (0, s) = 0.

We also have to assume that we can integrate

under the integral as much as we need in the

case where the outer process is BM (or in gen-

eral we can take the operator out of the inte-

gral). This is valid for α = 1/m, m = 2,3, · · ·
by a Lemma in Nane (2005).
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Theorem 4 [Nane (2005)]

Let α ∈ (0,2) be rational α = l/m, where l

and m are relatively prime. Let T (s)f(x) =

E[f(Xx(s))] be the semigroup of the con-

tinuous Markov process Xx(t) and let Lx be

its generator. Let f be a bounded mea-

surable function in the domain of Lx, with

Dγf bounded and Hölder continuous for all

multi index γ such that |γ| = 2l. Then

u(t, x) = E[f(Zxt )] solves

(−1)l+1 ∂2m

∂t2m
u(t, x)

= −2
l∑

i=1

(
∂2l−2i

∂s2l−2i
pαt (0, s)|s=0

)
L2i−1
x f(x)

− L2l
x u(t, x);

u(0, x) = f(x).
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OPEN PROBLEMS

Question 1. For β = 1/2, the inverse sta-

ble subordinator process Et (Et is also the Lo-

cal time process of one-dimensional Brownian

motion at 0) and the process |Yt|, where Yt is

a one-dimensional Brownian motion have the

same transition density. Is there a similar cor-

respondence between Et for β 6= 1/2 and other

symmetric α-stable process Yt for 1 < α < 2.

Question 2. Looking at the governing PDE

for subordinators other than Brownian motion,

are there any fractional in time PDE which has

the same solution as the higher order pde?

Question 3. Are there PDE connections of

the iterated processes in bounded domain as

the PDE connection of Brownian motion in

bounded domains?
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