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INTRODUCTION

In recent years, starting with the articles of Burdzy (1993)
and (1994), researchers had interest in iterated processes in
which one changes the time parameter with one-dimensional
Brownian motion.

To define iterated Brownian motion Zt, due to Burdzy (1993),
started at z ∈ R, let X+

t , X−
t and Yt be three independent

one-dimensional Brownian motions, all started at 0. Two-sided
Brownian motion is defined to be

Xt =

{
X+
t , t ≥ 0

X−
(−t), t < 0.

Then iterated Brownian motion started at z ∈ R is

Zt = z +X(Yt), t ≥ 0.
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BM versus IBM: This process has many properties analogous
to those of Brownian motion; we list a few

(1) Zt has stationary (but not independent) increments, and is
a self-similar process of index 1/4.

(2) Laws of the iterated logarithm (LIL) holds: usual LIL by
Burdzy (1993)

lim sup
t→∞

Z(t)

t1/4(log log(1/t))3/4
=

25/4

33/4
a.s.

Chung-type LIL by Khoshnevisan and Lewis (1996) and Hu et
al. (1995).

(3) Khoshnevisan and Lewis (1999) extended results of Burdzy
(1994), to develop a stochastic calculus for iterated Brownian
motion.
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(4) In 1998, Burdzy and Khoshnevisan showed that IBM can be
used to model diffusion in a crack.

(5) Local time of this process was studied by Burdzy and
Khosnevisan (1995), Csáki, Csörgö, Földes, and Révész
(1996), Shi and Yor (1997), Xiao (1998), and Hu (1999).

(6) Khoshnevisan and Lewis (1996) established the modulus of
continuity for iterated Brownian motion: with probability one

lim
δ→0

sup
0≤s,t≤1

sup
0≤|s−t|≤δ

|Z(s) − Z(t)|
δ1/4(log(1/δ))3/4

= 1.

(7) Bañuelos and DeBlassie (2006) studied the distribution of
exit place for iterated Brownian motion in cones.
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Figure 1: Simulations of two Brownian motions
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Figure 2: Simulation of IBM Z1
t = X(|Yt|)
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ITERATED PROCESSES IN UNBOUNDED
DOMAINS

Let D be a domain in R
n. Let

τD(Z) = inf{t ≥ 0 : Zt /∈ D}
be the first exit time of Zt from D. Write

τ±D (z) = inf{t ≥ 0 : X±
t + z /∈ D},

and if I ⊂ R is an open interval, write

ηI = η(I) = inf{t ≥ 0 : Yt /∈ I}.
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By continuity of the paths of Zt = z + X(Yt) (for f the pdf of
τ±D (z))

Pz[τD(Z) > t]

= Pz[Zs ∈ D for all s ≤ t]
= P [z +X+(0 ∨ Ys) ∈ D and
z +X−(0 ∨ (−Ys)) ∈ D for all s ≤ t]

= P [τ+
D(z) > 0 ∨ Ys and τ−D (z) > 0 ∨ (−Ys)

for all s ≤ t]
= P [−τ−D (z) < Ys < τ+

D(z)for all s ≤ t]
= P [η(−τ−D (z), τ+

D(z)) > t],

=

∫ ∞

0

∫ ∞

0

P0[η(−u,v) > t]f (u)f (v)dvdu.
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Let τD be the first exit time of the Brownian motion Xt from
D. In the case of Brownian motion in generalized cones, this
has been done by several people including Bañuelos and Smits
(1997), Burkholder (1977) and DeBlassie (1987): for x ∈ D,

Px[τD > t] ∼ C(x)t−p(D), as t→ ∞.

When D is a generalized cone, using the results of Bañuelos
and Smits, DeBlassie obtained;

Theorem 1 (DeBlassie (2004)) For z ∈ D, as t→ ∞,

Pz[τD(Z) > t] ≈
⎧⎨
⎩
t−p(D), p(D) < 1
t−1 ln t, p(D) = 1
t−(p(D)+1)/2, p(D) > 1.

Here f ≈ g means that for some positive C1 and C2, C1 ≤
f/g ≤ C2.
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For parabola-shaped domains the study of exit time asymptotics
for Brownian motion was initiated by Bañuelos, DeBlassie and
Smits.

Theorem 2 (Bañuelos, et al. (2001)) Let

P = {(x, y) : x > 0, |y| < √
x}.

Then for z ∈ P ,

log Pz[τP > t] ≈ −t1
3

Subsequently, Lifshits and Shi found that the above limit exists
for parabola-shaped domains Pα = {(x, Y ) ∈ R × R

n−1 :
x > 0, |Y | < Axα}, 0 < α < 1 and A > 0 in any dimension;
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Theorem 3 (Lifshits and Shi (2002)) For z ∈ Pα,

lim
t→∞ t

−(1−α
1+α) logPz[τPα > t] = −l, (1)

where

l = (
1 + α

α
)

(
L

Γ2(1−α
2α )

Γ2( 1
2α)

) α
(α+1)

. (2)

where

L =
πj

2/α
(n−3)/2

A22(3α+1)/α((1 − α)/α)(1−α)/α
.

Here j(n−3)/2 denotes the smallest positive zero of the Bessel
function J(n−3)/2 and Γ is the Gamma function.
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By integration by parts Pz[τD(Z) > t] equals to∫ ∞

0

∫ ∞

0

(
∂

∂u

∂

∂v
P0[η(−u,v) > t]

)
.P [τD(z) > u]P [τD(z) > v]dvdu.

Theorem 4 (Nane (2006)) Let 0 < α < 1, A > 0 and let

Pα = {(x, Y ) ∈ R × R
n−1 : x > 0, |Y | < Axα}.

Then for z ∈ Pα,

lim
t→∞ t

−(1−α
3+α) logPz[τPα(Z) > t] = −Cα,

where for l as in the limit given by (2)

Cα = (
3 + α

2 + 2α
)(

1 + α

1 − α
)(1−α

3+α)π(2−2α
3+α )l(

2+2α
3+α ).
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In particular, for a planar iterated Brownian motion in a
parabola, the limit l = 3π2/8 in equation (2). Then from
Theorem 4 for z ∈ P ,

lim
t→∞ t

−1
7 logPz[τP(Z) > t] = − 7π2

225/7
.
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ITERATED PROCESSES IN BOUNDED DOMAINS

For many bounded domains D ⊂ R
n the asymptotics of

Pz[τD > t] is well-known. For z ∈ D,

lim
t→∞ e

λDtPz[τD > t] = ψ(z)

∫
D

ψ(y)dy, (3)

where λD is the first eigenvalue of 1
2Δ with Dirichlet boundary

conditions and ψ is its corresponding eigenfunction.

DeBlassie proved the following result for iterated Brownian
motion in bounded domains;

Theorem 5 (DeBlassie (2004)) For z ∈ D,

lim
t→∞ t

−1/3 logPz[τD(Z) > t] = −3

2
π2/3λ

2/3
D . (4)
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We have the following theorem which improves the limit in (4).

Theorem 6 (Nane (2006)) Let D ⊂ R
n be a bounded domain

for which (3) holds point-wise and let λD and ψ be as above.
Then for z ∈ D,

lim
t→∞ t

−1/2 exp

(
3

2
π2/3λ

2/3
D t1/3

)
Pz[τD(Z) > t]

=
λD27/2

√
3π

(
ψ(z)

∫
D

ψ(y)dy

)2

.
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Ingredients of the proof of Theorem 6

It turns out that the integral over the set A is the dominant one:
K > 0 and M > 0 define A as

A =

{
(u, v) : K ≤ u ≤ 1

2

√
t

M
, u ≤ v ≤

√
t

M
− u

}
.

As t→ ∞, uniformly for x ∈ (0, 1),

Px[η(0,1) > t] =
4

π

∞∑
n=0

1

2n + 1
e−2(n+1)2π2t/2 sin(2n + 1)πx

∼ 4

π
e−π

2t/2 sinπx.
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We use Laplace transform method for integrals (de Bruijn
(1958)):

Let h and f be continuous functions on R. Suppose f is non-
positive and has a global max at x0, f

′(x0) = 0, f ′′(x0) < 0
and h(x0) 
= 0 and∫ ∞

0

h(x) exp(λf (x)) <∞
for all λ > 0. Then as λ→ ∞,∫ ∞

0

h(x) exp(λf (x))dx

∼ h(x0) exp(λf (x0))

√
2π

λ|f ′′(x0)|.
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Pz[τD(Z) > t] =

∫ ∞

0

∫ ∞

0

P0[η(−u,v) > t]f (u)f (v)dvdu

=

∫ ∞

0

∫ ∞

0

P u
u+v

[η(0,1) >
t

(u + v)2
]f (u)f (v)dvdu

≥ C1

∫ 1
2

√
t/M

K

∫ √
t/M−u

u

sin

(
πu

(u + v)

)

. exp(− π2t

2(u + v)2
) exp(−λD(u + v))dvdu,

where C1 = C1(z) = 2(4/π)A(z)2(1 − ε)3.

Changing the variables x = u + v, z = u the integral is

= C1

∫ 1
2

√
t/M

K

∫ √
t/M

2z

sin
(πz
x

)
exp(−π

2t

2x2
) exp(−λDx)dxdz,
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and reversing the order of integration

= C1

∫ √
t/M

2K

∫ 1
2x

K

sin
(πz
x

)
exp(−π

2t

2x2
). exp(−λDx)dzdx

= C1/π

∫ √
t/M

2K

x cos

(
πK

x

)
exp(−π

2t

2x2
) exp(−λDx)dx
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By Laplace transform method, after making the change of
variables x = (atb−1)1/3u, for a = π2/2, b = λD. As t→ ∞,∫ ∞

0

x cos

(
πK

x

)
exp(−π

2t

2x2
− λDx)dx

=

∫ ∞

0

(atb−1)1/3u cos

(
πK

(atb−1)1/3u

)

. exp

(
−a1/3b2/3t1/3(

1

u2
+ u)

)
(atb−1)1/3du

∼ 2

√
π

3
(
π2

2
)1/2λ−1

D t
1/2 exp(−3

2
π2/3λ

2/3
D t1/3).

Above x0 in the Laplace Transform method is 21/3.
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ISOPERIMETRIC-TYPE INEQUALITIES

Let D ⊂ R
n be a domain of finite volume, and denote by D∗

the ball in R
n centered at the origin with same volume as D.

The class of quantities related to the Dirichlet Laplacian in
D which are maximized or minimized by the corresponding
quantities forD∗ are often called generalized isoperimetric-
type inequalities (C. Bandle (1980)).

Probabilistically generalized isoperimetric-type inequalities read
as

Pz[τD > t] ≤ P0[τD∗ > t] (5)

for all z ∈ D and all t > 0, where τD is the first exit time of
Brownian motion from the domain D and Pz is the associated
probability measure when this process starts at z.
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Theorem 7 (Nane (2008)) LetD ⊂ R
n be an open set of finite

volume. Then

Pz[τD(Z) > t] ≤ P0[τD∗(Z) > t] (6)

for all z ∈ D and all t > 0.

Proof of Theorem 7

The idea of the proof is to use integration by parts and the
corresponding generalized isoperimetric-type inequalities
for Brownian motion. Let f ∗ denote the probability density of
τD∗.

Gx(u, v, t) =

(
∂

∂x
P0[η(−u,v) > t]

)
, for x = u, v.
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Pz[τD(Z) > t] equals∫ ∞

0

∫ ∞

0

P0[η(−u,v) > t]f (u)f (v)dvdu.

=

∫ ∞

0

∫ ∞

0

Gv(u, v, t)P [τD(z) > v]f (u)dvdu

≤
∫ ∞

0

∫ ∞

0

Gv(u, v, t)P [τD∗(0) > v]f (u)dvdu

=

∫ ∞

0

∫ ∞

0

P0[η(−u,v) > t]f (u)f ∗(v)dvdu

=

∫ ∞

0

∫ ∞

0

Gu(u, v, t)P [τD(z) > u]f ∗(v)dudv

≤
∫ ∞

0

∫ ∞

0

Gu(u, v, t)P [τD∗(0) > u]f ∗(v)dudv

= P0[τD∗(Z) > t]
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LARGE DEVIATIONS FOR A RELATED CLASS OF
PROCESSES

Self-similar processes arise naturally in limit theorems of
random walks and other stochastic processes, and they have
been applied to model various phenomena in a wide range
of scientific areas including telecommunications, turbulence,
image processing and finance.

The most important example of self-similar processes is
fractional Brownian motion (fBm) which is a centered Gaussian
process WH = {WH(t), t ∈ R} with WH(0) = 0 and
covariance function

E
(
WH(s)WH(t)

)
=

1

2

(
|s|2H + |t|2H − |s− t|2H

)
, (7)
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where H ∈ (0, 1) is a constant. When H = 1/2, WH is a
two-sided Brownian motion.

A Lévy process S = {St, t ≥ 0} with values in R is called
strictly stable of index α ∈ (0, 2] if its characteristic function is
given by

E
[
exp(iξSt)

]
= exp

(
−t|ξ|α1 + iνsgn(ξ) tan(πα2 )

χ

)
, (8)

where −1 ≤ ν ≤ 1 and χ > 0 are constants. When α = 2
and χ = 2, S is Brownian motion.

For any Borel set I ⊆ R, the occupation measure of S on I is
defined by

μI(A) = λ1{t ∈ I : St ∈ A} (9)
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for all Borel sets A ⊆ R, where λ1 is the one-dimensional
Lebesgue measure. If μI is absolutely continuous with respect
to the Lebesgue measureλ1 on R, we say thatS has a local time
on I and define its local time L(x, I) to be the Radon-Nikodým
derivative of μI with respect to λ1, i.e.,

L(x, I) =
dμI
dλ1

(x), ∀x ∈ R.

In the above, x is the so-called space variable, and I is the time
variable of the local time. If I = [0, t], we will write L(x, I) as
L(x, t). Moreover, if x = 0 then we will simply write L(0, t) as
Lt.

It is well-known (see, e.g. Bertoin (1996)) that a strictly stable
Lévy process S has a local time if and only if α ∈ (1, 2].
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RELATED CLASS OF PROCESSES

LetWH = {WH(t), t ∈ R} be a fractional Brownian motion of
Hurst index H ∈ (0, 1) with values in R. Let S = {St, t ≥ 0}
be a real-valued, strictly stable Lévy process of index 1 < α ≤
2. We assume that S is independent ofWH . Let L = {Lt, t ≥
0} be the local time process at zero of S.

Let ZH = {ZH(t), t ≥ 0} be a real-valued stochastic process
defined by

ZH(t) = WH(Lt)

for all t ≥ 0. This iterated process will be called a local time
fractional Brownian motion
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Some properties:

(1) Since the sample functions of WH and L are a.s.
continuous, the local time fractional Brownian motion ZH also
has continuous sample functions.

(2) Moreover, by using the facts that WH is self-similar with
index H and L is self-similar with index 1 − 1/α, one can
readily verify that ZH is self-similar with index H(1 − 1/α).
However, ZH is non-Gaussian, non-Markovian and does not
have stationary increments.

(3) The local time Brownian motionZ1/2 emerges as the scaling
limit of a continuous time random walk with heavy-tailed waiting
times between jumps Meerschaert et al. (2004).
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Theorem 8 (Baeumer, Meerschaert and Nane (2007)) For
H = 1/2 and α = 2,

Z
1/2
t = W 1/2(Lt)

and the process
W 1/2(Yt) = Zt

(IBM) subordinated to another one-dimensional Brownian
motion Yt independent ofW 1/2 have the same one-dimensional
distributions.
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Theorem 9 (Meerschaert, Nane and Xiao (2007)) Let ZH =
{ZH(t), t ≥ 0} be a local time fractional Brownian motion with
values in R and 2H < α. Then for every Borel set D ⊆ R,

lim sup
t→∞

t−
2H(α−1)
α−2H log P

{
t−

2H(α−1)
α−2H ZH(t) ∈ D

}
≤ − inf

x∈D
Λ∗

1(x)

(10)
and

lim inf
t→∞ t−

2H(α−1)
α−2H log P

{
t−

2H(α−1)
α−2H ZH(t) ∈ D

}
≥ − inf

x∈D◦
Λ∗

1(x),

(11)
whereD andD◦ denote respectively the closure and interior of
D and

Λ∗
1(x) =

α + 2H

2α

(
α− 2H

2αB1

)α−2H
α+2H

x
2α

α+2H , ∀ x ∈ R. (12)
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In the above, B1 = B1(H,α, χ, ν) is the positive constant
which we can calculate explicitly and where ν ∈ [−1, 1] and
χ > 0 are the parameters of the stable Lévy processX defined
in (8).

In the terminology of (Dembo and Zeitouni (1998)), Theorem 9
states that the pair(

t−
2H(α−1)
α−2H ZH(t), t

2H(α−1)
α−2H

)
satisfies a large deviation principle with good rate function Λ∗

1.

Letting D = [x,∞), we derive from Theorem 9 and the self-
similarity of ZH the asymptotic tail probability P

{
ZH(1) ≥ x

}
as x→ ∞.

The following theorem is more general because it holds for all
H ∈ (0, 1) and α ∈ (1, 2].
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Theorem 10 (Meerschaert, Nane and Xiao (2007)) Let ZH =
{ZH(t), t ≥ 0} be a local time fractional Brownian motion with
values in R. Then for any 0 ≤ a ≤ b <∞,

lim
x→∞

log P
{∣∣ZH(b) − ZH(a)

∣∣ > x
}

x
2α

α+2H

= −B2, (13)

where B2 = B2(H,α, χ, ν) is the positive constant defined by

B2 =
α + 2H

2α

(
H Aα

1(
1 − 1

α

)α−1

)− 2H
α+2H (

b− a
)−2H(α−1)

α+2H . (14)
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In order to prove Theorems 9 and 10, we first study the analytic
properties of the moment generating functions of ZH(t) and
|ZH(b) − ZH(a)|. This is done by calculating the moments of
ZH(t) and |ZH(b) − ZH(a)| for 0 ≤ a ≤ b directly and by
using a theorem of Valiron (1949). Then Theorems 9 and 10
follow respectively from the Gärtner-Ellis Theorem and a result
of Davies (1976).
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APPLICATIONS

Theorem 11 (Meerschaert, Nane and Xiao (2007)) Let ZH =
{ZH(t), t ≥ 0} be a local time fractional Brownian motion with
values in R. Then there exists a finite constant A9 > 0 such
that for all constants 0 ≤ a < b <∞, we have

lim sup
h↓0

sup
a≤t≤b−h

sup
0≤s≤h

∣∣ZH(t + s) − ZH(t)
∣∣

hH(α−1)/α
(

log 1/h
)(α+2H)/(2α)

≤ A9 a.s.

(15)
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Theorem 12 (Meerschaert, Nane and Xiao (2007)) Let ZH =
{ZH(t), t ≥ 0} be a local time fractional Brownian motion with
values in R. Then almost surely,

lim sup
t→∞

max0≤s≤t
∣∣ZH(s)

∣∣
tH(α−1)/α

(
log log t

)(α+2H)/(2α)
≤ A

−(α+2H)/(2α)
8 .

(16)
In the above, A8 is a certain constant that depends on H and
the parameters of S.

Csáki, Földes and Révész (1997) obtained a Strassen type law
of the iterated logarithm (LIL) for Z(t) = W (Lt) when Lt is
the local time at zero of a symmetric stable Lévy process. Our
theorem extends partially their result to ZH .
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FUTURE RESEARCH PLANS

• Weak convergence to local time fractional Brownian motion.
Equivalently, domain of attraction for this process.

• Correlation structure of local time fractional Brownian motion.

• Proving lower bounds in Theorems 11 and 12.

• Potential theory for iterated processes. Hausdorff measure
and dimension results for iterated processes.
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THANK YOU
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