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Abstract: The estimation of survival distributions for radio-tigged animals is important to wildlife ecologists.
Allowance must be made for animals being lost {or censored) due to radio failure, radio Joss, or emigration
of the animal from the study area. The Kaplan-Meier procedure (Kaplan and Meier 1958), widely used in
medical studies subject to censoring, can be applied to this problem. We developed a simple modification of
the Kaplan-Meier procedure that allows for new animals to be added after the study has begun. We present
2 examples using telemetry data collected from northern bobwhite quail (Colinus virgintignus) to show the
simplicity and utility of the Kaplan-Meier procedure and its modifications. The log rank test used to compare
2 survival distributions can also be modified to allow for additions during the study. Simple oomputer programs

that can be run on a personal computer are available from the authors.
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Radio-tagged animals are used to study sur-
vival. Present techniques for analyzing data from
these studies assume that each survival event
(typically an animal surviving a day) is inde-
pendent and has a constant probability over all
animals and all periods (Trent and Rongstad
1974, Bart and Robson 1982, Heisey and Fuller
1985). We believe these assumptions are often
unrealistic and restrictive. White (1983) gen-
eralized discrete approaches using the same
framework as that of band return models
(Brownie et al. 1985) and he developed a flexible
computer program (SURVIV) for use with his
approach. Heisey and Fuller {1985) generalized

the Trent and Rongstad (1974) approach to al- .

low mortality from different causes (e.g., pre-
dation, starvation} and developed a microcom-
~ puter program called MICROMORT.
Typically an animal’s exact survival time (at
least to within 1-2 days) is known unless that
survival time is right censored (i.e., only known
to be greater than some value). Pollock (1984)
and Pollock et al. (1989) suggested a useful ap-
proach based on continuous survival models
allowing right censoring that is widely used in
medicine and engineering (Kalbfleisch and
Prentice 1980, Cox and Oakes 1984) and pro-
vided examples of the Kaplan-Meier procedure.
The Kaplan-Meier procedure does not require
specification of a particular parametric contin-
uous distribution; e.g., the exponential or Wei-
bull. Related ecological papers using survival
methods include Muenchow (1986), Pyke and

Thompson (1986), Kurzejeski et al. {1987), and
White et al. (1987).

We present a simple description of the Kap-
lan-Mejer procedure with an example using
northern bobwhite quail survival data collected
by PDC. We then generalize the Kaplan-Meier
procedure to allow gradual (or staggered) entry
of animals into the study. The calculations are
illustrated with an example from the quail data.
Finally, we present the log-rank test for com-
parison of survival distributions (modified for
staggered entry of animals) with an example.
We also present a discussion of model assump-
tions and directions for future research.

We thank J. D. Nichols and W. L. Link for
helpful comments on an earlier draft of this
paper. We acknowledge G. C. White and D. M.
Heisey for their helpful reviews that improved
the final version.

THE KAPLAN-MEIER OR PRODUCT
LIMIT PRCCEDURE

The Kaplan-Meier or product limit estimator
was developed by Kaplan and Meier (1958) and
is discussed by Cox and Qakes (1984:48) and
Kalbfleisch and Prentice (1980:13). The survival
function (§[t]) is the probability of an arbitrary
animal in a population surviving ¢ units of time
from the beginning of the study. A nonpara-
metric estimator of the survival function can k.
obtained by restricting ourselves to the discrete
time points when deaths occur a,, @,, ..., 4,
We define r,, . . ., 7, to be the numbers of an-
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Table 1. Wmmmwmmmwmmmmam.

No. at risk No. deaths No. i
Week (1) Dates trp dp censored - Sp 5% Cl
1 3 Mar-9 Mar 18 0 0 1.0000 1.0000--1.0000
2 10 Mar-16 Mar 18 0 0 1.0000 1.0000-1.0000
3 17 Mar-23 Mar 18 2 0 0.8889 0.7520-1.0258
4 24 Mar-30 Mar 16 0 0 0.8889 0.7437-1.0341
5 31 Mar-6 Apr 16 0 0 0.8889 0.7437-1.0341
6 7 Apr-13 Apt 16 1 0 0.8333 0.6667-1.0000
7 14 Apr-20 Apr 15 0 0 0.8333 0.6612-1.0055
8 21 Apr-27 Apr 15 1 1 0.7778 0.5922-0.9633
9 28 Apr—4 May 18 1 2 0.7179 0.5107-0.9252
10 5 May-11 May 10 1 1 0.6462 0.4079-0.8844
11 12 May-18 May 8 0 0 0.6462 0.3798-0.8125
12 19 May-25 May 8 0 1 0.6462 0.3798-0.9125
13 26 May-1 jun 7 0 0 0.6462 0.3614-0.8309
imals at risk at these points and d,, d,, ..., d, Sa,)=5B8)=1—-d,/r,=1—2/18

to be the number of deaths at the same points.
The probability of surviving from zero to a, is
estimated by 5(a,) =1 ~ d,/r,, because d, /7, is
the estimated proportion dying in that interval.
The probability of surviving from a, to a, is
similarly given by 1 — d,/r, and 5(g,) is then
given by the product: {1 — d,/r))(1 — d,/r,).
Therefore the estimated survivor function for
any arbitrary time ¢ is given by:

§t)=mQ - d,/r)

jla, <4,

n

which is the mathematical way of stating we
are considering the product of all j terms for
which @, < the time 1.

Consider r,, which is the number at risk at
time g, In this situation we would start with a
fixed sample (n). The number at risk at a par-
ticular death time g, will then be n — the num-
ber of deaths before a, — the number of animals
censored before time a,

As an example of the use of this model, we
present results from a spring season of a radio-
tagging study on northern bobwhite conducted
by PDC at Fort Bragg, North Carolina. In this
section we consider the data collected in spring
1985. The pertinent data on each of the 18 radio-
tagged quail is included in Table 1. Six birds
died and 5 birds disappeared (were censored)
during the study, leaving 7 birds that survived
for the 13 weeks of the study.

We estimated S(f) (Table 1, Fig. 1) in the
following manner. The computations involve the
5 weeks where deaths were recorded; therefore
a,=3%4a,=6,a;,=8,a,=9, and a; = 10. We
estimate S(a,) as:

= (.8889,

because there are 2 deaths at time 3 and there
are 18 animals still at risk (r,). The next death
time a, is at 6 weeks (g, = 6) and at that time
there is 1 death {d, = 1) and 16 animals at risk
(r, = 16). There are 16 at risk because 2 were
lost to death at time 1. Therefore 5(a,) is given
by:

§(a,) = S(B) = (1 - d\/r )1 — dyfrs)
={1 — 2/18){(1 — 1/16) = 0.8333.

Similarly $(a,) is given by:

S{a,) =5(8)=(1 — d,/r))
-1 = dy/r. X1 — dyfry)
= (1 — 2/18)}1 — 1/16)
(1 — 1/15) = 0.7778,
s(ac) = g(g} = (1 e dl/rl)(l - dz/rz)
(1 — dy/r5¥1 — d,/7)
=(1 - 2/18){1 — 1/16)}1 — 1/15)
(1 - 1/13) = 0.7179,
and

g(as) = g(lO) = {1 — d,/r, X1 — dy/r,)
(1 — dyf1r)(1 — d,fr,})
'(1 - ds/rs)
=(1 —2/18)(1 — 1/16)1 — 1/15)
-(1 - 1/13)(1 — 1/10) = 0.6462.

The censored observation at ¢ = 8 is still con-
sidered at risk until-theinstant after that time
so that r; = 15, not 14, but then r, = 13. The
estimate of the survivor function (§jt]) is pre-
sented for each week in Table 1 but it only
changes at the death times. Thus, S(t) stays at
1.00 until ¢ = 3 where it becomes 0.8888 and
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stays there until £ = 6 (the next death time) and
soon. . )

Cox and Oakes (1984:51) also discussed how
to estimate the variance {var) of the estimate at
an arbitrary time point using Greenwood’s
{Greenwood 1926) formula:

Haj<t d

varf$(t)] = (S0 2 o

2)
where the summation is for all death times g,
< t. Cox and Oakes (1984) also discuss an al-
ternate estimate that is better in the tails of the
distribution:

var(e] = [sumrl( - E0)]

Approximate confidence intervals can be ob-
tained based on equation (2) or (3). For example;
a 95% confidence interval at ¢ = ¢, would be:

S(t,) + 1.96 [var §(z,)* (4)

because of the asymptotic (large sample) nor-
mality of the estimates 5(z). In Table 1 approx-
imate 95% confidence intervals are given at all
points using the simpler second variance equa-
tion (3). The confidence intervals get wider and
wider as time increases (Fig. 1).

EXTENSION OF THE KAPLAN-MEIER
PROCEDURE TO STAGGERED ENTRY
OF ANIMALS

~ We extend the concept of the Kaplan-Meier
estimates to allow animals to enter at different
times and for the time variable to be measured
from the point where the first group of animals
is tagged. Previously we presented an example
of the Kaplan-Meier estimator and showed it is
based on equation (1) for the survival function
where 7, is the number at risk and d, is the
number of deaths. Typically we assume 7, is
decreasing due to deaths and censoring but there
is no reason it has to be. New animals will only
be considered in those product terms where they

are at risk. The formula for the variance of 5(¢).

also allows for new animals to enter during the
study. Any newly tagged animals are assumed

to have the same survival function as the pre-

viously tagged animals. :

Using telemetry data collected from northern
bobwhite in the winter of 1985-86, we illustrate
the extension of the Kaplan-Meier estimator to
staggered entry of new animals (Table 2). In
week 1 there were 20 animals radiotagged (r,

@)
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Fig. 1. The Kaplan-Meier survival function for northern bob-

white quail radictagged in North Carolina, spring 1885.

= 20), no deaths, no censors, and 1 animal was
added so that the number of animals radio-
tagged in week 2 is 21 and the survival estimate
stays at 1.0. In week 2 the only change is that
another animal is added so that at week 3 the
number at risk is r, = 22. In week 3 the survival
estimate is: §(8) = 1 — d,/r, = 1 — 2/22 =
0.9091. In week 4 the number at risk is 19 (2
deaths and 1 censor in week 3 gives 22 — 2 —
1 = 19) and there were 5 deaths so:

S(4) = (1 — dy/r:)(1 — d, /1)
=(1 - 2/22) (1 — 5/19)
= (,6699,

The survival estimates for later times can be
obtained in a similar manner. The approximate
95% confidence limits are also given based on
equations (3) and {4). Here the confidence limits
do not necessarily get wider with time because
new animals may be added (Fig. 2}. At# =13
there is a marked decrease in the confidence
interval width because the number at risk in-
creases from 10 'to 16 and at ¢ = 14 it increases
to 22 due to the large number of new animals
added at those times.

LOG-RANK TEST EXTENSION TO
STAGGERED ENTRY OF ANIMALS
Often it is important to compare 2 estimated

survival functions to see if they could have come
from the same underlying true survival curve.

"For example, in Table 3 we present some bob-
. white survival estimates for fall 1985 and fall

1986. We would like to know if the survival
patterns are the same for the 2 years. Graphical
comparison would be possible by plotting sur-
vival functions on the same graph; however, a



10

SuRvIvaL FROM TELEMETRY STUDIES « Pollock et al.

J. Wildl. Manage. 53(1):1989

Table 2. Kaplan-Meier survival estimates for northern bobwhite quail radictagged in North Carolina, winter 1985-86, modified

to allow for the staggered entry of new animals into the study,

No. at risk  No. deaths No. No. new Survival
Week (1} Dates (r;} Ady censored  added D 95% Ct
I 17 Nov-23 Nov 20 0 0 1 1.0000 1.0000-1.0000
2 24 Nov-30 Nov 21 0 0 1 1.0000 1.0000-1.0000
3 1 Dec-7 Dec 22 2 1 0 0.9001 0.7946-1.0256
4 8 Dec-14 Dec. 19 5 0 0 0.6699 0.4968-0.8429
] 15 Dec-21 Dec 14 3 0 ] 0.5263 0.3366-0.7161
6 22 Dec-28 Dec 11 0 o 0 0.5263 0.3122-0.7404
7 29 Dec-4 Jan 11 0 0 0 0.5263 0.3122-(0.7404
8 5 Jan-~11 Jan 11 2 0 0 0.4306 0.2386-0.6226
g9 12 Jan~18 Jan 9 1 0 0 0.3828 0.1863-0.5792
10 19 jan-25 Jan 8 0 1 0 0.3828 0.1744-0.5912
11 26 Jan-1 Feb T ) 0 3 0.3828 0.1600-0.6056
12 2 Feb-8 Feb 10 ¢ 0 6 0.3828 0.1964-0.5692
13 9 Feb-15 Feb 16 4 ] 10 0.2871 0.1683-0.4059
14 16 Feb-22 Feb 22 4 0 5 0.2349 0.1490-0.3207
15 238 Feb-1 Mar 23 4 1 6 0.1940 0.1228-0.2652
16 2 Mar-8 Mar 24 4 0 0 0.1617 0.1025-0.2209
17 9 Mar-15 Mar 20 2 0 0 0.1455 0.0866-0.2045

formal hypothesis testing procedure is also need-
ed.

There are many possible tests available (Lee
1980:122) but we concentrate attention on the
log-rank test {Savage 1956, Kalbfleisch and
Prentice 1980:17, Cox and Oakes 1984:104) be-
cause of the test’s simplicity and easy general-
ization to when animals have staggered entry
into the study.

To compare 2 survivor functions we gener-
alize the formula we used for defining the Kap-
lan-Meier estimates. Let a,, a,, ..., a, denote
the death times for the sample formed by com-
bining the 2 samples. Suppose there are d, deaths
and r, animals at risk at a,, with d,, and d,, being
from samples 1 and 2, respectively. Similarly
there are r,, and r,; animals at risk from the 2 -
samples.

For each of the k points the data can be rep-
resented as a 2 x 2 contingency table. For the
jth contingency table we have formula for the
expected value (E) and variance of d,, given by:

E(d,)=dr, /1,
and
var,(d,) = dr,r,(r, — d))/r3ir, = 1),

An approximate Chi-square test statistic with
1 degree of freedom can be obtained by com-
bining the results from all the contingency tables
(assuming conditional independence and
asymptotic normality of the d’s) in the following
way:

[2 4 -3 E(dl,)}z

=1 ~1.

= .
> var(d,,)
J=1
Cox and QOakes (1984:105) consider 2 modi-

fications to the var of d,, that give rise to x*, and
X%, respectively. The first modification is:

vary(d,,) = ot g,

Py »
L

which is a slightly more conservative test. The
second modification is

&
>, varld, ) =

=

1

> (diro /7))

j=l

1
+ —]
2 (d;ru/f;)

=

which is an even more conservative test. This
test in any of its 3 versions easily generalizes to
the case of staggered entry because r, and r,,
the number at risk at each time point, can be
redefined to include newly tagged animals.

In Table 4 we present the calculations of the
log-rank test for data given in Table 3 that com-
pares bobwhite survival distributions for fall 1985
and fall 1886, We present the number at risk



J. Wildl. Manage. 53(1):1989

and the number of deaths for every week al-
though deaths do not occur every week. In those
weeks where there are no deaths there are no
contributions to the test statistics.

We now present the calculations for the 3
approximate Chi-square test statistics with 1 de-
gree of freedom:

_(6-3317¢
le = 1.681 = 428,
_(6=3317¢
X 1728 1%
and
6 — 3.317)p
Xy = — ) — =413,
A, 1
3.683 3.317
where
k
2 d,=86
=1
k
> Ed,) = 3.317,
=1
and hence
k
2 E(dn;) =7- E(dl,)
-1
! k
= E dyro, /7
=1
= 3.683,
k
> ditor,/rp = 1729,
1
and

k
2 dryrr, = d)/rir,— 1) = 1.681.
=1
All the Chi-square tests are similar. The ap-
proximate P value is 0.04 that indicates there is
a significant difference between the 2-year sur-
vival curves at the 5% level.
Biologists might compare 2 survival curves at
a particular time. In this case, a simple approx-
imately normal test statistic can be based on the
equation:

slitl) _ gz(tl)

Vivar S,(tl) + var Sz(ti)

Z=

where 5,(¢,) is the estimate of the first survival
curve at time ¢, based on equation {1} and §,(¢,)
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is defined similarly. The variances are calculat-
ed by using equation (3). In some cases trans-
formation to log S(¢,) may improve the nor-
mality of the test statistic.

ASSUMPTIONS

We assume that animals of a particular sex
and age class have been sampled randomly. For
example, in a study on male winter survival of
a species, if lighter adult males tend to be cap-
tured and these have lower survival rates, the
survival estimates will be negatively biased. This
assumption is also required of survival estimates
obtained from capture-recapture and band-re-
turn studies (Jolly 1965, Seber 1965, Pollock 1981,
Brownie et al. 1985).

We make the assumption that survival times
are independent for the different animals. This
assumption is also required of capture-recap-
ture and band-return models as before. For Can-
ada geese (Branta canadensis) that form tight
family groups this assumption would probably
fail. Additionally, the death of a female mam-
mal still nursing her young would not be in-
dependent of the fate of those young. Violation
of this assumaption will not cause bias but it will
make our estimates appear to have smaller vari-
ances than they actually do.

Another assumption that is common to any
method involving marked animals is that cap-
turing the animal or having it carry a radio tag

. does not influence its future survival. Clearly,

failure of this assumption will negatively bias
thé survival estimates. As radio tags are becom-
ing smaller this is less of a problem. Short-term
effects could be eliminated by having a condi-
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Tabie 3. mdwmqmwmmmmmm.mmﬁwwm

Fall 1985 Fall 1986

No. at No. No. No. S Na. at No. No. No. S

Waeek risk deaths  censored  added 3] risk deaths  censored  added (]
1 7 1 0 0 0.8571 7 ¢ 1 ¢ 1.0000
2 6 0 0 2 0.8571 6 0 0 9 1.0000
3 8 0 ] 9 €.8571 11 1 0 0 0.9091
4 13 0 1 6- 0.8571 )iy 0 0 6 0.9091
5 18 0 0 0 0.8571 16 1 0 0 0.8523
6 18 0 0 0 0.8571 15 0 4] 0 0.8523
7 18 ¢ 0 0 0.8571 15 1 ] 0 0.7955
8 18 0 0 i ] 0.8571 14 0 0 0 0.7955
9 18 0 0 1 0.8571 14 3 0 0 0.6250

tioning period (e.g.. 1 week) after tagging when
an animal’s survival time is not considered until
it has survived that period.

The assumption that the censoring mecha-
nism is random (i.e., is not related to an animal’s
fate) is important. Possible violations could re-
sult from a predator killing an animal and at
the same time destroying the radio or an animal
emigrating because it is stronger than its com-
panions. Medical studies may suffer a similar
emigration problem; patients doing well (or
badly) may decide to leave the study. A review
of the literature on survival analysis shows that
very little has been done regarding alternative,
so called, informative censoring models. We be-
lieve this is mainly due to the difficulty of the
problem rather than lack of research. However,
bounds can be generated for the survival curve
by allowing censoring to take 2 very extreme
forms. A lower bound can be obtained by as-
suming that every censored observation was
really a death and an upper bound by assuming
that every censored observation was not a death
and that the animal survived to the end of the
study.

Sometimes it may be reasonable to assume
that emigration or radio failure is zero. Then
the likelihood of the censoring time could pro-
vide very useful information. For example, in
a study of winter survival of waterfowl with
reliable radios, the censoring times would pri-
marily reflect emigration. Estimation of this em-
igration time distribution could be informative
to the biologist, especially if it could be related
to covariates such as those reflecting weather
severity.

The definition of a time origin is crucial. In
medical studies the natural time origin is the

time treatment begins. In radio telemetry there
is no natural time origin. In studies where all
the animals are captured at or near the same
time the obvious time origin might be the date
when the last animal was captured. Survival
from the origin could be seriously influenced by
seasonal effects, with survival for 1 week from
a summer time origin quite different than sur-
vival for 1 week from a winter time origin.

Animals may need to be introduced into the
study over a long period of time. This could
result from difficulties in capturing animals at
1 time or from the introduction of additional
animals into the study to replace animals that
have died. We have shown that the Kaplan-
Meier estimator of the survivor function and the
log-rank test for comparing survival curves can
be generalized to allow for staggered entry. In
this case the time origin will be when the first
group of animals is tagged.

A special assumption of the staggered entry
design is that newly tagged animals have the
same survival function as previously tagged an-
imals. I there were enough animals in both
groups contingency table tests of this assumption
could be made. In practice, however, the ani-
mals will often be added in very small groups
thereby prohibiting a quantitative assessment of
this assurnption.

DISCUSSION

The Kaplan-Meier procedure is simple, flex-
ible, and allows staggered entry of newly tagged
animals. Many biclogists will find the simple log-
rank test for comparing survival distributions
valuable. It is also easily adapted to the stag-
gered entry case. However, the log-rank test is
not powerful when the survival curves have rad-
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Table 4. Log-rank test calculations comparing survival distributions of radiotagged northern bobwhite quail in North Carolina,
fall 1985 and 1986, modiified to allow for the staggered entry of new animals into the study.

Fall 1985 Fall 1986 Total
No. at No, No. at No. No. at No.

Week {rop) (doy) ng (dy) (ry) (dy) Eldyp var {dy b var (dy,F
1 i 1 7 ¢ 14 1 0.500 0.250 0.250
2 6 0 6 0 12 Q 0 0 0
3 8 0 11 1 19 1 0.579 0.244 0.244
4 18 0 10 0 23 0 4] 0 0
5 18 4] 16 1 34 1 0.471 0.249 0.249
6 18 0 15 0 33 0 0 o 0
7 18 0 15 1 a3 1 0.455 0.248 (.248
8 18 0 14 0 32 0 0 0 O
9 18 0 14 3 32 3 1.313 0.738 0.691

Total 1 6 7 3.317 1.729 1.681

*Eldh) = dmyfry
bVar (dy) = dirirey/7 £
e Var (dy)) = dgygafr; = dpfrfier ).

ically different shapes (Cox and QOakes 1984:
107). ' '

We believe testing of ecological hypotheses
regarding the influence of individual animal co-
variates on survival using the proportional haz-
ards mode! (Cox 1972) is important. In Pollock
et al. (1989), this model was illustrated by show-
ing how winter survival of female black ducks
{Anas rubripes) is related to their condition in-
dex at the start of the winter. The Cox propor-
tional hazards model is described clearly by Cox
and Oakes (1984:91). This model can also gen-
eralize to the case of staggered entry of animals.

The efficiency of the Kaplan-Meier estimator
when there is staggered entry of animals should
be studied thoroughly but some preliminary
statements about sample size can be made based
on our analyses. Table 2 and Figure 2 illustrate
that precision is poor unless the number of an-
imals tagged at a particular time is >20. To get
good precision, however, a minimum of 40-50
animals would need to be tagged at all times.
Usually we would recommend periodic inser-
tion of animals to keep the number tagged ap-
proximately constant. If there is 2 period of in-
terest when mortality is likely to be high the
biologist should be prepared to introduce a large
number of newly radio-tagged animals at that
time.

We have emphasized the Kaplan-Meier prod-
uct limit estimator because of its simplicity and
generality. However, it.is not uniquely the best
for all circumstances. For example, if the sur-
vival curves follow a simple parametric form

such as the exponential or Weibull then use of
Kaplan-Meier violates the principle of parsi-
mony (keeping the number of parameters as
small as possible).

~ Miller (1983) compared maximum likelihood
estimators and the Kaplan-Meier procedure
when the underlying distribution was exponen-
tial and there was right censoring. He stated
that this comparison is biased against the Kap-
lan-Meier estimator, but its efficiency can be
low. This is especially troublesome for long times
and Miller (1983) stated **Parametric modeling
should be considered as a means of increasing
the precision in the estimation of small tail prob-
abilities.”” He also mentioned that this question
has been studied little which is surprising con-
sidering the importance of survival analysis in
engineering and medicine.

This Heisey and Fuller (1983) approach can
be viewed as a piecewise exponential model (D.
M. Heisey, Minn. Dep. Nat. Resour., pers. com-
mun.; Whittemore 1985). D. M. Heisey sug-
gested that if one lets the intervals in the Heisey
and Fuller (1985) approach be individual days,
-that one obtains exactly the staggered-entry
Kaplan-Meier method.

Lagakos (1979) discussed informative censor-
ing (i.e., where the censoring is related to the
fate of the animal) and the lack of research on
the subject. One practical approach discussed is
to calculate extreme bounds for the estimated
survival curve by considering each censored ob-
servation to be a death or a survivor until the
end of the study. If there is a lot of censoring
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early in the study, these bounds can be so wide
as to be impractical.

Finally, we discuss the situation where cause
of death can be classified into several categories.
For example, the biologist may want to separate
hunting deaths from nonhunting deaths. Mar-
ginal survival curves can be obtained by treating
deaths from any other cause as censored obser-
vations. For example, if one were considering
the survival curve just related to hunting, then
all animals that died of nonhunting causes would
be viewed as censored observations. Unfortu-
nately, this approach does not consider that dif-
ferent causes of dezth may not be independent.
. Competing risk models when there are several
possible causes of deaths have been studied in
depth but are not useful for estimating the de-
pendency. These models are what statisticians
refer to as “nonidentifiable.” Therefore, biolo-
gists are forced to use marginal or crude survival
curves. They should be aware that these crude
curves have limitations and do not consider the
possibility of dependency between sources of
mortality that is a very important question.
Kalbfleish and Prentice (1980:163), Cox and
Oakes (1984:142), and Heisey and Fuller {1985}
provide information on competing risk models
and their problems.

COMPUTER PROGRAMS

Two computer programs written specifically
for the analysis of survival data when all animals
enter at the same time are PHGLM (Harrell
1983) and LIFETEST (SAS 1985). Other pro-
grams include SURVREG (Preston and Clark-
son 1983) and LIFEREG (SAS 1985) for use with
parametric models when all animals enter at the
same time.

A simple computer program that calculates
the Kaplan-Meier estimator and the log-rank
test when there is potentially staggered entry of
animals is available free from the authors. It
will run on IBM compatible personal computers
in conjunction with the Lotus Spread Sheet soft-
ware (Kapor and Sachs 1983). The program is
also available through SESAME, a bulletin board,
maintained by the Southeastern Cooperative
Wildlife and Fisheries Statistics Project at North
Carolina State University.
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