

6. Rewrite the integral $\int_0^1 \int_0^{2x} \int_0^{4-y^2} f(x,y,z) dz dy dx$ as an iterated integral with order of integration $\frac{1}{2} \int_0^1 \int_0^{2x} \int_0^{4-y^2} f(x,y,z) dz dy dx$ as an iterated integral with order of

integration dx dy dz.

look down x-axis

For x direction move between surfaces y=2x or $x=\frac{1}{2}y$ (buck) x=((front)

score

3. Find the work done by the force field F = (x + y)i + xyj in moving a particle along the curve C given by x = 2t, $y = t^2 - 1$, $0 \le t \le 2$.

$$W = \int_{c}^{c} F \cdot dr = \int_{c}^{c} (x+y) dx + (xy) dy$$

$$= \int_{0}^{7} \left[(2t+(t^{2}-1)) \cdot 2 + (7t)(t^{2}-1)(7t) \right] dt$$

$$= \int_{0}^{7} \left(4t + 2t^{2} - 2 + 4t^{4} - 4t^{2} \right) dt$$

$$= \int_{0}^{7} \left(4t^{4} - 2t^{2} + 4t - 2 \right) dt$$

$$= \left(\frac{4}{5} t^{5} - \frac{2}{3} t^{3} + 2t^{2} - 2t \right) \Big|_{0}^{2}$$

$$= \left(\frac{4}{5} \cdot 32 - \frac{2}{3} \cdot 8 + 2 \cdot 2^{2} - 2 \cdot 2 \right) - 0$$

$$= \frac{128}{5} - \frac{16}{3} + 4$$

$$= \frac{384 - 80 + 60}{15}$$

$$= \left(\frac{364}{15} \right)$$

2. Evaluate $\oint_C (3y - \arctan(x^6)) dx + (7x - \cos(\sqrt{y-1})) dy$ where C is the circle $x^2 + y^2 = 1$ traversed counterclockwise.

(closed curve in plane)

Use Green's Theorem
=
$$\iint (N_x - M_y) dA$$
B

5. A sawtooth curve C (see below) consists of 19 line segments starting at (0,0) and ending at (1,1). Find the value b, given that

$$\int_{C} \left(\frac{-\pi \sin(\pi x) + 4e^{1-x} \arctan(y)}{M = f_{\infty}} \right) dx + \left(by - \frac{4e^{1-x}}{1+y^2} \right) dy = 5 - \pi.$$

$$5-\pi = \left(\cos(\pi x) - 4e^{1-x} \operatorname{arctanly}\right) + \frac{1}{2}by^{2}\right) \left(\cos(\pi x) - 4e^{1-x} \operatorname{arctanly}\right) + \frac{1}{2}by^{2}$$

=
$$\left(-1 - 4e^{arctan(1)} + \frac{1}{2}b\right) - \left(1 - 4e^{arctan(0)} + 0\right)$$

= $-2 - 17 + \frac{1}{2}b$

1. Evaluate
$$\int_{-1}^{0} \int_{0}^{1} \cos(y^{3} + y) \, dy \, dx + \int_{0}^{3} \int_{\sqrt{x/3}}^{1} \cos(y^{3} + y) \, dy \, dx.$$

1. Evaluate
$$\int_{1}^{e^2} \int_{\ln y}^{2} e^{(e^x - x)} dx dy.$$

1. Evaluate
$$\int_0^4 \int_{y/4}^{\sqrt[3]{y/4}} \sin(2x^2 - x^4) \, dx \, dy.$$

2. Let C be the parametric curve $(2\sin t, 2\cos t, 0)$ with $0 \le t \le 2\pi$ (a circle of radius 2 in the xy-plane; see figure to the right where the orientation is also indicated). Find

$$\int_{C} \left\langle \cos(x^3) + y, e^y, x^2 y \right\rangle \cdot \mathbf{T} \, \mathrm{d}s.$$

2. Let C be the parametric curve $(2\sin t,0,2\cos t)$ with $0\leqslant t\leqslant 2\pi$ (a circle of radius 2 in the xz-plane; see figure to the right where the orientation is also indicated). Find

$$\int_{C} \left\langle e^{x} + 2z, x^{3}z^{2}, \ln(1+z^{2}) \right\rangle \cdot \mathbf{T} \, \mathrm{ds}.$$

2. Let C be the parametric curve $(0, 2\cos t, 2\sin t)$ with $0 \le t \le 2\pi$ (a circle of radius 2 in the yz-plane; see figure to the right where the orientation is also indicated). Find

$$\int_{C} \langle y^2 + z^2, \sin(y^2 + y) - 3z, \arctan(z^4) \rangle \cdot \mathbf{T} \, ds.$$

y

Set the bounds for the following integrals over S.

Set the bounds for the following integrals over S.

4. You are hiking in the "3-D Forest", where your elevation above sea level z, measured in cubits, is given by a differentiable function f(x,y) – where (x,y) represents a sea-level grid position measured in furlongs.

You stop at the point (3,2,20) and notice that you are standing in the middle of a small stream. From that point, the stream flows in the direction $\langle -3,4 \rangle$ where the elevation is dropping at a rate of 15 cubits/furlong.

Since your feet are beginning to get cold, you step out of the stream in the direction $\langle -2, -2 \rangle$. As you take that step, are you climbing or descending? At what rate (include units)?

We can Find the gradient

$$\nabla F = -15 \frac{\langle -3.47 \rangle}{|\langle -3.47 \rangle|} = -15 \frac{\langle -3.47 \rangle}{|\sqrt{9+16}|} = -3\langle -3.47 \rangle = \langle 9,12 \rangle$$

now find directional derivative

$$\nabla f \cdot \frac{\langle -2, -2 \rangle}{|\langle -2, -2 \rangle|} = \frac{\langle q_1 - 12 \rangle \cdot \langle -2, -2 \rangle}{|\langle -2, -2 \rangle|} = \frac{-18 + 24}{2\sqrt{2}} = \frac{6}{2\sqrt{2}} = \frac{3}{12}$$

positive directional derivative, so climbing at a rate of
$$\frac{3}{\sqrt{2}}$$
 cubits Furlong

Closed oriented curie in plane +> Green's Theorem

4. Evaluate

$$\oint_C \left(\frac{\sin(x^2 + 3x) + 5y - e^{\cos x}}{N} \right) dx + \underbrace{\left(2x + \ln(y^2 + 1) \right)}_{N} dy$$

where C is the path composed of line segments in the xy-plane connecting (3,0) to (0,5) to (-1,0) to (2,-1) back to (3,0).

$$\oint_{C} M \, dx + N \, dy = \iint_{R} (Nx - My) \, dA$$

$$= \iint_{R} (2 - 5) \, dA$$

$$= -3 \iint_{R} dA$$

$$= -3 \left(Area \, dR \right)$$

$$= -3 \left(\frac{1}{2} \cdot 4 \cdot 5 + \frac{1}{2} \cdot 4 \cdot 1 \right)$$

$$= -3 \left(10 + Z \right)$$

$$= \left(-36 \right)$$

(above X-axis)

2. Convert DO NOT EVALUATE the following integral

$$\int_{-\sqrt{3}}^{\sqrt{3}} \int_{-\sqrt{3-y^2}}^{\sqrt{3-y^2}} \int_{1}^{\sqrt{4-x^2-y^2}} (x^2 + y^2) \, dz \, dx \, dy$$

(a) into cylindrical coordinates;

 $-13 \le y \le 13$ $-13-y^2 \le x \le \sqrt{3-y^2}$

Plane Sphere

bottom Z=1 h region in plane

(b) into spherical coordinates.

$$\chi^{2}+y^{2}=r^{2}=\rho^{2}\sin^{2}\phi$$

score

Solutions to practice problems for Exam 3 (MATH 265; Fall 17)

1. Let S be the solid in the positive orthant $(x \ge 0, y \ge 0, z \ge 0)$ bounded by the surface $z = 4 - (x + y)^2$ (see picture to the right). Set up the bounds for the following two integrals over S:

$$\int \int \int \int \int f(x,y,z) dx dy dz and$$

$$\int \int \int f(x,y,z) dx dy dz \text{ and } \int \int \int \int f(x,y,z) dz dy dx$$

Note if we look down the x-axis we see the parabola $z = 4 - y^2$ (or $y = \sqrt{4 - z}$) in the yz-plane which helps us to determine the outer two sets of bounds. For the inner set we solve the surface for x and get $x = \sqrt{4-z} - y$. So we have

$$\int_0^4 \int_0^{\sqrt{4-z}} \int_0^{\sqrt{4-z}-y} f(x,y,z) dx dy dz.$$

If we look down the z-axis we see a triangle with vertices at (0,0), (2,0) and (0,2) in the xy-plane which helps us determine the outer two sets of bounds. So we have

$$\int_0^2 \int_0^{2-x} \int_0^{4-(x+y)^2} f(x,y,z) \, dz \, dy \, dx.$$

2. Set up (but do not evaluate) an integral in spherical coordinates to find the mass of the object which lies above the cone $z = \sqrt{x^2 + y^2}$ and inside the sphere $x^2 + y^2 + (z - 1)^2 = 1$ (see picture to the right) given the density function $\delta(x, y, z) = \sqrt{x^2 + y^2}$.

Because of symmetry we will have $0 \le \theta \le 2\pi$. To find mass we integrate density which we note can be written as $\delta = r = \rho \sin \phi$. The sphere can be rewritten as $x^{2} + y^{2} + z^{2} - 2z + 1 = 1$ or $x^{2} + y^{2} + z^{2} = 2z$ or $\rho^{2} = 2\rho \cos \phi$ or $\rho = 2 \cos \phi$ (this is our upper limit to where ρ goes). Finally note that the cone corresponds to $\varphi=\frac{1}{4}\pi$ and that we are interested in $0\leqslant \varphi\leqslant \frac{1}{4}\pi.$ So putting this altogether we have

$$M = \iiint_S \delta \ dV = \underbrace{\int_0^{2\pi} \int_0^{\frac{1}{4}\pi} \int_0^{2\cos\varphi} \underbrace{\rho \sin\varphi}_{=\delta} \underbrace{\rho^2 \sin\varphi}_{=dV} d\rho \ d\varphi}_{\text{bounds}} = \underbrace{\int_0^{2\pi} \int_0^{\frac{1}{4}\pi} \int_0^{2\cos\varphi}_0 \rho^3 \sin^2\varphi \ d\rho, d\varphi, d\theta}_{\text{bounds}}.$$