1 p2x
6. Rewrite the integral J J

0Jo
integration dx dy dz.
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3. Find the work done by the force field F = (x +y) i+ xy j in moving a particle along the
curve C givenby x =2t,y=t>—1,0<t < 2.
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M N
2. Evaluate § (3y — arctan(x®))dx + (7x — cos(v/y — 1))dy where C is the circle x* +y*> =1

c
traversed counterclockwise.
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5. A sawtooth curve C (see below) consists of 19 line segments starting at (0,0) and ending at
(1,1). Find the value b, given that

1—x
J (— msin(mx) + 4e’ ™ arctan(y)) dx + (by - 46—2—) dy=5-—m.
c . 4 T+y
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3

0 1
. Evaluate J cos(y® +y) dy dx +J

1
cos(y® +y) dy dx.
Jo1 o oJ,/x/s Y

re? p2
. Evaluate J el ) dx dy.

J1

4 03 y/4
. EvaluateJ J sin(2x? —x*) dx dy.
0Jy/4

. Let C be the parametric curve (2sint,2cost,0) with 0 < t < 27 (a 5 ; y

circle of radius 2 in the xy-plane; see figure to the right where the
orientation is also indicated). Find

J (cos(x*) +y,e¥,x*y) - Tds.
c

. Let C be the parametric curve (2sint, 0,2cost) with0 <t < 27 (a
circle of radius 2 in the xz-plane; see figure to the right where the
orientation is also indicated). Find

J <e" +22,%x32%,In(1 +zz)> -Tds.
C

. Let C be the parametric curve (0,2cost,2sint) with0 <t < 27 (a
circle of radius 2 in the yz-plane; see figure to the right where the
orientation is also indicated). Find

J <y2 + zz,sin(y2 +y) — 3z, arctan(z4)> - T ds.
C



5. Let Sbethesolid —2 <x<2,0<y <4,0<z<4—%x*and
Yy + z < 4 (see picture to the right).

Set the bounds for the following integrals over S. Y

J J J f(x,y,z) dydzdx and J J J f(x,y,z)d;cdydz

5. LetSbethesolid 0 <x<2,0<y<40<z<x*and
Y + z < 4 (see picture to the right).
Y

Set the bounds for the following integrals over S.

J J J f(x,y,z) dydzdx and J_J J f(x,y,z) dx dy dz




4. You are hiking in the “3-D Forest”, where your elevation above sea level z, measured in
cubits, is given by a differentiable function f(x,y) — where (x,y) represents a sea-level grid
position measured in furlongs.

You stop at the point (3,2,20) and notice that you are standing in the middle of a small
stream. From that point, the stream flows in the direction (—3,4) where the elevation is
dropping at a rate of 15 cubits/furlong. T oppssitegadl ek

Since your feet are beginning to get cold, you step out of the stream in the direction (-2, —2).
As you take that step, are you climbing or descending? At what rate (include units)?
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4. Evaluate
(sin (x* + 3x) + 5y — ) dx + (2x +In (y2 + 1)) dy
cCL——— o~ —
where C is the path composed ofvl}ne segments in the xy-plane connecting (3, 0) to (0, 5) to

(—1,0) to (2,—1) back to (3,0).
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2. Convert DO NOT EVALUATE the following integral aatex ¢ [ ~r

V3 /3-y2 py/fax2-y?
J J J (x? +y?2) dz dx dy c{rdcog
AR AR @iy §3
(a) into cylindrical coordinates; : 1 wthkeplons
- ] .
v 013 Pl | 222 dH-X=F
I
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(b) into spherical coordinates. Lok o s\lcen
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Solutions to practice problems for Exam 3 (MATH 265; Fall 17)

1. Let S be the solid in the positive orthant (x > 0,y > 0,z > 0)
bounded by the surface z =4 — (x +y)? (see picture to the right). Set
up the bounds for the following two integrals over S:

JS JS JS f(x,y,z) dxdy dz and Jg JEljj JE] f(x,y,z) dzdy dx

Note if we look down the x-axis we see the parabola z =4 —y? (or y = /4 — z) in the
yz-plane which helps us to determine the outer two sets of bounds. For the inner set we
solve the surface for x and get x = v/4 —z —y. So we have

4 ATz A —z—y
J J J f(x,y,z) dx dy dz|.
0 Jo 0

If we look down the z-axis we see a triangle with vertices at (0,0), (2,0) and (0,2) in the
xy-plane which helps us determine the outer two sets of bounds. So we have

2 p2—x pd—(x+y)?
J J J f(x,y,z) dzdy dx|.
0Jo 0

2. Set up (but do not evaluate) an integral in spherical coordinates to

find the mass of the object which lies above the cone z = 1/x2 +y2
and inside the sphere x* +y? + (z — 1)? = 1 (see picture to the right)

given the density function 6(x,y,z) = /x% +y2.

Because of symmetry we will have 0 < 6 < 27t. To find mass we integrate density which we
note can be written as 6 = r = psin ¢. The sphere can be rewritten as

X*+y?+22 —2z4+1=Torx? +y?+2z* =2z or p> = 2pcos $ or p = 2cos ¢ (this is our upper
limit to where p goes). Finally note that the cone corresponds to ¢ = 17 and that we are
interested in 0 < ¢ < F7. So putting this altogether we have

27 %'n 2 cos d 5 27 l—n 2 cos ¢ 5 5
M= 5dV = i i dpddp dd = i dp,dd, do|.
UL J J J ginde snddpdd J J J proin” ¢ dp, o
—

0 0 0 0 0 0
=5 =dV
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