3. Find a_T and a_N (the tangential and normal components of acceleration) for the curve $\mathbf{r}(t) = \langle \frac{2}{3}t^3, t, t^2 \rangle$. Simplify your answer as much as possible.

We have

$$-\mathbf{r}'(t) = \langle 2t^2, 1, 2t \rangle \text{ and } \mathbf{r}''(t) = \langle 4t, 0, 2 \rangle.$$

$$-|\mathbf{r}'(t)| = \sqrt{4t^4 + 1 + 4t^2} = \sqrt{(2t^2 + 1)^2} = 2t^2 + 1$$

$$-\mathbf{r}'(t) \cdot \mathbf{r}''(t) = \langle 2t^2, 1, 2t \rangle \cdot \langle 4t, 0, 2 \rangle = 8t^3 + 0 + 4t = 4t(2t^2 + 1)$$

$$-\mathbf{r}'(t) \times \mathbf{r}''(t) = \langle 2t^2, 1, 2t \rangle \times \langle 4t, 0, 2 \rangle = \langle 2, 4t^2, -4t \rangle$$

$$-|\mathbf{r}'(t) \times \mathbf{r}''(t)| = \sqrt{4 + 16t^4 + 16t^2} = \sqrt{4(4t^4 + 4t^2 + 1)} = \sqrt{4(2t^2 + 1)^2} = 2(2t^2 + 1)$$

$$-\mathbf{a}_T = \frac{\mathbf{r}'(t) \cdot \mathbf{r}''(t)}{|\mathbf{r}'(t)|} = \frac{4t(2t^2 + 1)}{2t^2 + 1} = 4t$$

$$\mathbf{a}_N = \frac{|\mathbf{r}'(t) \times \mathbf{r}''(t)|}{|\mathbf{r}'(t)|} = \frac{2(2t^2 + 1)}{2t^2 + 1} = 2$$

Note that once α_T has been computed the value α_N can be computed without using a cross product. Namely since $|\mathbf{a}|^2 = \alpha_T^2 + \alpha_N^2$ and $\alpha_N \geqslant 0$ we have $\alpha_N = \sqrt{|\mathbf{a}|^2 - \alpha_T^2} = \sqrt{((4t)^2 + (2)^2) - (4t)^2} = \sqrt{4} = 2$.

3. Find κ (curvature) for the curve $\mathbf{r}(t) = \langle \frac{2}{3}t^3, t, t^2 \rangle$. Simplify your answer as much as possible.

We have

$$- \mathbf{r}'(t) = \langle 2t^2, 1, 2t \rangle \text{ and } \mathbf{r}''(t) = \langle 4t, 0, 2 \rangle.$$

$$- |\mathbf{r}'(t)| = \sqrt{4t^4 + 1 + 4t^2} = \sqrt{(2t^2 + 1)^2} = 2t^2 + 1$$

$$- \mathbf{r}'(t) \times \mathbf{r}''(t) = \langle 2t^2, 1, 2t \rangle \times \langle 4t, 0, 2 \rangle = \langle 2, 4t^2, -4t \rangle$$

$$- |\mathbf{r}'(t) \times \mathbf{r}''(t)| = \sqrt{4 + 16t^4 + 16t^2} = \sqrt{4(4t^4 + 4t^2 + 1)} = \sqrt{4(2t^2 + 1)^2} = 2(2t^2 + 1)$$

$$- \kappa = \frac{|\mathbf{r}'(t) \times \mathbf{r}''(t)|}{|\mathbf{r}'(t)|^3} = \frac{2(2t^2 + 1)}{(2t^2 + 1)^3} = \frac{2}{(2t^2 + 1)^2}$$

4. Find a_T and a_N (the tangential and normal components of acceleration) for the curve $\mathbf{r}(t) = (\cos t + t \sin t)\mathbf{i} + (\sin t - t \cos t)\mathbf{j} + 2\mathbf{k}$. Simplify your answer as much as possible.

Note that

$$\mathbf{r}'(t) = (-\sin t + \sin t + t\cos t)\mathbf{i} + (\cos t - \cos t + t\sin t)\mathbf{j} + 0\mathbf{k} = t\cos t\mathbf{i} + t\sin t\mathbf{j},$$

$$\mathbf{r}''(t) = (\cos t - t\sin t)\mathbf{i} + (\sin t + t\cos t)\mathbf{j}.$$

And further note

$$\begin{split} |\mathbf{r}'(t)| &= \sqrt{(t\cos t)^2 + (t\sin t)^2} = \sqrt{t^2(\cos^2 t + \sin^2 t)} = t \\ |\mathbf{r}''(t)| &= \sqrt{(\cos t - t\sin t)^2 + (\sin t + t\cos t)^2} \\ &= \sqrt{\cos^2 t - 2t\cos t\sin t + t^2\sin^2 t + \sin^2 t + 2t\sin t\cos t + t^2\cos^2 t} \\ &= \sqrt{(\cos^2 + \sin^2 t) + t^2(\sin^2 t + \cos^2 t)} = \sqrt{1 + t^2} \end{split}$$

So we have $a_T = \frac{d}{dt}(|\mathbf{r}'(t)|) = \frac{d}{dt}(t) = 1$. And moreover we note that $1 + a_N^2 = a_T^2 + a_N^2 = |\mathbf{r}''(t)|^2 = 1 + t^2$ allowing us to conclude that $a_N^2 = t^2$ and so $a_N = t$. (Technically there is a subtle sign reversal for t < 0; but not the key part of this problem.)

4. Find the curvature κ for the curve $\mathbf{r}(t) = \langle 3t, 4\sin t, 4\cos t \rangle$ at any time t. Simplify your answer as much as possible.

We have

$$\mathbf{r}'(t) = \langle 3, 4\cos t, -4\sin t \rangle$$

 $\mathbf{r}''(t) = \langle 0, -4\sin t, -4\cos t \rangle$.

We note that

$$|\mathbf{r}'(t)| = \sqrt{(3)^2 + (4\cos t)^2 + (-4\sin t)^2} = \sqrt{9 + 16} = 5.$$

Next we have

$$\mathbf{r}'(t) \times \mathbf{r}''(t) = \langle 3, 4\cos t, -4\sin t \rangle \times \langle 0, -4\sin t, -4\cos t \rangle = \langle -16, 12\cos t, -12\sin t \rangle$$

so

$$|\mathbf{r}'(t) \times \mathbf{r}''(t)| = |\langle -16, 12\cos t, -12\sin t \rangle| = \sqrt{256 + 144\cos^2 t + 144\sin^2 t} = \sqrt{400} = 20.$$

Putting it altogether we have

$$\kappa(t) = \frac{|\mathbf{r}'(t) \times \mathbf{r}''(t)|}{|\mathbf{r}'(t)|^3} = \frac{20}{5^3} = \frac{4}{25}$$

1. Find the area of a triangle formed by the three points (1,2,0), (1,2,1), (5,-1,1).

Area =
$$\frac{1}{2} |\langle 0,0,1 \rangle \times \langle 4,-3,1 \rangle|$$

= $\frac{1}{2} |\langle 3,4,0 \rangle|$
= $\frac{1}{2} |\langle 3,4,0 \rangle|$
= $\frac{1}{2} |\langle 9+16+0 \rangle$
= $\frac{1}{2} |\langle 25 \rangle| = \frac{5}{2}$

$$\langle 0,0,1\rangle \times \langle 4,-3,1\rangle = \begin{vmatrix} i & j & k \\ 0 & 0 & 1 \\ 4 & -3 & 1 \end{vmatrix} = \begin{vmatrix} 0i + 4j + 0k \\ +3i - 0j - 0k \end{vmatrix}$$

$$= \langle 3,4,0\rangle$$

2. Find the point in the plane x + 2y - 3z = 1 which is closest to the point P = (0, -3, 7), and find the shortest distance from P to the plane.

Find line with point (0,-3,7) and direction (1,2,-3)

$$t + 2(-3+2t) - 3(7-3t) = 1$$

$$|4t - 27 = 1$$

Distance to plane is distance between
$$(0,-3,7)$$
 and $(2,1,1)$

$$= \sqrt{(2-c)^2 + (1-(-3))^2 + (1-7)^2} = \sqrt{4+16+36} = \sqrt{56}$$

Alternative
$$\frac{|a \times by_o + (z_o - d)|}{|a \times by_o + (z_o - d)|} = \frac{|o - 6 - 21 - 1|}{|a \times by_o + (z_o - d)|} = \frac{|z_o - 21 - 1|}{|a \times by_o + (z_o - d)|} = \frac{|a \times by_o + (z_o - d)|}{|a \times by_o + (z_o - d)|} = \frac{|a \times by_o + (z_o - d)|}{|a \times by_o + (z_o - d)|} = \frac{|a \times by_o + (z_o - d)|}{|a \times by_o + (z_o - d)|} = \frac{|a \times by_o + (z_o - d)|}{|a \times by_o + (z_o - d)|} = \frac{|a \times by_o + (z_o - d)|}{|a \times by_o + (z_o - d)|} = \frac{|a \times by_o + (z_o - d)|}{|a \times by_o + (z_o - d)|} = \frac{|a \times by_o + (z_o - d)|}{|a \times by_o + (z_o - d)|} = \frac{|a \times by_o + (z_o - d)|}{|a \times by_o + (z_o - d)|} = \frac{|a \times by_o + (z_o - d)|}{|a \times by_o + (z_o - d)|} = \frac{|a \times by_o + (z_o - d)|}{|a \times by_o + (z_o - d)|} = \frac{|a \times by_o + (z_o - d)|}{|a \times by_o + (z_o - d)|} = \frac{|a \times by_o + (z_o - d)|}{|a \times by_o + (z_o - d)|} = \frac{|a \times by_o + (z_o - d)|}{|a \times by_o + (z_o - d)|} = \frac{|a \times by_o + (z_o - d)|}{|a \times by_o + (z_o - d)|} = \frac{|a \times by_o + (z_o - d)|}{|a \times by_o + (z_o - d)|} = \frac{|a \times by_o + (z_o - d)|}{|a \times by_o + (z_o - d)|} = \frac{|a \times by_o + (z_o - d)|}{|a \times by_o + (z_o - d)|} = \frac{|a \times by_o + (z_o - d)|}{|a \times by_o + (z_o - d)|} = \frac{|a \times by_o + (z_o - d)|}{|a \times by_o + (z_o - d)|} = \frac{|a \times by_o + (z_o - d)|}{|a \times by_o + (z_o - d)|} = \frac{|a \times by_o + (z_o - d)|}{|a \times by_o + (z_o - d)|} = \frac{|a \times by_o + (z_o - d)|}{|a \times by_o + (z_o - d)|} = \frac{|a \times by_o + (z_o - d)|}{|a \times by_o + (z_o - d)|} = \frac{|a \times by_o + (z_o - d)|}{|a \times by_o + (z_o - d)|} = \frac{|a \times by_o + (z_o - d)|}{|a \times by_o + (z_o - d)|} = \frac{|a \times by_o + (z_o - d)|}{|a \times by_o + (z_o - d)|} = \frac{|a \times by_o + (z_o - d)|}{|a \times by_o + (z_o - d)|} = \frac{|a \times by_o + (z_o - d)|}{|a \times by_o + (z_o - d)|} = \frac{|a \times by_o + (z_o - d)|}{|a \times by_o + (z_o - d)|} = \frac{|a \times by_o + (z_o - d)|}{|a \times by_o + (z_o - d)|} = \frac{|a \times by_o + (z_o - d)|}{|a \times by_o + (z_o - d)|} = \frac{|a \times by_o + (z_o - d)|}{|a \times by_o + (z_o - d)|} = \frac{|a \times by_o + (z_o - d)|}{|a \times by_o + (z_o - d)|} = \frac{|a \times by_o + (z_o - d)|}{|a \times by_o + (z_o - d)|} = \frac{|a \times by_o + (z_o - d)|}{|a \times by_o + (z_o - d)|} = \frac{|a \times by_o + (z_o - d)|}{|a \times by_o + (z_o - d)|} = \frac{|a \times by_o + (z_o$$

score

3. A particle is traveling through space with acceleration $\mathbf{a}(t) = \langle e^t, -e^{-t}, 4e^{2t} \rangle$ at time t. At time t=0, the particle is at the initial point (3,1,2) and has initial velocity $\langle -1,4,0 \rangle$. Find the position of the particle at time t=1.

$$a(t) = \langle e^{t}, -e^{-t}, He^{2t} \rangle$$

$$v(t) = \langle e^{t} + C, e^{-t} + D, Ze^{2t} + F \rangle$$

$$v(o) = \langle -1, H, o \rangle = \langle 1 + C, 1 + D, Z + F \rangle$$

$$(=-2, D=3, E=-2)$$

$$v(t) = \langle e^{t} - 2, e^{-t} + 3, Ze^{2t} - 2 \rangle$$

$$v(t) = \langle e^{t} - 2t + F, e^{-t} + 3t + G, e^{2t} - 2t + H \rangle$$

$$v(o) = \langle 3, 1, 2 \rangle = \langle 1 + F, -1 + G, 1 + H \rangle$$

$$F = Z, G = Z, H = 1$$

$$v(t) = \langle e^{t} - 2t + 2, -e^{-t} + 3t + 2, e^{2t} - 2t + 1 \rangle$$

Position at time 1:

$$r(1) = \langle e-2+2, -e^{1}+3+2, e^{2}-2+1 \rangle$$

 $= \langle e, -\frac{1}{e}+5, e^{2}-1 \rangle$

- **4.** Consider the curve $\mathbf{r}(t) = \langle t^2, t \frac{t^3}{3}, t + \frac{t^3}{3} + 1 \rangle$, where $0 \leqslant t < \infty$.
 - (a) Find the cumulative arc length function s(t) starting from $t_0 = 0$.

$$|t'(t)| = \langle 2t, |-t^2, |+t^2 \rangle$$

$$5(t) = \int_{0}^{t} \sqrt{2(t^{2}+1)} dt = \sqrt{2(\frac{1}{3}z^{3}+z^{2})} \Big|_{0}^{t} = \sqrt{2(\frac{1}{3}t^{3}+t^{2})}$$

(b) Find the length of the curve from (0,0,1) to (9,-6,13). time t=0 Lime t=3

length from =
$$5(3) = \sqrt{2} \left(\frac{1}{3} \cdot 3^3 + 3 \right) = \boxed{12\sqrt{2}}$$

time 0 \(\frac{1}{3} \)

5. Consider the following two lines.

$$x = 1 + 2t$$
 $y = 2t$ $z = -2 + 3t$ $x = 5 + 2s$ $y = 1 - s$ $z = 2 + s$

(a) Show these two lines intersect by finding the *point* of intersection, and verifying this is a point on *both* lines.

$$1+2t=5+25$$
] $-25+2t=4$ 50 intersection would be $2t=1-5$] $-35=3$ $5=1\sim 2t=1-(1)$ $t=1$

check
$$(1+2\cdot1,2\cdot1,-2+3\cdot1) = (3,2,1)$$
 point $(3,2,1)$ is $(5+2\cdot(-1),1-(-1),2+(-1)) = (3,2,1)$ on both lines.

(b) Find the equation of the plane containing both lines.

For point we can use answer from (a) or any point on either line (for example (1,0,-2) or (5,1,2)).

$$5x + 4y - 6z = 17$$

$$5.3 + 4.2 - 6.1$$

$$15 + 8 - 6$$

score

1. Find the total *surface area* (**not** volume) from all *six sides* of the parallelepiped with the vectors corresponding to the edges being: $\overrightarrow{u} = \langle 3, 1, 0 \rangle$, $\overrightarrow{v} = \langle 3, 1, \sqrt{10} \rangle$, and $\overrightarrow{w} = \langle -1, 0, 0 \rangle$.

Sides consist of six parallelograms, use cross products to find area.

$$\vec{u} \times \vec{v} = \begin{vmatrix} \vec{c} & j & K \\ 3 & l & No \end{vmatrix} = -0 \vec{c} + 3 \vec{b} \vec{j} - 3 \vec{K} = \langle \vec{n}_0, 3 \vec{n}_0, 0 \rangle$$

$$\vec{U} \times \vec{U} = \begin{vmatrix} \vec{v} & \vec{j} & \vec{k} \\ \vec{J} & \vec{v} & \vec{j} \end{vmatrix} = \begin{vmatrix} \vec{v} & \vec{j} & \vec{k} \\ \vec{J} & \vec{v} & \vec{j} \end{vmatrix} = \begin{vmatrix} \vec{v} & \vec{j} & \vec{k} \\ -1 & \vec{v} & \vec{j} \end{vmatrix} = \begin{vmatrix} \vec{v} & \vec{j} & \vec{k} \\ -1 & \vec{v} & \vec{j} \end{vmatrix} = \begin{vmatrix} \vec{v} & \vec{j} & \vec{k} \\ -1 & \vec{v} & \vec{j} \end{vmatrix} = \begin{vmatrix} \vec{v} & \vec{j} & \vec{k} \\ -1 & \vec{v} & \vec{j} \end{vmatrix} = \begin{vmatrix} \vec{v} & \vec{j} & \vec{k} \\ -1 & \vec{v} & \vec{j} \end{vmatrix} = \begin{vmatrix} \vec{v} & \vec{j} & \vec{k} \\ -1 & \vec{v} & \vec{j} \end{vmatrix} = \begin{vmatrix} \vec{v} & \vec{j} & \vec{k} \\ -1 & \vec{v} & \vec{j} \end{vmatrix} = \begin{vmatrix} \vec{v} & \vec{j} & \vec{k} \\ -1 & \vec{v} & \vec{j} \end{vmatrix} = \begin{vmatrix} \vec{v} & \vec{j} & \vec{k} \\ -1 & \vec{v} & \vec{j} \end{vmatrix} = \begin{vmatrix} \vec{v} & \vec{j} & \vec{k} \\ -1 & \vec{v} & \vec{j} \end{vmatrix} = \begin{vmatrix} \vec{v} & \vec{j} & \vec{k} \\ -1 & \vec{v} & \vec{j} \end{vmatrix} = \begin{vmatrix} \vec{v} & \vec{j} & \vec{k} \\ -1 & \vec{v} & \vec{j} \end{vmatrix} = \begin{vmatrix} \vec{v} & \vec{j} & \vec{k} \\ -1 & \vec{v} & \vec{j} \end{vmatrix} = \begin{vmatrix} \vec{v} & \vec{j} & \vec{k} \\ -1 & \vec{v} & \vec{j} \end{vmatrix} = \begin{vmatrix} \vec{v} & \vec{j} & \vec{k} \\ -1 & \vec{v} & \vec{j} \end{vmatrix} = \begin{vmatrix} \vec{v} & \vec{j} & \vec{k} \\ -1 & \vec{v} & \vec{j} \end{vmatrix} = \begin{vmatrix} \vec{v} & \vec{j} & \vec{k} \\ -1 & \vec{v} & \vec{j} \end{vmatrix} = \begin{vmatrix} \vec{v} & \vec{j} & \vec{k} \\ -1 & \vec{v} & \vec{j} \end{vmatrix} = \begin{vmatrix} \vec{v} & \vec{j} & \vec{k} \\ -1 & \vec{v} & \vec{j} \end{vmatrix} = \begin{vmatrix} \vec{v} & \vec{j} & \vec{k} \\ -1 & \vec{v} & \vec{j} \end{vmatrix} = \begin{vmatrix} \vec{v} & \vec{j} & \vec{k} \\ -1 & \vec{v} & \vec{j} \end{vmatrix} = \begin{vmatrix} \vec{v} & \vec{j} & \vec{k} \\ -1 & \vec{v} & \vec{j} \end{vmatrix} = \begin{vmatrix} \vec{v} & \vec{j} & \vec{k} \\ -1 & \vec{v} & \vec{j} \end{vmatrix} = \begin{vmatrix} \vec{v} & \vec{j} & \vec{k} \\ -1 & \vec{v} & \vec{j} \end{vmatrix} = \begin{vmatrix} \vec{v} & \vec{j} & \vec{k} \\ -1 & \vec{v} & \vec{j} \end{vmatrix} = \begin{vmatrix} \vec{v} & \vec{j} & \vec{k} \\ -1 & \vec{v} & \vec{j} \end{vmatrix} = \begin{vmatrix} \vec{v} & \vec{j} & \vec{k} \\ -1 & \vec{v} & \vec{j} \end{vmatrix} = \begin{vmatrix} \vec{v} & \vec{j} & \vec{k} \\ -1 & \vec{v} & \vec{j} \end{vmatrix} = \begin{vmatrix} \vec{v} & \vec{j} & \vec{k} \\ -1 & \vec{v} & \vec{j} \end{vmatrix} = \begin{vmatrix} \vec{v} & \vec{j} & \vec{k} \\ -1 & \vec{v} & \vec{j} \end{vmatrix} = \begin{vmatrix} \vec{v} & \vec{j} & \vec{k} \\ -1 & \vec{v} & \vec{j} \end{vmatrix} = \begin{vmatrix} \vec{v} & \vec{j} & \vec{k} \\ -1 & \vec{v} & \vec{j} \end{vmatrix} = \begin{vmatrix} \vec{v} & \vec{j} & \vec{k} \\ -1 & \vec{j} & \vec{k} \end{vmatrix} = \begin{vmatrix} \vec{v} & \vec{j} & \vec{k} \\ -1 & \vec{j} & \vec{j} \end{vmatrix} = \begin{vmatrix} \vec{v} & \vec{j} & \vec{k} \\ -1 & \vec{j} & \vec{k} \end{vmatrix} = \begin{vmatrix} \vec{v} & \vec{j} & \vec{k} \\ -1 & \vec{j} & \vec{k} \end{vmatrix} = \begin{vmatrix} \vec{v} & \vec{j} & \vec{k} \\ -1 & \vec{j} & \vec{k} \end{vmatrix} = \begin{vmatrix} \vec{v} & \vec{j} & \vec{k} \\ -1 & \vec{j} & \vec{k} \end{vmatrix} = \begin{vmatrix} \vec{v} & \vec{j} & \vec{k} \\ -1 & \vec{j} & \vec{k} \end{vmatrix} = \begin{vmatrix} \vec{v} & \vec{j} & \vec{k} \\ -1 & \vec{j} & \vec{k} \end{vmatrix} = \begin{vmatrix} \vec{v} & \vec{j} & \vec{k} \\ -1 & \vec{j} & \vec{k} \end{vmatrix} = \begin{vmatrix} \vec{v} & \vec{j} & \vec{k} \\ -1 & \vec{j} & \vec{k} \end{vmatrix} = \begin{vmatrix} \vec{v} & \vec{j} & \vec{k} \\ -1 & \vec{j} & \vec{k} \end{vmatrix} = \begin{vmatrix} \vec{v} & \vec{j} & \vec{k} \\ -1 & \vec{j} & \vec{k} \end{vmatrix} = \begin{vmatrix}$$

$$|\sqrt{x}| = |\sqrt{x}| = |$$

2. Find the distance traveled (i.e., arc length) between times t=0 and t=1 along the curve $(2t^2, 7-\frac{8}{3}t^{3/2}, \frac{2}{5}t^{5/2}-2t^{3/2}+1)$. Simplify your answer as much as possible.

$$r'(t) = \sqrt{(46)^{2} + (-4t''^{2})^{2} + (t^{3/2} - 3t'^{12})^{2}}$$

$$= \sqrt{(46)^{2} + (-4t''^{2})^{2} + (t^{3/2} - 3t'^{12})^{2}}$$

$$= \sqrt{16t^{2} + 16t + t^{3} - (6t^{2} + 9t')^{2}}$$

$$= \sqrt{t^{3} + 10t^{2} + 25t}$$

$$= \sqrt{t} (t^{2} + 10t + 25)$$

$$= \sqrt{t} (t + 5)^{2}$$

$$= \sqrt{t} (t + 5)$$

$$= t^{3/2} + 5t''^{2}$$

$$= \sqrt{t^{3/2} + 5t''^{2}}$$

$$= \left(\frac{2}{5} t^{5/2} + \frac{10}{3} t^{3/2}\right) \left| \frac{1}{0} \right|$$

$$= \left(\frac{2}{5} + \frac{10}{3}\right) - 0$$

$$= \frac{(2 + 50)}{15}$$

score

3. A line passes through the origin and through the midpoint between A = (3, 1, 6) and B = (1, 5, 2). Find $\cos \theta$ where θ is the angle between the line and the line segment connecting A and B.

need angle between
$$u = \langle 1, -2, 2 \rangle$$
 and $v = \langle 2, 3, 4 \rangle$
 $\cos \theta = \frac{u \cdot v}{|u| |v|} = \frac{\langle 1, -2, 2 \rangle \cdot \langle 2, 3, 4 \rangle}{|\langle 1, -2, 2 \rangle| |\langle 2, 3, 4 \rangle|}$

$$= \frac{z - 6 + 8}{1 + 4 + 4}$$

$$= \frac{4}{3\sqrt{29}}$$

4. Find the components of acceleration, namely a_T and a_N , for the vector valued function $\mathbf{r}(t) = (e^t \cos(t))\mathbf{i} + (e^t \sin(t))\mathbf{j} + t\mathbf{k}$ at time t = 0.

$$r'(t) = (e^{t}\cos(t))^{1} + (e^{t}\sin(t))^{1} + kat time t = 0.$$

$$r'(t) = (e^{t}\cos t - e^{t}\sin t)^{2} + (e^{t}\sin t + e^{t}\cos t)^{2} + 1$$

$$= (e^{t}\cos^{2}t - 2e^{t}\cos t)^{2} + (e^{t}\sin t + e^{t}\cos t)^{2} + 1$$

$$= (e^{t}\cos^{2}t - 2e^{t}\cos t)^{2} + (e^{t}\sin t + e^{t}\cos t)^{2} + 1$$

$$= (e^{t}\cos^{2}t - 2e^{t}\cos t)^{2} + (e^{t}\sin t + e^{t}\cos t)^{2} + 1$$

$$= (e^{t}\cos^{2}t - 2e^{t}\cos t)^{2} + (e^{t}\sin^{2}t + e^{t}\cos^{2}t + e$$

10'Wxc"(0) = 14+0+47=18=25