3. Find at and ay (the tangential and normal components of acceleration) for the curve
1(t) = (%t3,t,t?). Simplify your answer as much as possible.

We have

- t'(t) = (2t%,1,2t) and r"'(t) = (4t,0,2).

- ) =VArP T+ 42 = /(282 +1)2 =212 +1

r'(t) -1 (t) = (2t%,1,2t) - (41,0,2) = 8t> + 0+ 4t = 41(2t2 + 1)

= r/(t) x ¥”(t) = (2t%,1,2t) x (4t,0,2) = (2,4t%, —4t)

- () x () = VA4 16t + 1682 = /44t + 42 + 1) = /4282 + 1)2 = 2(2t2 + 1)
Cr()r(t) 422 4+1)
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Note that once ar has been computed the value an can be computed without using a
cross product. Namely since |a]* = a2 + a%, and an > 0 we have

an = VAP~ = (G + ()7 — @2 = Vi =2.

3. Find « (curvature) for the curve r(t) = (t3,t,t*). Simplify your answer as much as
possible.

We have

- t'(t) = (2t%,1,2t) and r"'(t) = (4t,0,2).

(W) = VAT + 14482 = /(212 +1)2 = 2t2 + 1

- r'(t) x t”(t) = (2t%,1,2t) x (4t,0,2) = (2,412, —4t)

— (1) x (1) = VA + 16t + 1612 = \J4(4t* + 412 +1) = /422 + 1)2 = 2(2t2 + 1)
) x (0] 2(282 4+ 1) 2
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4. Find ar and ay (the tangential and normal components of acceleration) for the curve
r(t) = (cost + tsint)i+ (sint — tcost)j + 2k. Simplify your answer as much as possible.

Note that

r'(t) = (—sint +sint + tcost)i+ (cost — cost + tsint)j + Ok = tcos ti + tsintj,
r"(t) = (cost —tsint)i+ (sint + t cost)j.

And further note

I

t’(t)] = +/(tcost)? + (tsint)2 = \/tz(cos2 t+sin’t) =t

x"(t)]

V/(cost —tsint)? + (sint + tcost)?

I
=

cos?t—2tcostsint + t2sin?t + sin? t + 2t sintcost + t2 cos? t

(cos? 4sin? t) + t2(sin® t + cos? t) = /1 + t2

So we have at = £ (|r'(t)[) = £(t) = 1. And moreover we note that
1+ af = a + af, = t"(t)]> = 1 +t? allowing us to conclude that a?, = t? and so ay = t.

(Technically there is a subtle sign reversal for t < 0; but not the key part of this problem.)

4. Find the curvature « for the curve r(t) = (3t,4sint,4 cost) at any time t. Simplify your
answer as much as possible.

We have

r'(t) = (3,4 cost,—4sint)
r’(t) = (0,—4sint,—4 cos t).

We note that

It'(t)] = v/(3)2 4+ (4cost)2 + (—4sint)2 = /9 + 16 =5.

Next we have
r'(t) x r"(t) = (3,4 cost,—4sint) x (0,—4sint, —4cost) = (—16,12cost, —12 sin t)

S0

It'(t) x r”(t)] = |(—16,12 cos t, —12sint)| = V/256 + 144 cos? t + 144 sin? t = v/400 = 20.
Putting it altogether we have

«(t) = lt'(t) xr”(t)] 20 4
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1. Find the area of a triangle formed by the three points (1,2,0), (1,2,1), (5,—1,1).
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2. Find the point in the plane x + 2y — 3z = 1 which is closest to the point P = (0,—3,7), and
find the shortest distance from P to the plane.
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3. A particle is traveling through space with acceleration a(t) = (et, —e™t,4e?t) at time t. At
time t = 0, the particle is at the initial point (3,1,2) and has initial velocity (—1,4,0). Find the
position of the particle at time t = 1.
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4. Consider the curve r(t) = (t?,t — %i,t + t3—3 +1), where 0 < t < co.
(a) Find the cumulative arc length function s(t) starting from to = 0.
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(b) Find the length of the curve from (0,0, 1) to (9, —6,13).
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5. Consider the following two lines.

x=1+2t x=5+2s
y =2t y=1-—s

(a) Show these two lines intersect by finding the point of intersection, and verifying this is a
~ point on both lines.
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(b) Find the equation of the plane containing both lines.
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1. Find the total surface area (not volume) from all six suies of the parallelepiped with the
vectors corresponding to the edges being: ¥ =(3,1,0, vV =(3,1,V/10),and W = (—1 0,0).
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2. Find the distance traveled (i.g., arc length) between times t = 0 and t = 1 along the curve
oz <2t2, 7—843/2,245/2 — 243/ 1> Simplify your answer as much as possible
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3. A line passes through the origin and through the midpoint between A = (3,1, 6) and
B = (1,5, 2). Find cos © where 6 is the angle between the line and the line segment connecting
A and B.
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4. Find the components of acceleration, namely ar and ay, for the vector valued function
r(t) = (etcos(t))i+ (e*sin(t))j + tk at time t = 0.
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