Week 2 problem bank

1. Given the spheres $(x-7)^{2}+(y+3)^{2}+z^{2}=49$ and $(x+3)^{2}+(y-7)^{2}+(z+5)^{2}=100$, find the equation of the largest sphere that lies inside both spheres.
2. Find all values a so that $\langle 2,-1,1\rangle+a\langle-4,1,-2\rangle$ is a unit vector.
3. Find the projection of $\overrightarrow{\mathbf{u}}=-\mathbf{i}+5 \mathbf{j}+3 \mathbf{k}$ onto the vector $\vec{v}=-\mathbf{i}+\mathbf{j}-3 \mathbf{k}$.
4. Determine all values a so that the vectors $\left\langle a^{2}-a-1, a^{2}, 2-a\right\rangle$ and $\langle 2 a, 3-2 a,-1\rangle$ are orthogonal.
5. Find $\cos \theta$ where θ is the angle between the vectors $\langle 1,2,-2\rangle$ and $\langle 4,0,3\rangle$.
6. Find all values a so that $\cos \theta=\frac{1}{6}$, where θ is the angle between the vectors $\langle 1,2,1\rangle$ and $\langle a, 1-a, a-1\rangle$.
7. Find a vector which is perpendicular to both $\langle 3,1,4\rangle$ and $\langle 1,5,9\rangle$.
8. Find $\left(\mathrm{ti}+2 \mathbf{j}+\mathrm{t}^{2} \mathbf{k}\right) \times(\mathbf{i}+2 \mathrm{t} \mathbf{k})$.
9. [F10-F] Find the area of the triangle with $(1,-1,-2)$, $(-2,0,-1)$ and $(0,-2,1)$ as vertices.
10. The volume of a tetrahedron is $\frac{1}{6}$ of the volume of a parallelepiped whose sides are formed using the vectors coming out of one corner of the tetrahedron. Find the volume of the tetrahedron with corners at $(1,1,1),(1,5,5),(2,1,3)$, and $(2,2,1)$.

Week 2 additional practice

The following problems are drawn from a variety of sources, including previous exams and reviews. These are good practice to prepare for the upcoming exam. The more problems that one is able to answer, the better.

1. [S16-F] ABCD is a parallelogram where the vertices are labeled counterclockwise. The coordinates of the points A, B and D are given by $A=(1,0,0)$, $B=(2,1,-2)$ and $D=(3,3,4)$.
(a) Compute the diagonal vector $\overrightarrow{A C}$ and the co-ordinates of the point C.
(b) Find the area of the parallelogram $A B C D$.
2. [S19-E1] Find the total surface area (not volume) from all six sides of the parallelepiped with the vectors corresponding to the edges being: $\vec{u}=\langle 3,1,0\rangle$, $\vec{v}=\langle 3,1, \sqrt{10}\rangle$, and $\vec{w}=\langle-1,0,0\rangle$.
3. Given that \vec{u} and \vec{v} are nonzero vectors, show that $0 \leqslant \frac{\left|\operatorname{proj}_{\vec{u}}\left(\operatorname{proj}_{\vec{v}}(\vec{u})\right)\right|}{|\vec{u}|} \leqslant 1$. Determine when you get 0 and when you get 1 .
4. Let A, B, C, D be the four corners of a parallelogram with point C "opposite" from A. Given that $A=(3,1,-2), B=(4,1,5)$, and $D=(1,4,3)$, determine the location of C. Also find the area of the parallelogram $A B C D$.
5. Let $\overrightarrow{\mathrm{u}}=\langle 1,-2,2\rangle$ and let $r(t)=\left\langle e^{2 t}-2 \sin ^{2}(t)-4, e^{t}+\cos ^{2}(t)+t, t-1\right\rangle$. Find a formula for $\operatorname{proj}_{\vec{u}}(\mathbf{r}(t))$ and determine all times when the projection is the zero vector $\overrightarrow{0}$.
6. [F19-E1] Find the area of a triangle formed by the three points $(1,2,0),(1,2,1),(5,-1,1)$.
