Week 9 surface area and triple integrals

1. Rewrite the iterated integral
$\int_{0}^{2} \int_{0}^{4-x^{2}} \int_{0}^{4-y} f(x, y, z) d z d y d x$ as an iterated integral with order of integration $d x d z d y$.
2. For $\int_{0}^{6} \int_{0}^{4-(2 / 3) x} \int_{0}^{2-(1 / 3) x-(1 / 2) y} f(x, y, z) d z d y d x$ change order of integration to $d x d y d z$.
3. Find $\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} y^{2} x e^{x y z} d x d y d z$.
4. Find the surface area of the cone $z=\sqrt{x^{2}+y^{2}}$ above the region R given by $4 \leqslant x^{2}+y^{2} \leqslant 25$.

Week 9 additional practice

The following problems are drawn from a variety of sources, including previous exams and reviews. These are good practice to prepare for the upcoming exam. The more problems that one is able to answer, the better.

1. [F13-F] Find $\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} y^{2} z e^{x y z} d y d z d x$. (Hint: consider changing the order of integration.)
2. [S12-F] Rewrite the iterated integral

$$
\int_{0}^{2} \int_{0}^{4-x^{2}} \int_{0}^{4-y} z \sqrt{4-y} d z d y d x
$$

as an iterated integral with order of integration $d x d z d y$ and evaluate the integral.
3. Let S be the solid in the positive orthant $(x \geqslant 0, y \geqslant 0$, $z \geqslant 0$) bounded by the surface $z=4-(x+y)^{2}$ (see picture below). Set up the bounds for the following two integrals over S :

4. Change the order of integration of $\int_{0}^{1} \int_{0}^{1} \int_{0}^{1-x^{2}} f(x, y, z) d z d y d x$ to the order $d y d x d z$.
5. Find the surface area for the solid bounded above by the surface $z=4$, outside the cylinder $x^{2}+y^{2}=1$, and bounded below by $z=x^{2}+y^{2}$ which has density $\delta(x, y, z)=2$.
6. [S19-E3] Write an iterated triple integral (but do not evaluate) to find the volume of the solid with $x \geqslant 0$, $y \geqslant 0, z \geqslant 0$ and bounded by the surfaces $x+y=2$ and $z=3-\frac{3}{4} y^{2}$.
(a) Where $d V=d z d y d x$.
(b) Where $d V=d x d y d z$.

7. [F17-E3] Let S be the solid $-2 \leqslant x \leqslant 2,0 \leqslant y \leqslant 4$, $0 \leqslant z \leqslant 4-x^{2}$ and $y+z \leqslant 4$.

Set the bounds for the integral of the function $f(x, y, z)$ over S.
(a) $d y d z d x$
(b) $d x d y d z$

8. [F17-E3] Let S be the solid $0 \leqslant x \leqslant 2,0 \leqslant y \leqslant 4$, $0 \leqslant z \leqslant x^{2}$ and $y+z \leqslant 4$.
Set the bounds for the integral of the function $f(x, y, z)$ over S.
(a) $d y d z d x$
(b) $d x d y d z$

9. Set up, but do NOT evaluate, an integral that finds the surface area of the surface $z=x^{2} y+x e^{y}$ over the region R where $y^{2} \leqslant x \leqslant 4$.
10. Let S be the solid with $x \geqslant 0, y \geqslant 0, z \geqslant 0$ and bounded by the surfaces $z=x$ and $z=1-y^{2}$ (see below). Set up integrals $\iiint_{S} f(x, y, z) d V$ with
(a) $d V=d y d z d x$, and
(b) $d V=d z d x d y$.

11. Rewrite the following as a single integral.

$$
\begin{aligned}
& \int_{0}^{1} \int_{0}^{1} \int_{0}^{1-y} f(x, y, z) d x d z d y+ \\
& \int_{0}^{1} \int_{1-x}^{2-x} \int_{0}^{2-x-y} f(x, y, z) d z d y d x
\end{aligned}
$$

12. You are creating a special plate to be installed in some machinery at your company. The plate is modeled by a rectangle with $0 \leqslant x \leqslant 1$ and $0 \leqslant y \leqslant b$ (where b can be set to any desired value); moreover the density of the plate satisfies $\delta(x, y)=x^{a} y$ where a can also be set to any specified value. Given you want to construct a plate which has a center of mass located at $\left(\frac{1}{3}, 2\right)$, determine the correct choices for a and b.
13. [F19-E3] Rewrite the integral
$\int_{0}^{1} \int_{0}^{2 x} \int_{0}^{4-y^{2}} f(x, y, z) d z d y d x$ as an iterated integral with order of integration $d x d y d z$.
