Linear Differential Equations Chapter One

Name: Answer

Totally 30 minutes. Please write in details for partial credits.

- 2. (10 points) The motion of a set of particles moving along the x-axis is governed by the differential equation $\frac{dx}{dt} = t^3 x^3$, where x(t) denotes the position at time t of the particle.
 - (a) If a particle is located at x = 1 when t = 2, what is its velocity at this time?

 $velocity = \frac{dx}{dt} = t^3 - x^3 = 2^3 - 1^3 = 7$

(b) Show that the acceleration of a particle is given by $\frac{d^2x}{dt^2} = 3t^2 - 3t^3x^2 + 3x^5.$ $\frac{dx}{dt} = t^3 - \chi^3 \implies \frac{d^2x}{dt^2} = \frac{d}{dt}(t^3 - \chi^3) = 3t^2 - 3\chi^2 \frac{dx}{dt}$ $= 3t^2 - 3\chi^2(t^3 - \chi^3)$ $= 3t^2 - 3t^3 \chi^2 + 3\chi^5$

(c) If a particle is located at x = 2 when t = 2.5, can it reach the location x = 1 at any later time? [Hint: $t^3 - x^3 = (t - x)(t^2 + xt + x^2)$.] If the particle can reach x = 1 at a later time (t > 2.5), then its velocity $\frac{dx}{dt} < 0$ since @ x = 2 > 1 at t = 2.5. However, $\frac{dx}{dt} = t^3 - x^3 = (t - x)(t^2 + xt + x^2) > 0$ when t > 2.5and x = 1. This is a contradiction. So the particle can not reach x = 1

This is a contradiction. So the phrticite carried later time. at a later time.

3. (10 points) Use Euler's method with step size h = 0.2 to approximate the solutions to the initial value problem

$$y' = \frac{1}{x}(y^2 + y), \qquad y(1) = 1$$

at the points x = 1.2, 1.4, 1.6, and 1.8.

 $x_0 = 1$ $y_0 = 1$ $x_{n+1} = x_n + h$, $y_{n+1} = y_n + h \cdot f(x_n, y_n)$ Here $f(x, y) = \frac{1}{x}(y^2 + y)$

$$\begin{aligned} x_{1} &= 1+0.2 = 1.2, \quad y_{1} &= 1+0.2, \quad \frac{1}{1}(1^{2}+1) = 1.4 \\ x_{2} &= 1.2+0.2 = 1.4, \quad y_{2} &= 1.4+0.2, \quad \frac{1}{1\cdot2}(1\cdot4^{2}+1\cdot4) \approx 1.96 \\ x_{3} &= 1.4+0.2 = 1.6, \quad y_{3} &= 1.96+0.2, \quad \frac{1}{1\cdot4}(1\cdot96^{2}+1.96) \approx 2.79 \\ x_{4} &= 1.6+0.2 = 1.8, \quad y_{4} &= 2.79+0.2, \quad \frac{1}{1\cdot6}(2.79^{2}+2.79) \approx 4.11 \end{aligned}$$

Linear Differential Equations Chapter Two

Name: Answer

Time: 50 minutes. Please write in details for partial credits.

- 1. (10 points) Classify the following equations as separable, linear, exact, or none of these.
 - (a) $\frac{ds}{dt} = t \ln(s^{2t}) + 8t^2$

separable

(b)
$$s^2 + \frac{ds}{dt} = \frac{s+1}{st}$$

none of these

(c)
$$3t = e^t \frac{dy}{dt} + y \ln t$$

(d)
$$3r = \frac{dr}{d\theta} - \theta^3$$

linear

(e)
$$(ye^{xy} + 2x)dx + (xe^{xy} - 2y)dy = 0$$

exact

Chapter 2

2. (10 points) Solve the initial value problem: $\frac{dy}{dx} = (1 + y^{2}) \tan x, \quad y(0) = \sqrt{3}$ $\frac{dy}{1 + y^{2}} = \tan x \, dx \implies \int \frac{dy}{1 + y^{2}} = \int \tan x \, dx$ $\implies \tan^{-1} y = -\ln(\cos x) + C$ By $y(0) = \sqrt{3}$ We get $\tan^{-1} \sqrt{3} = -\ln(\cos 0) + C = C$ $\implies C = \frac{\pi}{3} \tan(\cos 0) + C = C$ $\implies U = \tan[-\ln(\cos x) + \frac{\pi}{3}]$

3. (10 points) Obtain the general solution to the equation $\frac{dy}{dx} - y - e^{3x} = 0$ $\frac{dy}{dx} - y = e^{3x} \implies q$ integrating factor $\mu(x) = e^{5-1dx} = e^{-x}$ $\implies \frac{d}{dx} [e^{-x}y] = e^{2x}$ $\implies e^{-x}y = \frac{1}{2}e^{2x} + C$ $\implies y = \frac{1}{2}e^{3x} + ce^{x}$

- 6. (10 points) Consider the equation $(y^2 + 2xy)dx x^2 dy = 0$.
 - (a) Show that this equation is not exact.
 - (b) Show that multiplying both sides of the equation by y^{-2} yields a new equation that is exact.
 - (c) Use the solution of the resulting exact equation to solve the original equation.
 - (d) Were any solutions lost in the process?

(a) $\frac{2}{3y}(y^2+2xy) = 2y+2x$ $\frac{2}{3x}(-x^2) = -2x$ so the equation is not exact (b) Multiply both sides by $y^{-2} \Rightarrow k + \frac{2}{3y}(-x^2) = -2x$ so the equation is not exact (c) $\frac{2}{3y} = -\frac{2}{3y} + \frac{2}{3y} = -\frac{2}{3y} + \frac{2}{3y} + \frac{2}{3y} = 0$ $\frac{2}{3y} = -\frac{2}{3y} + \frac{2}{3y} + \frac{2}{3y} = -\frac{2}{3y} + \frac{2}{3y} = \frac{2}{3y} + \frac{2}{$