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2.2 Separable Equations

A first order differential equation
d y

d x
= f(x, y) is called separable if

f(x, y) = g(x)p(y).

That is, f(x, y) can be expressed as a function g(x) that depends only on x
times a function p(y) that depends only on y. The differential equaiton can
be solved as follow:

d y

d x
= g(x)p(y) ⇐⇒ 1

p(y)
d y = g(x)d x ⇐⇒

∫
1

p(y)
d y =

∫
g(x)d x

Suppose
∫

1
p(y)d y = H(y) + C and

∫
g(x)d x = G(x) + C. Then we get the

implicit solution

H(y) = G(x) + C.

? In doing the above operations, we should be cautious about the pos-
sible loss of solutions. For example, what happen if p(y) = 0?

Ex. (ex 1, p41) Solve the nonlinear equation
d y

d x
=

x− 5
y2

.

Ex. (ex 2, p43) Solve the initial value problem

d y

d x
=

y − 1
x + 3

, y(−1) = 0.

Ex. (ex 3, p44) Solve the nonlinear equation
d y

d x
=

6x5 − 2x + 1
cos y + ey

.

Ex. (HW 29, p47) Uniqueness Questions.

Ex. (HW 37, p48) Compound Interest.

Homework

2.2 (p46-48): 1-6, 7, 8, 17, 18, 31, 32
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2.3 Linear Equations

In this section, we study the linear first-order equation of the form

a1(x)
d y

d x
+ a0(x)y = b(x).

It is first-order, and the coefficients are functions of x. Quotient both sides
by a1(x) (assuming that a1(x) 6= 0). The equation is changed to the standard
form

d y

d x
+ P (x)y = Q(x) (2.3.1)

where P (x) = a0(x)/a1(x) and Q(x) = b(x)/a1(x).
If P (x) = 0 or Q(x) = 0, the equation (2.3.1) is separable and is easy to

solve. For general case, we multiple both sides of (2.3.1) by certain function
µ(x) (to be determined):

µ
d y

d x
+ µPy = µQ. (2.3.2)

The left-hand side of (2.3.2) is similar to the product rule for

d

d x
[µy] = µ

d y

d x
+

d µ

d x
y

Let us choose µ so that µP =
d µ

d x
, that is,

1
µ

dµ = P dx. Solve the equation.

We may choose
µ(x) = e

R
P (x) dx. (2.3.3)

Then (2.3.2) becomes
d

d x
[µ(x)y] = µ(x)Q(x). The solution for (2.3.1) is

y(x) =
1

µ(x)

[∫
µ(x)Q(x) dx + C

]
(2.3.4)

Statement 2.1 (Method of Solving Linear Equations).

1. Write the equation in the standard form

d y

d x
+ P (x)y = Q(x).
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2. Calculate the integrating factor µ(x) by the formula

µ(x) = exp
[∫

P (x) dx

]
.

3. Multiply the equation in standard form by µ(x) and recalling that the

left-hand side is just
d

d x
[µ(x)y], obtain

µ(x)
d y

d x
+ P (x)µ(x)y = µ(x)Q(x)

⇐⇒ d

d x
[µ(x)y] = µ(x)Q(x).

4. Integrate the last equation and solve for y:

y(x) =
1

µ(x)

[∫
µ(x)Q(x) dx + C

]

Ex. (ex1, p51; fig2.5, p52) Solve
1
x

d y

d x
− 2y

x2
= x cos x, x > 0.

Ex. (hw22, p55) (sin x)
d y

d x
+ y cos x = x sinx, y

(π

2

)
= 2.

Ex. (hw16, p44) (x2 + 1)
dy

dx
= x2 + 2x− 1− 4xy.

Ex. (ex2, p52) Radioactive decay of an isotope.

Theorem 2.1 (Existence and Uniqueness of Solution). If P (x) and
Q(x) are continuous on an open neighborhood (a, b) of x0, then for any y0,
there exists a unique solution y(x) on (a, b) to the initial value problem

d y

d x
+ P (x)y = Q(x), y(x0) = y0.

The solution is given by (2.3.4) for a suitable C.

Ex. (ex3, p53, skip if no time) For the initial value problem

y′ + y =
√

1 + (cos x)2, y(1) = 4,

find the value of y(2).

Homework

2.3 (p54-58): 1-6, 7, 8, 17, 18, 23, 35, 36
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2.4 Exact Equations

Suppose that a plane curve is defined by an implicit equation: F (x, y) = C,
where C is a constant. Taking total differential along the curve gives:

dF (x, y) =
∂F

∂x
dx +

∂F

∂y
dy = 0.

So
d y

d x
= f(x, y) := −∂F/∂x

∂F/∂y
.

Conversely, if a differential equation
d y

d x
= f(x, y) can be expressed as

M(x, y)dx + N(x, y)dy = 0

where M(x, y) =
∂F

∂x
and N(x, y) =

∂F

∂y
for certain function F (x, y), then

M(x, y)dx + N(x, y)dy =
∂F

∂x
dx +

∂F

∂y
dy = dF (x, y) = 0

and the solution of
d y

d x
= f(x, y) is given implicitly by F (x, y) = C for an

arbitrary constant C.

Ex. (ex1, p59)
d y

d x
= −2xy2 + 1

2x2y
.

Def. The differential form M(x, y)dx + N(x, y)dy is said to be exact in a
rectangle R if there is a function F (x, y) such that

d F

d x
(x, y) = M(x, y) and

d F

d y
(x, y) = N(x, y)

for all (x, y) in R. In such case, the equation

M(x, y)dx + N(x, y)dy = 0

is called an exact equation.

If M =
∂F

∂x
and N =

∂F

∂y
on the rectangle R, then clearly

∂M

∂y
=

∂

∂y

∂F

∂x
=

∂

∂x

∂F

∂y
=

∂N

∂x
.

The reverse is also TRUE!
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Theorem 2.2. Suppose that both M(x, y) and N(x, y) have continuous first
order partial derivatives in a rectangle R, then M(x, y)dx + N(x, y)dy = 0
is an exact equation in R if and only if the compatibility condition

∂M

∂y
(x, y) =

∂N

∂x
(x, y)

holds for all (x, y) in R.

The proof is similar to that of Green’s theorem. A constructive proof is
given in (p62-63).

? Method for Solving Exact Equations

1. If Mdx + Ndy = 0 is exact, then ∂F/∂x = M . Integrate the last
equation w.r.t. x to get

F (x, y) =
∫

M(x, y)dx + g(y) (2.4.1)

2. Take the partial derivative w.r.t. y of both sides of equation
(2.4.1) and substitute N for ∂F/∂y. We can solve for g′(y).

3. Integrate g′(y) to get g(y) up to a constant. Substituting g(y)
into (2.4.1) gives F (x, y).

4. The solution to Mdx + Ndy = 0 is given implicitly by

F (x, y) = C.

Ex. (ex2, p63) (2xy − sec2 x)dx + (x2 + 2y)dy = 0.

Alternatively, we may integrate N = ∂F/∂y w.r.t. y first, and then solve
the equation.

Ex. (ex3, p64) (1 + exy + xexy)dx + (xex + 2)dy = 0.

Ex. (ex4, p65) Show that (x + 3x3 sin y)dx + (x4 cos y)dy = 0 is not
exact but that multiplying this equation by x−1 yields an exact equation.
Solve the equation.

Ex. (HW27, p66)

Homework

Section 2.4 (p65-67): 1-8, 10, 11, 13, 21, 22, 29, 30


