
Chapter 4

Linear Second-Order
Equations

4.1 Introduction

4.2 Homogeneous Linear Equations

The general form of a second-order constant coefficient differential equation:

ay′′ + by′ + cy = f(t), a 6= 0.

The special case f(t) = 0 is called a homogeneous linear differential equation:

ay′′ + by′ + cy = 0 (4.2.1)

If both y1 = f(x) and y2 = g(x) are solutions of the homogeneous differential
equation (4.2.1), then every linear combination y3 = C1f(x)+C2g(x) is also
a solution of (4.2.1).

Recall that the solutions of y′ + cy = 0 is y = Ke−cy where K is a
constant. This suggests that y = ert for certain constant r may be a solution
of the above homogeneous second-order differential equations. Substituting
y = ert into (4.2.1), we get ert(ar2 + br + c) = 0. Thus if r is a solution of
the characteristic equation

ar2 + br + c = 0 (4.2.2)

then y = ert is a solution of the homogeneous differential equation (4.2.1).
The roots of (4.2.2) are

r1 =
−b +

√
b2 − 4ac

2a
and r2 =

−b−
√

b2 − 4ac

2a
.
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22 CHAPTER 4. LINEAR SECOND-ORDER EQUATIONS

There are 3 cases:

1. b2 − 4ac > 0. Then r1 and r2 are distinct roots of (4.2.2). So both
y = er1t and y = er2t are solutions of the homogeneous equation
(4.2.1). The general solutions of (4.2.1) are:

y = C1e
r1t + C2e

r2t. (4.2.3a)

where C1 and C2 are two constants.

2. b2−4ac = 0. Then (4.2.2) has a repeated root r. The general solutions
of (4.2.1) are:

y = C1e
rt + C2te

rt (4.2.3b)

3. b2 − 4ac < 0. Then (4.2.2) has two complex conjugated roots

r1 = p + q
√
−1 and r2 = p− q

√
−1.

The general solutions of (4.2.1) are:

y = C1e
pt sin(qt) + C2e

pt cos(qt). (4.2.3c)

The general solutions are essentially the same as (4.2.3a). This will be
discuss in Section 4.3.

Ex. (ex1, p170) Find solutions of y′′ + 5y′ − 6y = 0.

Ex. (ex2, p170) Solve the IVP

y′′ + 2y′ − y = 0; y(0) = 0, y′(0) = −1.

Theorem 4.1. For any real numbers a (6= 0), b, c, t0, Y0, and Y1, there
exists a unique solution for all t ∈ (−∞,∞) to the IVP

ay′′ + by′ + cy = 0; y(t0) = Y0, y′(t0) = Y1. (4.2.4)

We notice that the general solutions of ay′′ + by′ + cy = 0 are always
expressed as a linear combination of two different functions. This suggests
us to define “different”.

Def 4.2. Two functions y1(t) and y2(t) are linearly independent on the
interval I if and only if neither of them is a constant multiple of the other
on I. Otherwise, we say that they are linearly dependent on I.
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The linear dependence of two functions can be checked by Wronskian:

Theorem 4.3. Two smooth functions y1(t) and y2(t) are linearly dependent
on I if and only if their Wronskian is always zero on I:∣∣∣∣y1(t) y2(t)

y′1(t) y′2(t)

∣∣∣∣ = y1(t)y′2(t)− y′1(t)y2(t) = 0 for all t ∈ I. (4.2.5)

Ex. (ex3, p174) Solve the IVP: y′′ + 4y′ + 4y = 0; y(0) = 1, y′(0) = 3.

In general, we can solve the homogeneous constant coefficient linear n-th
order differential equation

a0y
(n) + a1y

(n−1) + · · ·+ any = 0 (4.2.6)

by solving the characteristic equation

a0r
n + a1r

n−1 + · · ·+ an = 0.

Suppose it has distinct roots r1, r2, · · · , rm, where ri is repeated `i times,
then the general solutions of (4.2.6) are the linear combinations of

erit, terit, t2erit, · · · , t`i−1erit

for i = 1, 2, · · · ,m.
Ex. (ex4, p175) Find the general solutions of y′′′ + 3y′′ − y′ − 3y = 0.

Homework

4.2 (p176-178): 1, 3, 5, 13, 19, 27, 28, 29, 39

4.3 Auxiliary Equations with Complex Roots

If the auxiliary equation ar2 +br+c = 0 has two distinct complex conjugate
roots r1 = p + iq and r2 = p − iq where i =

√
−1, then the solutions of

ay′′ + by′ + cy = 0 are

y(t) = C1e
(p+iq)t + C2e

(p−iq)t = C1e
pteiqt + C2e

pte−iqt. (4.3.1)

What are eiqt and e−iqt?
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By Taylor expansion,

eiθ = 1 + (iθ) +
(iθ)2

2!
+ · · ·+ (iθ)n

n!
+ · · ·

= 1 + iθ − θ2

2!
− iθ3

3!
+

θ4

4!
+

iθ5

5!
− · · ·

=
(

1− θ2

2!
+

θ4

4!
− · · ·

)
+ i

(
θ − θ3

3!
+

θ5

5!
− · · ·

)
= cos θ + i sin θ.

It is called Euler’s formula: eiθ = cos θ + i sin θ.
Now the expression (4.3.1) becomes

y(t) = C1e
pteiqt + C2e

pte−iqt

= C1e
pt(cos(qt) + i sin(qt)) + C2e

pt(cos(−qt) + i sin(−qt))
= (C1 + C2)ept cos(qt) + (iC1 + iC2)ept sin(qt)
= B1e

pt cos(qt) + B2e
pt sin(qt)

Ex. Solve y′′ + y = 0.

Ex. (ex1, p180) Solve the IVP

y′′ + 2y′ + 2y = 0; y(0) = 0, y′(0) = 2.

Ex. (ex3, p180) The mechanics of the mass-spring oscillator is governed
by my′′(t) + by′(t) + ky(t) = 0 (y(t) is the displacement function), where
m =inertia, b =damping, k =stiffness.

Solve the equation of motion when m = 36 kg, b = 12 kg/sec, k =
37 kg/sec2, y(0) = 0.7 m, and y′(0) = 0.1 m/sec. Also find y(10), the
displacement after 10 sec.

Ex. (ex4, p183) Interpret the equation 36y′′ − 12y′ + 37y = 0 in terms
of the mass-spring system. (Fig 4.7)

Homework

4.3 (p186-188): 1, 3, 9, 11, 21, 23, 26, 28, 32, 33
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4.4 Nonhomogeneous Equations

We turn to nonhomogeneous linear equation with constant coefficients

ay′′ + by′ + cy = f(t). (4.4.1)

If y1(t) is a particular solution of (4.4.1), then the general solution of (4.4.1)
is y(t) = y1(t)+y2(t), where y2(t) is a general solution of ay′′+ by′+ cy = 0.
Thus it suffices to find out just one solution of (4.4.1).

In this section, we will find a particular solution to the nonhomogeneous
equation of the form

ay′′ + by′ + cy = Ctmert. (4.4.2)

We guess that yp(t) = h(t)ert for some polynomial h(t) may be a solution
of (4.4.2). The key is to determine the polynomial h(t) using method of
undetermined coefficients.

Likewise, for the nonhomogeneous equation of the form

ay′′ + by′ + cy = Ctmeαt cos βt or (4.4.3)
ay′′ + by′ + cy = Ctmeαt sinβt

we guess that yp(t) = h1(t)eαt cos βt + h2(t)eαt sinβt may be a solution of
(4.4.3), where h1(t) and h2(t) are certain polynomials. Again, we should
determine the polynomials h1(t) and h2(t).

Ex. (ex1, p188) y′′ + 3y′ + 2y = 3t. (Try yp(t) = At + B)

In general, to solve ay′′ + by′ + cy = f(t) where f(t) is a polynomial of
degree m, we may try yp(t) = h(t) where h(t) is a polynomial of degree m
with coefficients to be determined.

Ex. (ex2, p189) y′′ + 3y′ + 2y = 10e3t. (Try yp(t) = Ae3t)

Ex. (ex3, p189) y′′ + 3y′ + 2y = sin t. (Try yp(t) = A sin t + B cos t)

Ex. (ex4, p190) y′′ + 4y = 5t2et. (Try yp(t) = (At2 + Bt + C)et)

A tricky thing: The solutions of ay′′ + by′ + cy = Ctmert vary when r is
(not a root/a simple root/a double root) of the associated auxiliary equation
ax2 + bx + c = 0. We state the following theorem and verify it by examples.

Theorem 4.4 (Method of Undetermined Coefficients). To find a so-
lution to ay′′ + by′ + cy = Ctmert, use the form

yp(t) = ts(Amtm + · · ·+ A1t + A0)ert (4.4.4)
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with s ∈ {0, 1, 2} equals to the multiplicity of (x− r) in (ax2 + bx + c):
s = 0 if r is not a root of the assoc. aux. equation.

s = 1 if r is a simple root of the assoc. aux. equation.

s = 2 if r is a double root of the assoc. aux. equation.

To find a solution of ay′′ + by′ + cy = tmeαt(M cos βt + N sin βt), use the
form

yp(t) = ts(Amtm+· · ·+A1t+A0)eαt cos βt+ts(Bmtm+· · ·+B1t+B0)eαt sinβt

with s ∈ {0, 1} equals to the multiplicity of [x− (α + iβ)] in (ax2 + bx + c):{
s = 0 if α + iβ is not a root of the assoc. aux. equation
s = 1 if α + iβ is a root of the assoc. aux. equation

Ex. (ex5, p193) Find the form of a solution to y′′ + 2y′ − 3y = f(t)
where f(t) equals
(a) 7 cos 3t (b) 2tet sin t (c) t2 cos πt (d) 5e−3t (e) 3tet (f) t2et

Ex. (ex6, p194) Find the form of a solution to y′′−2y′+y = f(t) where
f(t) equals
(a) 7 cos 3t (b) 2tet sin t (c) t2 cos πt (d) 5e−3t (e) 3tet (f) t2et

Ex. (ex7, p194) Find the form of a solution to y′′− 2y′+2y = 5tet cos t.

Homework

4.4 (p195): 1-8, 10-20, 27-32

4.5 The Superposition Principle and Undetermined
Coefficients Revisited

Theorem 4.5 (Superposition Principle). Let y1 be a solution to ay′′ +
by′ + cy = f1(t) and let Let y2 be a solution to ay′′ + by′ + cy = f2(t).
Then for any constants c1 and c2, the function c1y1 + c2y2 is a solution to
ay′′ + by′ + cy = c1f1(t) + c2f2(t).

Ex. (ex1, p196) Find a solution to
(1) y′′ + 3y′ + 2y = 3t + 10e3t and (2) y′′ + 3y′ + 2y = −9t + 20e3t.
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(hint: We found that y1(t) = 3t
2 −

9
4 solved y′′ + 3y′ + 2y = 3t, and y2(t) =

e3t/2 solved y′′ + 3y′ + 2y = 10e3t.)

Theorem 4.6 (Existence and Uniqueness: Nonhomogeneous Case).
Suppose yp(t) is a particular solution to ay′′+ by′+ cy = f(t) in an interval
I containing t0 and that y1(t) and y2(t) are linearly independent solutions to
the associated homogeneous equation ay′′ + by′ + cy = 0. Then there exists
a unique solution in I to the initial value problem

ay′′ + by′ + cy = f(t), y(t0) = Y0, y′(t0) = Y1,

for any a, b, c, t0, Y0, Y1, and it is given by y(t) = yp(t)+ c1y1(t)+ c2y2(t) for
some constants c1 and c2.

Ex. (ex2, p198) Given that yp(t) = t2 is a particular solution to y′′−y =
2− t2, find a general solution and a solution of the IVP y(0) = 1, y′(0) = 0.

Ex. (ex3, p198) A mass-spring system is governed by y′′ + 2y′ + 2y =
5 sin t + 5 cos t. If the mass is initially located at y(0) = 1, with a velocity
y′(0) = 2, find its equation of motion.

Ex. (ex4, p199) Find a solution to y′′ − y = 8tet + 2et.

Ex. (ex5, p200) Write down the form of a solution to y′′ + 2y′ + 2y =
5e−t sin t + 5t3e−t cos t.

Ex. (ex6, p200) Write down the form of a solution to y′′′ + 2y′′ + y′ =
5e−t sin t + 3 + 7te−t.

Homework

4.5 (p201-203): 1, 2, 3, 7, 17, 20, 25, 26, 31-36
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4.6 Variation of Parameters

Variation of parameters is a more general method to solve a particular
solution of ay′′ + by′ + cy = g(t).

1. Solve the homogeneous equation

ay′′ + by′ + cy = 0
general solution

=⇒ yh(t) = c1y1(t) + c2y2(t). (4.6.1)

2. For the nonhomogeneous equation, we variate the constants c1 and c2

to seek a particular solution of the form:

yp(t) = v1(t)y1(t) + v2(t)y2(t) (4.6.2)

3. Compute
y′p = (v′1y1 + v′2y2) + (v1y

′
1 + v2y

′
2)

To simplify the expression, we assume that

v′1y1 + v′2y2 = 0. (4.6.3)

So y′p = v1y
′
1 + v2y

′
2.

4. Now y′′p = v′1y
′
1 + v1y

′′
1 + v′2y

′
2 + v2y

′′
2 . Substitute yp, y′p, and y′′p into

the nonhomogeneous equation. We get

v′1y
′
1 + v′2y

′
2 =

g

a
(4.6.4)

5. Solve the linear system (4.6.3) and (4.6.4) to get v′1 and v′2, to get v1

and v2, and then get yp(t).

Theorem 4.7 (Method of Variation of Parameters). To determine a
solution to ay′′ + by′ + cy = g;

1. Find two linearly independent solutions {y1(t), y2(t)} of the corre-
sponding homogeneous equation and take

yp(t) = v1(t)y1(t) + v2(t)y2(t).

2. Determine v1(t) and v2(t) by solving v′1 and v′2 and integrating:{
v′1y1 + v′2y2 = 0
v′1y

′
1 + v′2y

′
2 = g

a
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Ex. (ex1, p205) Find a general solution on (−π/2, π/2) to
d 2y

d t2
+ y = tan t.

Ex. (ex2, p206) Find a particular solution on (−π/2, π/2) to

d 2y

d t2
+ y = tan t + 3t− 1.

Homework

4.6 (p206-207): 1, 2, 4, 5, 10, 12, 16, 18

4.7 Variable Coefficient Equations

This section is not required. However, the basic idea is similar to that for
constant coefficient equations.

4.8 Vibration Problems

We look in details of vibration problems. It covers some materials in Sec-
tion 4.9 (Free Mechanical Vibrations) and Section 4.8 (Qualitative Consid-
erations for Variable-Coefficient and Nonlinear Equations). Recall that the
governing equation of a mass-spring system is

Fext = [inertia]
d 2y

d t2
+ [damping]

d y

d t
+ [stiffness]y

= my′′ + by′ + ky

4.8.1 Free Mechanical Vibrations

1. The undamped, free system is b = 0 and Fext = 0, so that

m
d 2y

d t2
+ ky = 0.

Set ω :=
√

k/m. Then y′′ + ω2y = 0 and the general solution is

y(t) = C1 cos ωt + C2 sinωt

= A sin(ωt + φ)
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where A =
√

C2
1 + C2

2 and tanφ =
C1

C2
.

Conclusion: The motion of a mass in an undamped, free system
is a sine wave, with period 2π/ω (in sec) and natural frequency
ω/2π (in cycles/sec), where the angular frequency ω =

√
k/m (in

rad/sec).

Ex. (ex1, p231)

2. Now suppose the mass-spring system has no external force but there
exists damping force affecting the vibration. The equation is

m
d 2y

d t2
+ b

d y

d t
+ ky = 0.

The roots of the characteristic equation mr2 + br + k = 0 are

−b±
√

b2 − 4mk

2m
= − b

2m
± 1

2m

√
b2 − 4mk (4.8.1)

The forms of the solutions depend on the discriminant b2 − 4mk.

(a) (b2 < 4mk) Underdamped or Oscillatory Motion.
The characteristic equation has two complex roots α± iβ where

α = − b

2m
, β =

1
2m

√
4mk − b2

A general solution of my′′ + by′ + ky = 0 is

y(t) = eαt(C1 cos βt + C2 sin βt) = Aeαt sin(βt + φ)

where A =
√

C2
1 + C2

2 and tan φ = C1/C2. (See Fig 4.28 at p233)

(b) (b2 > 4mk) Overdamped Motion.
The characteristic equation has two distinct real roots

r1 = − b

2m
+

1
2m

√
b2 − 4mk, r2 = − b

2m
− 1

2m

√
b2 − 4mk.

A general solution is

y(t) = C1e
r1t + C2e

r2t

Since m, b, k are positive, both r1 and r2 are negative. So y(t) → 0
as t →∞. Moreover,

y′(t) = C1r1e
r1t + C2r2e

r2t = er1t(C1r2 + C2r2e
(r2−r1)t)
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either y′(t) ≡ 0 (in which y(t) ≡ 0), or y′(t) = 0 for AT MOST
ONE t. So the overdamped motion does not oscillate. (See Fig
4.29 on p234)

(c) (b2 = 4mk) Critically Damped Motion.
The characteristic equation has repeated roots −b/2m. A general
solution to my′′ + by′ + ky = 0 is

y(t) = (C1 + C2t)e−(b/2m)t

First by L’Hôpital’s rule, y(t) → 0 as t →∞. Next,

y′(t) = (C2 −
b

2m
C1 −

b

2m
C2t)e−(b/2m)t

So either y′(t) ≡ 0 (where y(t) ≡ 0), or y′(t) = 0 for AT MOST
ONE t. Critically damped motions are similar to overdamped
motions.
Ex. (ex2, p235) [briefly discuss three situations].

Ex. (ex3, p236)

4.8.2 Qualitative Consideration by Mass-Spring Model

1. A special type of equation y′′ = f(y) can be solved by multiplying y′

on both sides:

y′y′′ = y′f(y) =⇒
∫

y′y′′dt =
∫

y′f(y)dt

=⇒ 1
2
(y′)2 =

∫
f(y)dy + K := F (y) + K

=⇒ y′ = ±
√

2[F (y) + K]

=⇒ t = ±
∫

dy√
2[F (y) + K]

+ C.

Ex. (ex1, p220) y′′ = 6y2. (Note: The performance is totally dif-
ferent from linear equations. For examples, the solution can blow up
anywhere, we have infinite many linearly independent solutions, etc.)

2. For a general variable-coefficient or non-linear differential equation

m(y, t)
d 2y

d t2
+ b(y, t)

d y

d t
+ k(y, t)y = g(y, t)
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We may use mass-spring model to describe some performance of the
solution curve.

Ex. (ex3, p221) Using the mass-spring analogy, predict the nature of
the solutions to y′′ + ty = 0 for t > 0.

Ex. (ex4, p222) Apply the mass-spring analogy to predict qualitative
features of solutions to Bessel’s equation y′′ + 1

t y
′ + (1− n2

t2
)y = 0 for

t > 0.

Ex. (ex6, p224) Predict the qualitative features of the solutions to
the nonlinear Duffing equation y′′ + y + y3 = 0.

Ex. (ex7, p225) Predict the behavior of the solutions to van der Pol
equation y′′ − (1− y2)y′ + y = 0.

Homework

4.8-4.9 (p227-229, p238-239):
Section 4.8: 1, 4, 5, 11, 15
Section 4.9: 1, 3, 5, 6, 11, 16


