Chapter 6

Theory of Higher-Order
Linear Differential Equations

6.1 Basic Theory

A linear differential equation of order n has the form

an(2)y"™ (@) + ap-1(2)y" D (@) + - + ag(2)y(x) = b(w), (6.1.1)
where ag(x), - ,an(x) and b(x) depend only on z.
constant coefficients: When ag,aq,--- ,a, are all constants.
variable coefficients: When some of ag, a1, ,a, are not constants.

homogeneous: When b(z) = 0.
nonhomogeneous: When b(x) # 0.
standard form: Divide (6.1.1) by a,(x) to get

y" (@) + pr(@)y" (@) + -+ pal@)y(z) = g(x)

Theorem 6.1 (Existence and Uniqueness). Ifpi(x), - ,pn(x) and g(x)
are each continuous on (a,b) that contains xy. Then for any initial values
Y0, V1, s Yn—1, there exists a unique solution y(x) on the whole interval
(a,b) to the following IVP:

y(n) (33) +p1 (I)y(n_l)($) 4+ ... +pn($)y(ﬂs) — g(x)’ (6.1.2)
y(@o) =10, y(x1)=m, -+, Y(@n-1) = Yn-1-

Ex. (exl, p343)
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Def 6.2. Let f1,---, f, be any n functions that are (n — 1) times differen-
tiable. The function
fi f2r [
fi oo
W[fl?"'afn]: : : :
fl(nfl) f2(n71) o f7(ln71)
is called the Wronskian of f1,---, f,. (What is determinant?)

Theorem 6.3 (Solutions for Homogeneous Case). Given n solutions
Yti,° s Yn to

y " (@) + pr(2)y" (@) + -+ pala)y(z) =0

where p1,--+ ,pn are continuous on (a,b). If for some points xy € (a,b)
there is

W[yla o >yn]($0) 7& 0,

then every solution of the above homogeneous equation on (a,b) can be ex-
pressed by

y(l‘) = Clyl(‘r) +ot Cnyn(x)

n functions f1,--- , f, are linearly dependent on an interval [ if one
of them can be expressed as a linear combination of the others. Equivalently,
if there exists constants ¢y, - , ¢, such that

afilr)+ -+ cenfolz) =0

for all x on I. Otherwise, they are linearly independent on I.
Ex. (ex2, p346)

Ex. (ex3, p346)

For solutions y1,--- ,y, of the above homogeneous equation, the linear
dependence can be checked by its Wronskian at on point.

Theorem 6.4. If y1,--- ,yn are solutions to y™ (z)+py (z)y "D (z)+-- -+
prn(x)y(z) =0 on (a,b) with p1,--- , py continuous on (a,b), then y1, - ,Yn
are linearly dependent on (a,b) if and only if Wyi, -+, yn](xo) = 0 for some
xo on (a,b).
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Theorem 6.5 (Solutions for Nonhomogeneous Case). If y,(z) is a
particular solution to the nonhomogeneous equation

y(n) (z) + p1 (m)y(”*l)(x) + o+ pu()y(x) = g(x) (6.1.4)

on (a,b) with p1,--- ,pn continuous on (a,b), and {y1, - ,yn} is a funda-
mental solution set of the corresponding homogeneous equation

Y™ (@) + pr(2)y "V (@) + -+ pa(a)y(e) = 0
then the general solution of (6.1.4) is of the form
y(@) = yp(x) + Cry1(z) + Coya(z) + - - + Cryn ().

Ex. (ex4, p349)

Homework

6.1 (p349-351): 1,3,5,7,09, 11, 13, 15, 17, 19, 21, 23

6.2 Homogeneous Linear Equations with Constant
Coefficients

The solutions to a homogeneous linear equation with constant coefficients
any™ + -+ a1y’ + agy =0 (6.2.1)
depends on the roots of the characteristic equation
P(r):=apr"+---+a1r+ap=0 (6.2.2)

Let D be the operator such that D(y) = 4/. Then P(D) = a, D"+ - -4+a1D+
aop is an operator. The homogeneous equation (6.2.1) becomes P(D)(y) = 0.
If P(r) has distinct roots r1, - - - , r,, where r; repeats d; times (d; = 1,2, -- -,
di+---+dp =n), then

P(D)(y) = (D —r))" -+ (D = rpm)™(y) =0

Clearly, if y is a solution to (D —r;)%(y) = 0 for some 4, then y is a solution
to P(D)(y) = 0.

One can verify by induction that: A set of fundamental solutions to
the differential equation (D — r;)%(y) = 0 is {e"i’ te™t, ... tdi~lemit}. So
P(D)(y) = 0 has the following solutions:
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Theorem 6.6. A fundamental solution set {y1,--- ,yn} of the homogeneous
constant coefficient equation a,y™ + - -+ a1y’ + agy = 0 consists of

e’m‘t te?"it . tdi—lerit
) 9 )
where r; is a root repeated d; times (d; = 1,2,---) in the characteristic
equation anr" + -+ +air+ag =0.

Ex. (exl, p353, distinct roots)
Ex. (ex3, p356, repeated roots)

If the characteristic equation P(r) = 0 has complex conjugated roots
a+if and a — i3, each repeated d times, then the solution functions

(eleHB) =l atif)t  amiB) L a1 (a—if)y
can be replaced by real functions
{e“cos(Bt), ---, tT7 e cos(Bt), e sin(ft), ---, tT e sin(ft)}.

Ex. (ex2, p354)
Ex. (ex4, p356)
Ex. (hwl8, p356)

Homework

6.2 (p356-358): 1,2, 3,9, 11, 14, 15, 17, 19, 21
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6.3 Undetermined Coefficients and the Annihila-
tor Method

We have used undetermined coefficient method to solve the linear differen-
tial equation (aD? + bD + ¢)[y] = f(x), where f(z) is of the form Ct™e™,
Ct™e cos(ft), or Ct™e* sin(/3t), or a summand of such terms by superpo-
sition principle.

The method of undetermined coefficients can be generalized to solve
P(D)[y] = f(z) where f(x) is of the above forms. This can be justified by
the annihilator method below.

To solve P(D)[y] = f(z), suppose f(z) is a solution to Q(D)[f] = 0 for
some polynomial Q(r) (so Q(r) is said to annihilate f), then

In other words,

y is a solution to P(D)[y] = f(z) = y is a solution to Q(D)P(D)[y] = 0. ‘

The latter one is homogeneous and we know how to solve it. Thus we
may choose y from a general solution of Q(D)P(D)[y] = 0, then apply the
method of undetermined coefficients to get the coefficients.

Lemma 6.7. The following rules are useful to determine annihilators of
certain functions:

1. f(z) = €' satisfies (D — r)[f] = 0. (i.e. (D —r) annihilates €’®)

2. f(x) = xFe™ satisfies (D — r)™[f] =0 for k= 0,1,--- ,m — 1

3. f(z) = cos Bz or sin Bz satisfies (D? + 32)[f] = 0.

4. f(z) = 2Fe cos(Bz) or zFe sin(Bz) satisfies [(D—a)2+B2™[f] = 0
for k=0,1,--- ,m— 1.

5. If Q;(D) is an annihilator of f;(z) for i = 1,-- -, p, then the least com-
mon multipler lem(Q1(D), - -+, Qp(D)) and the product Q1 (D) - - - Qp(D)
are both annihilators of fi(z) + fa(z) + - + fp(x).

(proof)
Ex. (ex1, p359) Find a differential operator that annihilates 6ze™%® + 5¢® sin(2z).
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Ex. (ex2, p360) Use both method of undetermined coefficient and
method of annihilators to find a general solution to 3" —y = xe” + sinx.

Ex. (ex3, p361) Use the annihilator method to find a general solution

to " — 3y’ + 4y = xe**.

Theorem 6.8 (Method of Undetermined Coefficients). Let L = P(D)
be a constant coefficient polynomial differential operator.

1. To find a particular solution to L[y] = Cx™e"*, use the form
yp(z) = 2®[Apma™ + - + Ay + Agle’™

where s € {0,1,2,---} is the multiplicity of r in the associated char-
acteristic equation P(z) = 0.

2. To find a particular solution to Lly] = Cx™e™ cos(Bx) or Lly| =
Cz™e*" sin(fx), use the form

yp(z) = 2°[Apma™+- - -+ A1x+A0|e” cos(fx)+a®[Bpa™+- - -+ Bira+Byle™” sin(fz)

where s € {0,1,2,---} is the multiplicity of o + if in the associated
characteristic equation P(z) = 0.

Homework

6.3 (p362-363): 1,3,5,7,9, 11, 13, 15, 23, 25, 27, 31, 33



