Chapter 6

Theory of Higher-Order Linear Differential Equations

6.1 Basic Theory

A linear differential equation of order n has the form

$$a_n(x)y^{(n)}(x) + a_{n-1}(x)y^{(n-1)}(x) + \dots + a_0(x)y(x) = b(x), \qquad (6.1.1)$$

where $a_0(x), \dots, a_n(x)$ and b(x) depend only on x.

constant coefficients:When a_0, a_1, \cdots, a_n are all constants.variable coefficients:When some of a_0, a_1, \cdots, a_n are not constants.homogeneous:When b(x) = 0.nonhomogeneous:When $b(x) \neq 0$.standard form:Divide (6.1.1) by $a_n(x)$ to get

$$y^{(n)}(x) + p_1(x)y^{(n-1)}(x) + \dots + p_n(x)y(x) = g(x)$$

Theorem 6.1 (Existence and Uniqueness). If $p_1(x), \dots, p_n(x)$ and g(x) are each continuous on (a, b) that contains x_0 . Then for any initial values $\gamma_0, \gamma_1, \dots, \gamma_{n-1}$, there exists a unique solution y(x) on the whole interval (a, b) to the following IVP:

$$y^{(n)}(x) + p_1(x)y^{(n-1)}(x) + \dots + p_n(x)y(x) = g(x),$$
(6.1.2)

$$y(x_0) = \gamma_0, \quad y(x_1) = \gamma_1, \quad \cdots, \quad y(x_{n-1}) = \gamma_{n-1}.$$
 (6.1.3)

Ex. (ex1, p343)

Def 6.2. Let f_1, \dots, f_n be any *n* functions that are (n-1) times differentiable. The function

$$W[f_1, \cdots, f_n] = \begin{vmatrix} f_1 & f_2 & \cdots & f_n \\ f'_1 & f'_2 & \cdots & f'_n \\ \vdots & \vdots & & \vdots \\ f_1^{(n-1)} & f_2^{(n-1)} & \cdots & f_n^{(n-1)} \end{vmatrix}$$

is called the **Wronskian** of f_1, \dots, f_n . (What is determinant?)

Theorem 6.3 (Solutions for Homogeneous Case). Given n solutions y_1, \dots, y_n to

$$y^{(n)}(x) + p_1(x)y^{(n-1)}(x) + \dots + p_n(x)y(x) = 0$$

where p_1, \dots, p_n are continuous on (a, b). If for some points $x_0 \in (a, b)$ there is

$$W[y_1,\cdots,y_n](x_0)\neq 0,$$

then every solution of the above homogeneous equation on (a,b) can be expressed by

$$y(x) = C_1 y_1(x) + \dots + C_n y_n(x).$$

n functions f_1, \dots, f_n are **linearly dependent on an interval** *I* if one of them can be expressed as a linear combination of the others. Equivalently, if there exists constants c_1, \dots, c_n such that

$$c_1 f_1(x) + \dots + c_n f_n(x) \equiv 0$$

for all x on I. Otherwise, they are **linearly independent** on I.

Ex. (ex2, p346)

Ex. (ex3, p346)

For solutions y_1, \dots, y_n of the above homogeneous equation, the linear dependence can be checked by its Wronskian at on point.

Theorem 6.4. If y_1, \dots, y_n are solutions to $y^{(n)}(x) + p_1(x)y^{(n-1)}(x) + \dots + p_n(x)y(x) = 0$ on (a, b) with p_1, \dots, p_n continuous on (a, b), then y_1, \dots, y_n are linearly dependent on (a, b) if and only if $W[y_1, \dots, y_n](x_0) = 0$ for some x_0 on (a, b).

Theorem 6.5 (Solutions for Nonhomogeneous Case). If $y_p(x)$ is a particular solution to the nonhomogeneous equation

$$y^{(n)}(x) + p_1(x)y^{(n-1)}(x) + \dots + p_n(x)y(x) = g(x)$$
 (6.1.4)

on (a, b) with p_1, \dots, p_n continuous on (a, b), and $\{y_1, \dots, y_n\}$ is a fundamental solution set of the corresponding homogeneous equation

 $y^{(n)}(x) + p_1(x)y^{(n-1)}(x) + \dots + p_n(x)y(x) = 0$

then the general solution of (6.1.4) is of the form

$$y(x) = y_p(x) + C_1 y_1(x) + C_2 y_2(x) + \dots + C_n y_n(x)$$

Ex. (ex4, p349)

Homework

6.1 (p349-351): 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23

6.2 Homogeneous Linear Equations with Constant Coefficients

The solutions to a homogeneous linear equation with constant coefficients

$$a_n y^{(n)} + \dots + a_1 y' + a_0 y = 0 \tag{6.2.1}$$

depends on the roots of the characteristic equation

$$P(r) := a_n r^n + \dots + a_1 r + a_0 = 0 \tag{6.2.2}$$

Let *D* be the operator such that D(y) = y'. Then $P(D) = a_n D^n + \cdots + a_1 D + a_0$ is an operator. The homogeneous equation (6.2.1) becomes P(D)(y) = 0. If P(r) has distinct roots r_1, \cdots, r_m where r_i repeats d_i times $(d_i = 1, 2, \cdots, d_1 + \cdots + d_m = n)$, then

$$P(D)(y) = (D - r_1)^{d_1} \cdots (D - r_m)^{d_m}(y) = 0$$

Clearly, if y is a solution to $(D - r_i)^{d_i}(y) = 0$ for some i, then y is a solution to P(D)(y) = 0.

One can verify by induction that: A set of fundamental solutions to the differential equation $(D - r_i)^{d_i}(y) = 0$ is $\{e^{r_i t}, te^{r_i t}, \cdots, t^{d_i - 1}e^{r_i t}\}$. So P(D)(y) = 0 has the following solutions:

Theorem 6.6. A fundamental solution set $\{y_1, \dots, y_n\}$ of the homogeneous constant coefficient equation $a_n y^{(n)} + \dots + a_1 y' + a_0 y = 0$ consists of

$$e^{r_i t}, t e^{r_i t}, \cdots, t^{d_i - 1} e^{r_i t}$$

where r_i is a root repeated d_i times $(d_i = 1, 2, \cdots)$ in the characteristic equation $a_n r^n + \cdots + a_1 r + a_0 = 0$.

Ex. (ex1, p353, distinct roots)

Ex. (ex3, p356, repeated roots)

If the characteristic equation P(r) = 0 has complex conjugated roots $\alpha + \mathbf{i}\beta$ and $\alpha - \mathbf{i}\beta$, each repeated d times, then the solution functions

$$\{e^{(\alpha+\mathbf{i}\beta)t}, \cdots, t^{d-1}e^{(\alpha+\mathbf{i}\beta)t}, e^{(\alpha-\mathbf{i}\beta)t}, \cdots, t^{d-1}e^{(\alpha-\mathbf{i}\beta)t}\}$$

can be replaced by real functions

$$\{e^{\alpha t}\cos(\beta t), \cdots, t^{d-1}e^{\alpha t}\cos(\beta t), e^{\alpha t}\sin(\beta t), \cdots, t^{d-1}e^{\alpha t}\sin(\beta t)\}.$$

Ex. (ex2, p354)

Ex. (ex4, p356)

Ex. (hw18, p356)

Homework

6.2 (p356-358): 1, 2, 3, 9, 11, 14, 15, 17, 19, 21

6.3 Undetermined Coefficients and the Annihilator Method

We have used undetermined coefficient method to solve the linear differential equation $(aD^2 + bD + c)[y] = f(x)$, where f(x) is of the form $Ct^m e^{rt}$, $Ct^m e^{\alpha t} \cos(\beta t)$, or $Ct^m e^{\alpha t} \sin(\beta t)$, or a summand of such terms by superposition principle.

The method of undetermined coefficients can be generalized to solve P(D)[y] = f(x) where f(x) is of the above forms. This can be justified by the annihilator method below.

To solve P(D)[y] = f(x), suppose f(x) is a solution to Q(D)[f] = 0 for some polynomial Q(r) (so Q(r) is said to **annihilate** f), then

$$Q(D)P(D)[y] = Q(D)[f](x) = 0.$$

In other words,

y is a solution to $P(D)[y] = f(x) \implies y$ is a solution to Q(D)P(D)[y] = 0.

The latter one is homogeneous and we know how to solve it. Thus we may choose y from a general solution of Q(D)P(D)[y] = 0, then apply the method of undetermined coefficients to get the coefficients.

Lemma 6.7. The following rules are useful to determine annihilators of certain functions:

- 1. $f(x) = e^{rx}$ satisfies (D-r)[f] = 0. (i.e. (D-r) annihilates e^{rx})
- 2. $f(x) = x^k e^{rx}$ satisfies $(D r)^m [f] = 0$ for $k = 0, 1, \dots, m 1$.
- 3. $f(x) = \cos \beta x$ or $\sin \beta x$ satisfies $(D^2 + \beta^2)[f] = 0$.
- 4. $f(x) = x^k e^{\alpha x} \cos(\beta x)$ or $x^k e^{\alpha x} \sin(\beta x)$ satisfies $[(D-\alpha)^2 + \beta^2]^m [f] = 0$ for $k = 0, 1, \dots, m-1$.
- 5. If $Q_i(D)$ is an annihilator of $f_i(x)$ for $i = 1, \dots, p$, then the least common multipler lcm $(Q_1(D), \dots, Q_p(D))$ and the product $Q_1(D) \dots Q_p(D)$ are both annihilators of $f_1(x) + f_2(x) + \dots + f_p(x)$.

(proof)

Ex. (ex1, p359) Find a differential operator that annihilates $6xe^{-4x} + 5e^x \sin(2x)$.

Ex. (ex2, p360) Use both method of undetermined coefficient and method of annihilators to find a general solution to $y'' - y = xe^x + \sin x$.

Ex. (ex3, p361) Use the annihilator method to find a general solution to $y''' - 3y'' + 4y = xe^{2x}$.

Theorem 6.8 (Method of Undetermined Coefficients). Let L = P(D) be a constant coefficient polynomial differential operator.

1. To find a particular solution to $L[y] = Cx^m e^{rx}$, use the form

$$y_p(x) = x^s [A_m x^m + \dots + A_1 x + A_0] e^{rx}$$

where $s \in \{0, 1, 2, \dots\}$ is the multiplicity of r in the associated characteristic equation P(z) = 0.

2. To find a particular solution to $L[y] = Cx^m e^{\alpha x} \cos(\beta x)$ or $L[y] = Cx^m e^{\alpha x} \sin(\beta x)$, use the form

$$y_{p}(x) = x^{s} [A_{m}x^{m} + \dots + A_{1}x + A_{0}]e^{\alpha x} \cos(\beta x) + x^{s} [B_{m}x^{m} + \dots + B_{1}x + B_{0}]e^{\alpha x} \sin(\beta x)$$

where $s \in \{0, 1, 2, \dots\}$ is the multiplicity of $\alpha + \mathbf{i}\beta$ in the associated characteristic equation P(z) = 0.

Homework

6.3 (p362-363): 1, 3, 5, 7, 9, 11, 13, 15, 23, 25, 27, 31, 33