
Chapter 6

Theory of Higher-Order
Linear Differential Equations

6.1 Basic Theory

A linear differential equation of order n has the form

an(x)y(n)(x) + an−1(x)y(n−1)(x) + · · ·+ a0(x)y(x) = b(x), (6.1.1)

where a0(x), · · · , an(x) and b(x) depend only on x.
constant coefficients: When a0, a1, · · · , an are all constants.
variable coefficients: When some of a0, a1, · · · , an are not constants.

homogeneous: When b(x) = 0.
nonhomogeneous: When b(x) 6= 0.

standard form: Divide (6.1.1) by an(x) to get

y(n)(x) + p1(x)y(n−1)(x) + · · ·+ pn(x)y(x) = g(x)

Theorem 6.1 (Existence and Uniqueness). If p1(x), · · · , pn(x) and g(x)
are each continuous on (a, b) that contains x0. Then for any initial values
γ0, γ1, · · · , γn−1, there exists a unique solution y(x) on the whole interval
(a, b) to the following IVP:

y(n)(x) + p1(x)y(n−1)(x) + · · ·+ pn(x)y(x) = g(x), (6.1.2)
y(x0) = γ0, y(x1) = γ1, · · · , y(xn−1) = γn−1. (6.1.3)

Ex. (ex1, p343)
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Def 6.2. Let f1, · · · , fn be any n functions that are (n− 1) times differen-
tiable. The function

W [f1, · · · , fn] =
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is called the Wronskian of f1, · · · , fn. (What is determinant?)

Theorem 6.3 (Solutions for Homogeneous Case). Given n solutions
y1, · · · , yn to

y(n)(x) + p1(x)y(n−1)(x) + · · ·+ pn(x)y(x) = 0

where p1, · · · , pn are continuous on (a, b). If for some points x0 ∈ (a, b)
there is

W [y1, · · · , yn](x0) 6= 0,

then every solution of the above homogeneous equation on (a, b) can be ex-
pressed by

y(x) = C1y1(x) + · · ·+ Cnyn(x).

n functions f1, · · · , fn are linearly dependent on an interval I if one
of them can be expressed as a linear combination of the others. Equivalently,
if there exists constants c1, · · · , cn such that

c1f1(x) + · · ·+ cnfn(x) ≡ 0

for all x on I. Otherwise, they are linearly independent on I.
Ex. (ex2, p346)

Ex. (ex3, p346)

For solutions y1, · · · , yn of the above homogeneous equation, the linear
dependence can be checked by its Wronskian at on point.

Theorem 6.4. If y1, · · · , yn are solutions to y(n)(x)+p1(x)y(n−1)(x)+ · · ·+
pn(x)y(x) = 0 on (a, b) with p1, · · · , pn continuous on (a, b), then y1, · · · , yn

are linearly dependent on (a, b) if and only if W [y1, · · · , yn](x0) = 0 for some
x0 on (a, b).
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Theorem 6.5 (Solutions for Nonhomogeneous Case). If yp(x) is a
particular solution to the nonhomogeneous equation

y(n)(x) + p1(x)y(n−1)(x) + · · ·+ pn(x)y(x) = g(x) (6.1.4)

on (a, b) with p1, · · · , pn continuous on (a, b), and {y1, · · · , yn} is a funda-
mental solution set of the corresponding homogeneous equation

y(n)(x) + p1(x)y(n−1)(x) + · · ·+ pn(x)y(x) = 0

then the general solution of (6.1.4) is of the form

y(x) = yp(x) + C1y1(x) + C2y2(x) + · · ·+ Cnyn(x).

Ex. (ex4, p349)

Homework

6.1 (p349-351): 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23

6.2 Homogeneous Linear Equations with Constant
Coefficients

The solutions to a homogeneous linear equation with constant coefficients

any(n) + · · ·+ a1y
′ + a0y = 0 (6.2.1)

depends on the roots of the characteristic equation

P (r) := anrn + · · ·+ a1r + a0 = 0 (6.2.2)

Let D be the operator such that D(y) = y′. Then P (D) = anDn+· · ·+a1D+
a0 is an operator. The homogeneous equation (6.2.1) becomes P (D)(y) = 0.
If P (r) has distinct roots r1, · · · , rm where ri repeats di times (di = 1, 2, · · · ,
d1 + · · ·+ dm = n), then

P (D)(y) = (D − r1)d1 · · · (D − rm)dm(y) = 0

Clearly, if y is a solution to (D− ri)di(y) = 0 for some i, then y is a solution
to P (D)(y) = 0.

One can verify by induction that: A set of fundamental solutions to
the differential equation (D − ri)di(y) = 0 is {erit, terit, · · · , tdi−1erit}. So
P (D)(y) = 0 has the following solutions:
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Theorem 6.6. A fundamental solution set {y1, · · · , yn} of the homogeneous
constant coefficient equation any(n) + · · ·+ a1y

′ + a0y = 0 consists of

erit, terit, · · · , tdi−1erit

where ri is a root repeated di times (di = 1, 2, · · · ) in the characteristic
equation anrn + · · ·+ a1r + a0 = 0.

Ex. (ex1, p353, distinct roots)

Ex. (ex3, p356, repeated roots)

If the characteristic equation P (r) = 0 has complex conjugated roots
α + iβ and α− iβ, each repeated d times, then the solution functions

{e(α+iβ)t, · · · , td−1e(α+iβ)t, e(α−iβ)t, · · · , td−1e(α−iβ)t}

can be replaced by real functions

{eαt cos(βt), · · · , td−1eαt cos(βt), eαt sin(βt), · · · , td−1eαt sin(βt)}.

Ex. (ex2, p354)

Ex. (ex4, p356)

Ex. (hw18, p356)

Homework

6.2 (p356-358): 1, 2, 3, 9, 11, 14, 15, 17, 19, 21
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6.3 Undetermined Coefficients and the Annihila-
tor Method

We have used undetermined coefficient method to solve the linear differen-
tial equation (aD2 + bD + c)[y] = f(x), where f(x) is of the form Ctmert,
Ctmeαt cos(βt), or Ctmeαt sin(βt), or a summand of such terms by superpo-
sition principle.

The method of undetermined coefficients can be generalized to solve
P (D)[y] = f(x) where f(x) is of the above forms. This can be justified by
the annihilator method below.

To solve P (D)[y] = f(x), suppose f(x) is a solution to Q(D)[f ] = 0 for
some polynomial Q(r) (so Q(r) is said to annihilate f), then

Q(D)P (D)[y] = Q(D)[f ](x) = 0.

In other words,

y is a solution to P (D)[y] = f(x) =⇒ y is a solution to Q(D)P (D)[y] = 0.

The latter one is homogeneous and we know how to solve it. Thus we
may choose y from a general solution of Q(D)P (D)[y] = 0, then apply the
method of undetermined coefficients to get the coefficients.

Lemma 6.7. The following rules are useful to determine annihilators of
certain functions:

1. f(x) = erx satisfies (D − r)[f ] = 0. (i.e. (D − r) annihilates erx)

2. f(x) = xkerx satisfies (D − r)m[f ] = 0 for k = 0, 1, · · · ,m− 1.

3. f(x) = cos βx or sinβx satisfies (D2 + β2)[f ] = 0.

4. f(x) = xkeαx cos(βx) or xkeαx sin(βx) satisfies [(D−α)2+β2]m[f ] = 0
for k = 0, 1, · · · ,m− 1.

5. If Qi(D) is an annihilator of fi(x) for i = 1, · · · , p, then the least com-
mon multipler lcm(Q1(D), · · · , Qp(D)) and the product Q1(D) · · ·Qp(D)
are both annihilators of f1(x) + f2(x) + · · ·+ fp(x).

(proof)
Ex. (ex1, p359) Find a differential operator that annihilates 6xe−4x + 5ex sin(2x).
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Ex. (ex2, p360) Use both method of undetermined coefficient and
method of annihilators to find a general solution to y′′ − y = xex + sin x.

Ex. (ex3, p361) Use the annihilator method to find a general solution
to y′′′ − 3y′′ + 4y = xe2x.

Theorem 6.8 (Method of Undetermined Coefficients). Let L = P (D)
be a constant coefficient polynomial differential operator.

1. To find a particular solution to L[y] = Cxmerx, use the form

yp(x) = xs[Amxm + · · ·+ A1x + A0]erx

where s ∈ {0, 1, 2, · · · } is the multiplicity of r in the associated char-
acteristic equation P (z) = 0.

2. To find a particular solution to L[y] = Cxmeαx cos(βx) or L[y] =
Cxmeαx sin(βx), use the form

yp(x) = xs[Amxm+· · ·+A1x+A0]eαx cos(βx)+xs[Bmxm+· · ·+B1x+B0]eαx sin(βx)

where s ∈ {0, 1, 2, · · · } is the multiplicity of α + iβ in the associated
characteristic equation P (z) = 0.

Homework

6.3 (p362-363): 1, 3, 5, 7, 9, 11, 13, 15, 23, 25, 27, 31, 33


