Chapter 7

Laplace Transforms

7.1 Introduction: A Mixing Problem

7.2 Definition of the Laplace Transform

Def 7.1. Let f(t) be a function on $[0, \infty)$. The **Laplace transform** of f is the function F(s) defined by the integral

$$F(s) := \int_0^\infty e^{-st} f(t) dt$$
 (an improper integral)

The Laplace transform of f is defined by both F and $\mathcal{L}{f}$. The domain of F is all s where the above integral converges.

Ex. (ex1, p378) Determine the Laplace transform for $f(t) = 1, t \ge 0$.

Ex. (ex2, p378) Determine the Laplace transform for $f(t) = e^{\alpha t}$.

Ex. (ex3, p379) Find $\mathcal{L}{\sin bt}$. (Briefly go through it in the textbook)

Ex. (ex4, p378) Determine the Laplace transform of $f(t) = \begin{cases} 2, & 0 < t < 5 \\ 0, & 5 < t < 10 \\ e^{4t}, & 10 < t \end{cases}$

Theorem 7.2 (Linearity). Let f, f_1 , and f_2 be functions whose Laplace transforms exist and let c be a constant. Then for s in the common domain of these Laplace transforms,

$$\mathcal{L}{f_1 + f_2} = \mathcal{L}{f_1} + \mathcal{L}{f_2},$$

$$\mathcal{L}{cf} = c\mathcal{L}{f}.$$

Ex. (ex5, p380) Determine $\mathcal{L}\{11 + 5e^{4t} - 6\sin 2t\}.$

The Laplace transform exist for all integrable functions on $[0,\infty)$ that "not going too fast to ∞ ".

A function f(t) is said to be **piecewise continuous on** $[0, \infty)$ if f(t) is continuous at all but finitely many points in [0, N] for all N > 0.

f(t) is said to be of **exponential order** α if there exists T>0 and M>0 such that

$$|f(t)| \le M e^{\alpha t}$$
, for all $t \ge T$.

Theorem 7.3. If f(t) is piecewise continuous on $[0, \infty)$ and of exponential α , then $\mathcal{L}{f}(s)$ exists for all $s > \alpha$.

f(t)	$F(s) = \mathcal{L}\{f\}(s)$	Domain of $F(s)$
1	$\frac{1}{s}$,	s > 0
e^{at}	$\frac{1}{s-a}$,	s > a
t^n	$\frac{n!}{s^{n+1}},$	s > 0
$\sin(bt)$	$\frac{b}{s^2+b^2}$,	s > 0
$\cos(bt)$	$\frac{s}{s^2+b^2}$,	s > 0
$e^{at}t^n$	$rac{n!}{(s-a)^{n+1}},$	s > a
$e^{at}\sin(bt)$	$\frac{\dot{b}}{(s-a)^2+b^2},$	s > a
$e^{at}\cos(bt)$	$\frac{s-a}{(s-a)^2+b^2},$	s > a

We have a Table of Important Laplace Transforms:

Homework

7.2 (p385-386): 3, 4, 5, 8, 9, 13, 17, 19

7.3 Properties of the Laplace Transform

We defined the Laplace transform $\mathcal{L}{f}(s) = \int_0^\infty e^{-st} f(t) ds$ in last section, and show that it satisfies the linearity. There are more nice properties for

42

the Laplace transforms.

Theorem 7.4. Suppose the Laplace transform $\mathcal{L}{f}(s) = F(s)$ exists for $s > \alpha$, then

- 1. (Translation in s) $\mathcal{L}\{e^{at}f(t)\}(s) = F(s-a)$ for $s > \alpha + a$.
- 2. (Derivative) If f' exists, then for $s > \alpha$,

$$\mathcal{L}{f'}(s) = s\mathcal{L}{f}(s) - f(0)$$

3. (Higher-Order Derivatives) If $f, f', \dots, f^{(n)}$ exist and piecewise continuous on $[0, \infty)$, then for $s > \alpha$,

$$\mathcal{L}\{f^{(n)}\}(s) = s^n \mathcal{L}\{f\}(s) - s^{n-1}f(0) - s^{n-2}f'(0) - \dots - f^{(n-1)}(0).$$

4. (Derivatives of the Laplace Transform) Let $F(s) = \mathcal{L}{f}(s)$. Then for $s > \alpha$,

$$\mathcal{L}\lbrace t^n f(t)\rbrace(s) = (-1)^n \frac{d^n F}{d \, s^n}(s)$$

(Proofs of 1, 2, 4) **Ex.** (ex1, p387) $\mathcal{L}\{e^{at}\sin bt\}$.

Ex. (ex2, p388) Use $\mathcal{L}\{\sin bt\}(s) = \frac{b}{s^2 + b^2}$ to determine $\mathcal{L}\{\cos bt\}$.

Ex. (ex3, p388) Prove that for continuous function f(t),

$$\mathcal{L}\left\{\int_0^t f(\tau) \, d\tau\right\}(s) = \frac{1}{s} \mathcal{L}\left\{f(t)\right\}(s).$$

Ex. (ex4, p390) $\mathcal{L}{t\sin bt}$.

Table 7.2 summarizes these basic properties of the Laplace transform.

Homework

7.3 (p391-392): 1, 3, 7, 9, 13, 21, 22, 24, 25

7.4 Inverse Laplace Transform

7.4.1 Definition

Ex. To solve y'' - y = -t; y(0) = 0, y'(0) = 1, we first apply Laplace transform $Y(s) = \mathcal{L}\{y\}(s)$ to get

$$\mathcal{L}\{y''\}(s) - Y(s) = -\frac{1}{s^2}$$

Notice that $\mathcal{L}\{y''\}(s) = s^2 Y(s) - sy(0) - y'(0) = s^2 Y(s) - 1$. So

$$s^{2}Y(s) - 1 - Y(s) = -\frac{1}{s^{2}}.$$

We solve that $Y(s) = \mathcal{L}\{y\}(s) = \frac{1}{s^2}$. Since $\mathcal{L}\{t\}(s) = \frac{1}{s^2}$, it is reasonable to conclude that y(t) = t is the solution to the original initial value problem.

Def 7.5. Given a function F(s), if there is a function f(t) that is continuous on $[0,\infty)$ and satisfies $\mathcal{L}\{f\} = F$, then we say that f(t) is the **inverse** Laplace transform of F(s) and employ the notion $f = \mathcal{L}^{-1}\{F\}$.

Table 7.1 and Table 7.2 are useful to compute both Laplace transforms and inverse Laplace transforms.

Ex. (ex1, p393) Determine
$$\mathcal{L}^{-1}{F}$$
, where
(a) $F(s) = \frac{2}{s^3}$, (b) $F(s) = \frac{3}{s^2 + 9}$, (c) $F(s) = \frac{s - 1}{s^2 - 2s + 5}$

Theorem 7.6 (Linearity). Suppose $\mathcal{L}^{-1}{F}$, $\mathcal{L}^{-1}{F_1}$, and $\mathcal{L}^{-1}{F_2}$ are continuous on $[0, \infty)$. Then

1. $\mathcal{L}^{-1}\{F_1 + F_2\} = \mathcal{L}^{-1}\{F_1\} + \mathcal{L}^{-1}\{F_2\}.$ 2. $\mathcal{L}^{-1}\{cF\} = c\mathcal{L}^{-1}\{F\}.$

The other properties of Laplace transform can be transferred into those for inverse Laplace transform.

7.4.2 Inverse Laplace Transforms of Rational Functions

Ex. (ex2, p394)
$$\mathcal{L}^{-1}\left\{\frac{5}{s-6} - \frac{6s}{s^2+9} + \frac{3}{2s^2+8s+10}\right\}$$
.

7.4. INVERSE LAPLACE TRANSFORM

Ex. (ex3, p395) $\mathcal{L}^{-1}\left\{\frac{5}{(s+2)^4}\right\}$. Ex. (ex4, p395) $\mathcal{L}^{-1}\left\{\frac{3s+2}{s^2+2s+10}\right\}$.

To compute the inverse Laplace transform of a real coefficient rational function $\frac{P(s)}{Q(s)}$, we may use the **method of partial fraction**:

1. Decompose the denominator Q(s) into **irreducible** linear factors (s - r) and $[(s - \alpha)^2 + \beta^2]$. Suppose

$$Q(s) = C \cdot \prod_{i=1}^{p} (s - r_i)^{n_i} \cdot \prod_{j=1}^{q} [(s - \alpha_j)^2 + \beta_j^2]^{m_j}$$

2. Then $\frac{P(s)}{Q(s)}$ is a summand of the partial fractions

$$\frac{A_1}{s-r_i} + \frac{A_2}{(s-r_i)^2} + \dots + \frac{A_{n_i}}{(s-r_i)^{n_i}}$$

and

$$\frac{B_1s + C_1}{(s - \alpha_j)^2 + \beta_j^2} + \frac{B_2s + C_2}{[(s - \alpha_j)^2 + \beta_j^2]^2} + \dots + \frac{B_{m_j}s + C_{m_j}}{[(s - \alpha_j)^2 + \beta_j^2]^{m_j}}.$$

- 3. We first determine the coefficients A_i, B_j, C_k , then compute the inverse Laplace transform of each term.
- 1. Nonrepeated Linear Factors

Ex. (ex5, p396) Determine $\mathcal{L}^{-1}{F}$, where $F(s) = \frac{7s - 1}{(s+1)(s+2)(s+3)}$.

2. Repeated Linear Factors

Ex. (ex6, p398) Determine
$$\mathcal{L}^{-1}\left\{\frac{s^2+9s+2}{(s-1)^2(s+3)}\right\}$$
.

3. Quadratic Factors

Ex. (ex7, p399) Determine
$$\mathcal{L}^{-1}\left\{\frac{2s^2 + 10s}{(s^2 - 2s + 5)(s + 1)}\right\}.$$

The situation of repeated quadratic factors will be discussed later.

Homework

7.4 (p400-402): 1, 2, 3, 9, 11, 13, 15, 17, 21, 23, 25, 27, 29

7.5 Solving Initial Value Problems

The method of Laplace transforms leads to the solution of an initial value problem *without* first finding a general solution.

Ex. (ex1, p403)
Ex. (ex2, p404)
Ex. (ex3, p405)
Ex. (ex4, p406)
Ex. (ex5, p408)

Homework

7.5 (p409-410): 1, 3, 5, 7, 11, 13, 25, 27, 35, 37

7.6

7.7

7.8 Impluses and the Dirac Delta Function

Def 7.7. The **Dirac delta function** $\delta(t)$ is characterized by the following two properties:

$$\delta(t) = \begin{cases} 0, & t \neq 0, \\ \text{``infinite,''} & t = 0, \end{cases}$$
(7.8.1)

and

$$\int_{-\infty}^{\infty} f(t)\delta(t)dt = f(0) \tag{7.8.2}$$

We have

$$\int_{-\infty}^{\infty} f(t)\delta(t-a)dt = f(a)$$
(7.8.3)

46

In particular, let u(t) be the unit step function, then

$$\int_{-\infty}^{\infty} \delta(t-a)dt = u(t-a) := \begin{cases} 0, & t < a \\ 1, & t > a \end{cases}$$

If a force $\mathcal{F}(t)$ is applied shortly from time t_0 to time t_1 , then the **impulse** due to \mathcal{F} is

Impulse =
$$\int_{t_0}^{t_1} \mathcal{F}(t) dt = \int_{t_0}^{t_1} m \frac{dv}{dt} dt = mv(t_1) - mv(t_0)$$

Since mv represents the momentum, the impulse equals the changes in momentum.

If we use a hammer to strike an object by force $\mathcal{F}_n(t)$ to change a unit momentum in a very short period of time $[t_0, t_n]$ where $t_n \to t_0$ as $n \to \infty$, then $\int_{-\infty}^{\infty} \mathcal{F}_n(t) dt = 1$ and \mathcal{F}_n approaches a limiting "function" function $\delta(t)$.

The Laplace transform of $\delta(t-a)$ for $a \ge 0$ is

$$\mathcal{L}\{\delta(t-a)\}(s) = \int_0^\infty e^{-st}\delta(t-a)dt = e^{-as}$$

Ex. Example on page 435: $x'' + x = \delta(t)$; x(0) = 0, x'(0) = 0.

Ex. (ex1, p437)

Homework

7.8 (p438-440): 1, 5, 9, 11, 13, 15, 17, 19