
Chapter 7

Laplace Transforms

7.1 Introduction: A Mixing Problem

7.2 Definition of the Laplace Transform

Def 7.1. Let f(t) be a function on [0,∞). The Laplace transform of f
is the function F (s) defined by the integral

F (s) :=
∫ ∞

0
e−stf(t)dt (an improper integral)

The Laplace transform of f is defined by both F and L{f}. The domain of
F is all s where the above integral converges.

Ex. (ex1, p378) Determine the Laplace transform for f(t) = 1, t ≥ 0.

Ex. (ex2, p378) Determine the Laplace transform for f(t) = eαt.

Ex. (ex3, p379) Find L{sin bt}. (Briefly go through it in the textbook)

Ex. (ex4, p378) Determine the Laplace transform of f(t) =


2, 0 < t < 5
0, 5 < t < 10
e4t, 10 < t

Theorem 7.2 (Linearity). Let f , f1, and f2 be functions whose Laplace
transforms exist and let c be a constant. Then for s in the common domain
of these Laplace transforms,

L{f1 + f2} = L{f1}+ L{f2},
L{cf} = cL{f}.
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Ex. (ex5, p380) Determine L{11 + 5e4t − 6 sin 2t}.

The Laplace transform exist for all integrable functions on [0,∞) that
“not going too fast to ∞”.

A function f(t) is said to be piecewise continuous on [0,∞) if f(t) is
continuous at all but finitely many points in [0, N ] for all N > 0.

f(t) is said to be of exponential order α if there exists T > 0 and
M > 0 such that

|f(t)| ≤ Meαt, for all t ≥ T.

Theorem 7.3. If f(t) is piecewise continuous on [0,∞) and of exponential
α, then L{f}(s) exists for all s > α.

We have a Table of Important Laplace Transforms:

f (t) F (s) = L{f}(s) Domain of F (s)

1 1
s, s > 0

eat 1
s−a, s > a

tn n!
sn+1 , s > 0

sin(bt) b
s2+b2

, s > 0

cos(bt) s
s2+b2

, s > 0

eattn n!
(s−a)n+1 , s > a

eat sin(bt) b
(s−a)2+b2

, s > a

eat cos(bt) s−a
(s−a)2+b2

, s > a

Homework

7.2 (p385-386): 3, 4, 5, 8, 9, 13, 17, 19

7.3 Properties of the Laplace Transform

We defined the Laplace transform L{f}(s) =
∫ ∞

0
e−stf(t)ds in last section,

and show that it satisfies the linearity. There are more nice properties for
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the Laplace transforms.

Theorem 7.4. Suppose the Laplace transform L{f}(s) = F (s) exists for
s > α, then

1. (Translation in s) L{eatf(t)}(s) = F (s− a) for s > α + a.

2. (Derivative) If f ′ exists, then for s > α,

L{f ′}(s) = sL{f}(s)− f(0)

3. (Higher-Order Derivatives) If f, f ′, · · · , f (n) exist and piecewise con-
tinuous on [0,∞), then for s > α,

L{f (n)}(s) = snL{f}(s)− sn−1f(0)− sn−2f ′(0)− · · · − f (n−1)(0).

4. (Derivatives of the Laplace Transform) Let F (s) = L{f}(s). Then for
s > α,

L{tnf(t)}(s) = (−1)n d nF

d sn
(s)

(Proofs of 1, 2, 4)
Ex. (ex1, p387) L{eat sin bt}.

Ex. (ex2, p388) Use L{sin bt}(s) =
b

s2 + b2
to determine L{cos bt}.

Ex. (ex3, p388) Prove that for continuous function f(t),

L{
∫ t

0
f(τ) dτ}(s) =

1
s
L{f(t)}(s).

Ex. (ex4, p390) L{t sin bt}.

Table 7.2 summarizes these basic properties of the Laplace transform.

Homework

7.3 (p391-392): 1, 3, 7, 9, 13, 21, 22, 24, 25
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7.4 Inverse Laplace Transform

7.4.1 Definition

Ex. To solve y′′ − y = −t; y(0) = 0, y′(0) = 1, we first apply Laplace
transform Y (s) = L{y}(s) to get

L{y′′}(s)− Y (s) = − 1
s2

.

Notice that L{y′′}(s) = s2Y (s)− sy(0)− y′(0) = s2Y (s)− 1. So

s2Y (s)− 1− Y (s) = − 1
s2

.

We solve that Y (s) = L{y}(s) =
1
s2

. Since L{t}(s) = 1
s2 , it is reasonable to

conclude that y(t) = t is the solution to the original initial value problem.

Def 7.5. Given a function F (s), if there is a function f(t) that is continuous
on [0,∞) and satisfies L{f} = F , then we say that f(t) is the inverse
Laplace transform of F (s) and employ the notion f = L−1{F}.

Table 7.1 and Table 7.2 are useful to compute both Laplace transforms
and inverse Laplace transforms.

Ex. (ex1, p393) Determine L−1{F}, where

(a) F (s) =
2
s3

, (b) F (s) =
3

s2 + 9
, (c) F (s) =

s− 1
s2 − 2s + 5

.

Theorem 7.6 (Linearity). Suppose L−1{F}, L−1{F1}, and L−1{F2} are
continuous on [0,∞). Then

1. L−1{F1 + F2} = L−1{F1}+ L−1{F2}.

2. L−1{cF} = cL−1{F}.

The other properties of Laplace transform can be transferred into those
for inverse Laplace transform.

7.4.2 Inverse Laplace Transforms of Rational Functions

Ex. (ex2, p394) L−1{ 5
s− 6

− 6s

s2 + 9
+

3
2s2 + 8s + 10

}.
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Ex. (ex3, p395) L−1{ 5
(s + 2)4

}.

Ex. (ex4, p395) L−1{ 3s + 2
s2 + 2s + 10

}.

To compute the inverse Laplace transform of a real coefficient rational

function
P (s)
Q(s)

, we may use the method of partial fraction:

1. Decompose the denominator Q(s) into irreducible linear factors (s−
r) and [(s− α)2 + β2]. Suppose

Q(s) = C ·
p∏

i=1

(s− ri)ni ·
q∏

j=1

[(s− αj)2 + β2
j ]mj

2. Then
P (s)
Q(s)

is a summand of the partial fractions

A1

s− ri
+

A2

(s− ri)2
+ · · ·+ Ani

(s− ri)ni

and

B1s + C1

(s− αj)2 + β2
j

+
B2s + C2

[(s− αj)2 + β2
j ]2

+ · · ·+
Bmjs + Cmj

[(s− αj)2 + β2
j ]mj

.

3. We first determine the coefficients Ai, Bj , Ck, then compute the inverse
Laplace transform of each term.

1. Nonrepeated Linear Factors

Ex. (ex5, p396) Determine L−1{F}, where F (s) =
7s− 1

(s + 1)(s + 2)(s + 3)
.

2. Repeated Linear Factors

Ex. (ex6, p398) Determine L−1{ s2 + 9s + 2
(s− 1)2(s + 3)

}.

3. Quadratic Factors

Ex. (ex7, p399) Determine L−1{ 2s2 + 10s

(s2 − 2s + 5)(s + 1)
}.

The situation of repeated quadratic factors will be discussed later.
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Homework

7.4 (p400-402): 1, 2, 3, 9, 11, 13, 15, 17, 21, 23, 25, 27, 29

7.5 Solving Initial Value Problems

The method of Laplace transforms leads to the solution of an initial value
problem without first finding a general solution.

Ex. (ex1, p403)

Ex. (ex2, p404)

Ex. (ex3, p405)

Ex. (ex4, p406)

Ex. (ex5, p408)

Homework

7.5 (p409-410): 1, 3, 5, 7, 11, 13, 25, 27, 35, 37

7.6

7.7

7.8 Impluses and the Dirac Delta Function

Def 7.7. The Dirac delta function δ(t) is characterized by the following
two properties:

δ(t) =

{
0, t 6= 0,

“infinite,” t = 0,
(7.8.1)

and ∫ ∞

−∞
f(t)δ(t)dt = f(0) (7.8.2)

We have ∫ ∞

−∞
f(t)δ(t− a)dt = f(a) (7.8.3)
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In particular, let u(t) be the unit step function, then∫ ∞

−∞
δ(t− a)dt = u(t− a) :=

{
0, t < a

1, t > a

If a force F(t) is applied shortly from time t0 to time t1, then the impulse
due to F is

Impulse =
∫ t1

t0

F(t)dt =
∫ t1

t0

m
d v

d t
dt = mv(t1)−mv(t0)

Since mv represents the momentum, the impulse equals the changes in
momentum.

If we use a hammer to strike an object by force Fn(t) to change a unit
momentum in a very short period of time [t0, tn] where tn → t0 as n →∞,
then

∫∞
−∞Fn(t)dt = 1 and Fn approaches a limiting “function” function

δ(t).
The Laplace transform of δ(t− a) for a ≥ 0 is

L{δ(t− a)}(s) =
∫ ∞

0
e−stδ(t− a)dt = e−as

Ex. Example on page 435: x′′ + x = δ(t); x(0) = 0, x′(0) = 0.

Ex. (ex1, p437)

Homework

7.8 (p438-440): 1, 5, 9, 11, 13, 15, 17, 19


