4 Linear Transformations

The operations “+” and “·” provide a linear structure on vector space V. We are interested in some mappings (called linear transformations) between vector spaces $L : V \rightarrow W$, which preserves the structures of the vector spaces.

4.1 Definition and Examples

1. Demonstrate: A mapping between two sets $L : V \rightarrow W$.

 Def. Let V and W be vector spaces. A mapping $L : V \rightarrow W$ is called a **linear transformation** iff

 $$L(\alpha v_1 + \beta v_2) = \alpha L(v_1) + \beta L(v_2), \text{ for all } v_1, v_2 \in V, \alpha, \beta \in \mathbb{R}.$$

 Equivalent Condition: L is a linear transformation iff

 $$L(v_1 + v_2) = L(v_1) + L(v_2) \quad L(\alpha v) = \alpha L(v).$$

 Question: How does a linear map look like?

 Ex. Linear transformations on \mathbb{R}^1. ($L : \mathbb{R}^1 \rightarrow \mathbb{R}^m$)

 Ex. Several examples on \mathbb{R}^2: (Show the graphs for a-d, check conditions for a,b)

 (a) $L : \mathbb{R}^2 \rightarrow \mathbb{R}^2$, $L(v) = -2v$.
 (b) Ex 2 in textbook (p177 in 7th ed), $L(x) = x_1 e_1$.
 (c) Ex 3 in textbook (p177 in 7th ed), $L(x) = \begin{bmatrix} x_1 \\ -x_2 \end{bmatrix}$.
 (d) Ex 4 in textbook (p178 in 7th ed), $L(x) = \begin{bmatrix} -x_2 \\ x_1 \end{bmatrix}$.
 (e) $L : \mathbb{R}^2 \rightarrow \mathbb{R}^1$, $L\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = x_1 + x_2$.

 Ex. Identity map.

 Ex. For any $A \in \mathbb{R}^{m \times n}$, define $L_A : \mathbb{R}^n \rightarrow \mathbb{R}^m$ by

 $$L_A(v) := Av \text{ for } v \in \mathbb{R}^n.$$

 Check that L_A is a linear transformation.
Ex. (Counterexample) \(L : \mathbb{R}^2 \to \mathbb{R}^2 \) defined by \(L(v) = v + e_1 \). Then \(L \) is NOT a linear transformation.

Ex. (Counterexample) \(L : \mathbb{R}^2 \to \mathbb{R}^1 \) defined by \(L(x) = \sqrt{x_1^2 + x_2^2} \). Then \(L \) is NOT a linear transformation.

Ex. Ex 9 (p180 in 7th ed), \(L : C[a,b] \to \mathbb{R}^1 \), defined by \(L(f) := \int_a^b f(x) \, dx \).

Ex. \(L : P_n \to P_{n-1} \) defined by \(L(f)(x) = f'(x) \).

• Linear transformations send subspaces to subspaces.
• HW 12, p183. If \(L : V \to W \) is a linear transformation, then

\[
L(\alpha_1 v_1 + \alpha_2 v_2 + \cdots + \alpha_n v_n) = \alpha_1 L(v_1) + \alpha_2 L(v_2) + \cdots + \alpha_n L(v_n).
\]

2. The Image and Kernel.

Def. Let \(L : V \to W \) be a linear transformation. The kernel of \(L \) is

\[
\ker(L) = \{ v \in V \mid L(v) = 0_W \}, \quad \text{(So } \ker(L) \subseteq V \text{)}.
\]

Let \(S \) be a subspace of \(V \). The image of \(S \) is

\[
L(S) = \{ L(v) \mid v \in S \}, \quad \text{(So } L(S) \subseteq W \text{)}.
\]

\(L(V) \): The image of \(V \) is called the range of \(L \).

Ex. The kernel and images of \(L \) are subspaces.

Ex. Let \(A \in \mathbb{R}^{m \times n} \). Let \(L_A : \mathbb{R}^n \to \mathbb{R}^m \) be defined by \(L_A(x) := Ax \). The kernel of \(L_A \) is exactly \(N(A) \). The range of \(L_A \) is

\[
L_A(\mathbb{R}^n) = \{ Ax \mid x \in \mathbb{R}^n \},
\]

which is exactly the column space of \(A \).

Ex. HW 17b, (p184 in 7th ed). Find the kernel and the range of linear operator \(L \) on \(\mathbb{R}^3 \), where \(L(x) = \begin{bmatrix} x_1 \\ x_2 \\ 0 \end{bmatrix} \).

4.1.1 Homework

Sect 4.1.
6th ed 1ade, 3, 6bd, 15, 16ac.
7th ed 1ade, 3, 6bd, 16, 17ac.
4.2 Matrix Representations of Linear Transformations

1. All linear transformations from \mathbb{R}^n to \mathbb{R}^m are of the form $L(x) = Ax$ for some A.

Thm 4.1. Given a linear map $L : \mathbb{R}^n \to \mathbb{R}^m$, there is $A \in \mathbb{R}^{m \times n}$, such that

$$L(x) = Ax, \quad \text{i.e.} \quad L(x) = L_A(x).$$

In fact,

$$A = \begin{bmatrix} L(e_1), L(e_2), \cdots, L(e_n) \end{bmatrix}.$$

A is called the standard matrix representation of L.

Proof of the theorem.

Ex. Ex 1, pp 185 in 7th ed.

Ex. Ex 2, p186 in 7th ed.

Ex. (skip)

$L : \mathbb{R}^2 \to \mathbb{R}^3, \quad L(x) = \begin{bmatrix} x_1 - x_2 \\ x_1 + 2x_2 \\ -x_1 \end{bmatrix}$.

Ex. (skip)

$L : \mathbb{R}^2 \to \mathbb{R}^1, \quad L(x) = x_1 + x_2$

2.

Thm 4.2. If $E = [v_1, \cdots, v_n]$ is a basis of V, and $F = [w_1, \cdots, w_m]$ is a basis of W, for each linear transformation $L : V \to W$, there is $A \in \mathbb{R}^{m \times n}$ such that $[L(v)]_F = A[v]_E$ for $v \in V$. In fact,

$$A = \begin{bmatrix} [L(v_1)]_F, \cdots, [L(v_n)]_F \end{bmatrix}.$$

(Refer to Fig 4.2.2 in p188)

Ex. Example 4, pp 188 in 7th ed.

Ex. Let $F = [b_1, b_2]$ be a basis of \mathbb{R}^2, where

$$b_1 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}, \quad b_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}.$$

Find the matrix A representing

$L : \mathbb{R}^3 \to \mathbb{R}^2, \quad L(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}) = (x_1 + 2x_2)b_1 + (3x_1 + 4x_2)b_2.$

31
relative to the standard basis E of \mathbb{R}^3 and the basis F of \mathbb{R}^2.

3. (Important) The above theorem need to compute coordinate vectors. In practical, we use the following result:

Thm 4.3. Let A be the matrix representing $L : \mathbb{R}^n \to \mathbb{R}^m$ with respect to the bases $E = [u_1, \ldots, u_n]$ of \mathbb{R}^n and $F = [b_1, \ldots, b_m]$ of \mathbb{R}^m, Then the RREF of $[b_1, \ldots, b_m \mid L(u_1), \ldots, L(u_n)]$ is exactly $[I \mid A]$.

Ex. Revisit the previous example.

Ex. Ex 6 (p190 in 7th ed).

Ex. Application 1 (p191 in 7th ed). Computer graphics and animation.

4.2.1 Homework

Sect 4.2 6th ed: 2, 4, 6, 16a, 7th ed: 2, 4, 6, 18a

4.3 Similarity

1. A square matrix $B \in \mathbb{R}^{n \times n}$ is similar to $A \in \mathbb{R}^{n \times n}$, iff there is a non-singular matrix $S \in \mathbb{R}^{n \times n}$, such that $B = S^{-1}AS$.

 (a) A is similar to A itself:
 $$A = I_n^{-1}AI_n.$$

 (b) If A is similar to B, then B is similar to A:
 $$B = S^{-1}AS \implies A = SBS^{-1} = (S^{-1})^{-1}B(S^{-1}).$$

 (c) If A is similar to B and B is similar to C, then A is similar to C:

 So similarity is an equivalent relationship.

2. Similarity is important in representing a linear transformation by different bases.

 Question: Let E be the standard basis in \mathbb{R}^n. Let $L : \mathbb{R}^n \to \mathbb{R}^n$ has the standard matrix representation $L(x) = Ax$. If F is another basis of \mathbb{R}^n, what is the matrix representation B of L with respect to F (That is, $[L(v)]_F = B[v]_F$)?

 Answer: Let U be the transition matrix from F to E.

 $$[L(v)]_E = A[v]_E \implies U[L(v)]_F = AU[v]_F \implies [L(v)]_F = U^{-1}AU[v]_F.$$

 So $B = U^{-1}AU$.

32
Thm 4.4. Two square matrices A and B are similar, if and only if both are representing a same linear transformation in different bases.

Ex. Example 2 in the textbook (pp204 in 7th ed). **Method 1:** Matrix Representation Theory. **Method 2:** Transition matrix.

- The importance of changing bases: to simplify linear transformations.

Ex. problem 4 (pp205 in 7th ed).

Ex. problem 9 (pp206 in 7th ed).

4.3.1 Homework

Sect 4.3 1ae, 2, 7, 11, 12