2.2 Finitely Generated Abelian Groups

We classify the structures of finitely generated abelian groups in this section. All results are special cases of finitely generated modules over a principal ideal domain (to be discussed in Section IV.6).

Lem 2.7. Every finitely generated abelian group \(G \) is (isomorphic to) a direct sum of cyclic groups:

\[
\bigoplus_{i=1}^{t} \mathbb{Z}_{m_i} \oplus \mathbb{Z}^s, \quad m_1 \mid m_2 \mid \cdots \mid m_t.
\]

Proof. Let \(X \subseteq G \) be a finite set that generates \(G \). Let \(F(X) \) be the free group on \(X \). By the proof of Theorem 2.4, there is a group epimorphism \(\psi : F(X) \to G \). By Theorem 2.5, there exists a basis \(\{x_1, \cdots, x_n\} \) of \(F(X) \) such that the subgroup \(\ker \psi \) of \(F(X) \) has a basis \(\{d_1 x_1, \cdots, d_r x_r\} \) for some \(r \leq n \) and \(d_1 \mid d_2 \mid \cdots \mid d_r \). Then

\[
G \simeq F(X)/\ker \psi = \bigoplus_{i=1}^{r} (\mathbb{Z}/d_i \mathbb{Z}) \oplus \mathbb{Z}^{n-r}.
\]

Note that if \(d_i = 1 \), then \(\mathbb{Z}/d_i \mathbb{Z} \) is trivial. Remove 1’s from the sequence \((d_1, \cdots, d_r) \) and denote the resulting sequence \((m_1, \cdots, m_t) \). Then \(m_1 \mid \cdots \mid m_t \) and \(G \simeq \bigoplus_{i=1}^{t} \mathbb{Z}_{m_i} \oplus \mathbb{Z}^{n-r} \).

Lem 2.8. If \(m \in \mathbb{N} \) has the prime decomposition \(m = p_1^{n_1} \cdots p_t^{n_t} \), where \(p_1, \cdots, p_t \) are distinct primes and \(n_i \geq 1 \), then

\[
\mathbb{Z}_m \simeq \mathbb{Z}_{p_1^{n_1}} \oplus \cdots \oplus \mathbb{Z}_{p_t^{n_t}}.
\]

Proof. Let \(1_r \) denote the identity of \(\mathbb{Z}_r \). If \((r, k) = 1 \), then \(\mathbb{Z}_{rk} \to \mathbb{Z}_r \oplus \mathbb{Z}_k \) defined by \(a \cdot 1_{rk} \mapsto a \cdot (1_r, 1_k) \) is a group isomorphism. Then

\[
\mathbb{Z}_m \simeq \mathbb{Z}_{p_1^{n_1}} \cdots \mathbb{Z}_{p_{r-1}^{n_{r-1}}} \oplus \mathbb{Z}_{p_t^{n_t}} \simeq \cdots \simeq \mathbb{Z}_{p_1^{n_1}} \oplus \cdots \oplus \mathbb{Z}_{p_t^{n_t}}.
\]

Lem 2.9. Every finitely generated abelian group \(G \) is (isomorphic to) a direct sum of cyclic groups:

\[
\bigoplus_{i=1}^{k} \mathbb{Z}_{p_i^{n_i}} \oplus \mathbb{Z}^s,
\]

where \(p_1, \cdots, p_t \) are (not necessarily distinct) primes, \(s \geq 0 \), and \(n_i \geq 1 \) for every \(i \).

Proof. Use Lemma 2.7 and Lemma 2.8.
Cor 2.10. If G is a finite abelian group of order n, then G has a subgroup of order m for every positive factor m of n.

Proof. The statement is true for $G = \mathbb{Z}_{p^m}$ where p is a prime. Then apply Lemma 2.8.

For an abelian group G, the set

$$G_\tau := \{ u \in G \mid |u| \text{ is finite} \}$$

forms a subgroup, called the **torsion subgroup** of G. If $G = G_\tau$, then G is said to be a **torsion group**. If $G_\tau = 0$, then G is said to be **torsion-free**.

Here is the structure theorem of finitely generated abelian groups.

Thm 2.11. Let G be a finitely generated abelian group. Then $G = G_\tau \oplus F$, where $F \simeq \mathbb{Z}^s$ is a finitely generated free abelian subgroup of G. The integer $s \geq 0$ is unique in any such decompositions of G. The torsion group G_τ is either trivial or it can be decomposed as follow:

1. There is a unique list of (not necessarily distinct) positive integers m_1, m_2, \ldots, m_t such that $m_i > 1$, $m_1 | m_2 | \cdots | m_t$, and

 $$G_\tau \simeq \mathbb{Z}_{m_1} \oplus \cdots \oplus \mathbb{Z}_{m_t}.$$

 The integers m_1, m_2, \ldots, m_t are called the **invariant factors** of G.

2. There is a list of prime powers $p_1^{s_1}, \ldots, p_k^{s_k}$, unique up to the order of its members, such that p_1, \ldots, p_k are (not necessarily distinct) primes, s_1, \ldots, s_k are (not necessarily distinct) positive integers and

 $$G_\tau \simeq \mathbb{Z}_{p_1^{s_1}} \oplus \cdots \oplus \mathbb{Z}_{p_k^{s_k}}.$$

The prime powers $p_1^{s_1}, \ldots, p_k^{s_k}$ are called the **elementary divisors** of G.

Proof. The existence of s, m_1, m_2, \ldots, m_t and $p_1^{s_1}, \ldots, p_k^{s_k}$ are shown by Lemmas 2.7 and 2.9.

It remains to prove that they are unique in any corresponding decompositions of G.

Suppose that G is isomorphic to two decompositions

$$G \simeq (\mathbb{Z}_{m_1} \oplus \cdots \oplus \mathbb{Z}_{m_t}) \oplus \mathbb{Z}^s, \quad m_i > 1, \ m_1 | m_2 | \cdots | m_t, \text{ and } s \geq 0,$$

$$G \simeq (\mathbb{Z}_{m_1'} \oplus \cdots \oplus \mathbb{Z}_{m_t'}) \oplus \mathbb{Z}^{s'}, \quad m_i' > 1, \ m_1' | m_2' | \cdots | m_t', \text{ and } s' \geq 0.$$

Let $m := m_t m_t'$. Then the abelian group

$$mG := \{ mu \mid u \in G \} \simeq m(\mathbb{Z}_{m_1} \oplus \cdots \oplus \mathbb{Z}_{m_t}) \oplus (m\mathbb{Z})^s \simeq \mathbb{Z}^s,$$

$$\simeq m(\mathbb{Z}_{m_1'} \oplus \cdots \oplus \mathbb{Z}_{m_t'}) \oplus (m\mathbb{Z})^{s'} \simeq \mathbb{Z}^{s'}.$$
2.2. FINITELY GENERATED ABELIAN GROUPS

So mG is a free abelian group and $s = s'$ by Proposition 2.3. This proves the uniqueness of s.

Next consider G_r. Let I denote the set of multisets of invariant factors $\{m_1, \ldots, m_t\}$ of G so that $m_i > 1$, $m_1 | m_2 | \cdots | m_t$, and $G_r \cong \mathbb{Z}_{m_1} \oplus \cdots \oplus \mathbb{Z}_{m_t}$. Let E denote the set of multisets of elementary divisors $\{p_1^{n_1}, p_2^{n_2}, \ldots, p_k^{n_k}\}$ of G such that $G_r \cong \mathbb{Z}_{p_1^{n_1}} \oplus \cdots \mathbb{Z}_{p_k^{n_k}}$. We define a bijective map from I to E as follow.

Suppose that $\{m_1, \ldots, m_t\} \in E$ so that

$$G_r \cong \mathbb{Z}_{m_1} \oplus \cdots \oplus \mathbb{Z}_{m_t}, \quad m_i > 1, \quad m_1 | m_2 | \cdots | m_t.$$

and that m_i has the prime decomposition $m_i = q_1^{n_1} \cdots q_r^{n_r}$ where q_1, \ldots, q_r are distinct primes and $n_1, \ldots, n_r \in \mathbb{Z}^+$, then every m_i has the decomposition $m_i = q_1^{n_i} \cdots q_r^{n_r}$ such that

$$0 \leq n_{1j} \leq n_{2j} \leq \cdots \leq n_{ij} = n_j \quad \text{for} \quad j = 1, \ldots, r.$$

Then there is the decomposition

$$G_r \cong \bigoplus_{j=1}^{r} \bigoplus_{i=1}^{t} \mathbb{Z}_{q_j^{n_{ij}}}$$

Removing 1’s from those prime powers $q_j^{n_{ij}}$ and reindexing the prime powers, we get a multiset of elementary divisors $\{p_1^{n_1}, \ldots, p_k^{n_k}\} \in E$. One can check that this builds up a bijection from I to E.

Finally, we show that $|E| = 1$. This implies that $|I| = 1$, and thus there exists exactly one multiset of invariant factors and one multiset of elementary divisors of G.

Let $\{q_j^{n_{ij}} \mid j = 1, \ldots, r, \; i = 1, \ldots, t_j\}$ be a multiset of elementary divisors of G, where q_1, \ldots, q_r are distinct primes and $n_{ij} \geq 1$. Then

$$G_r \cong \bigoplus_{j=1}^{r} \bigoplus_{i=1}^{t_j} \mathbb{Z}_{q_j^{n_{ij}}}.$$ \hspace{1cm} (2.1)

We may assume that $n_{1\ell} \leq n_{2\ell} \leq \cdots \leq n_{t_\ell \ell}$ for $\ell = 1, \ldots, r$.

For $m \in \mathbb{Z}^+$, define $G[m] := \{u \in G \mid mu = 0\}$. Then $G[m]$ is a subgroup of G, and $(G_1 \oplus G_2)[m] = G_1[m] \oplus G_2[m]$ for groups G_1, G_2. For each prime q_ℓ ($1 \leq \ell \leq r$),

$$G[q_\ell] \cong G_r[q_\ell] \cong \bigoplus_{j=1}^{r} \bigoplus_{i=1}^{t_j} \mathbb{Z}_{q_j^{n_{ij}}} [q_\ell] \cong \bigoplus_{i=1}^{t_\ell} \left(q_\ell^{n_{i\ell}} \mathbb{Z}_{q_\ell^{n_{i\ell}}} \right) \cong (\mathbb{Z}_{q_\ell})^{t_\ell}.$$

There are $q_\ell^{t_\ell} - 1$ elements of order q_ℓ in $G[q_\ell]$. So q_ℓ and t_ℓ are unique for all multisets of elementary divisors of G.
For any \(b \in \mathbb{Z}^+ \),

\[
q^b_\ell G_\tau \cong \bigoplus_{j=1}^r \bigoplus_{i=1}^{t_j} (q^b_\ell \mathbb{Z}_{q^j_n}) \cong \left(\bigoplus_{j=1}^r \bigoplus_{i=1}^{t_j} \mathbb{Z}_{q^j_n} \right) \oplus \left(\bigoplus_{i=1}^{t_\ell} \mathbb{Z}_{n_\ell > b} \right)
\]

Then

\[
(q^b_\ell G_\tau)[q_\ell] \cong \left(\bigoplus_{i=1}^{t_\ell} \mathbb{Z}_{n_\ell > b} \right)[q_\ell] \cong (\mathbb{Z}_{q^\ell})^{w(q_\ell, b)},
\]

where \(w(q_\ell, b) \) denotes the number of integers \(n_1, \ldots, n_{t_\ell} \) that are greater than \(b \). The abelian group \((q^b_\ell G_\tau)[q_\ell]\) is independent of the choice of elementary divisors of \(G \). So \(w(q_\ell, b) \) for all \(b \in \mathbb{N} \) are unique. Thus \(n_1, \ldots, n_{t_\ell} \) are unique for every \(\ell = 1, \ldots, r \).

Hence there is only one multiset of elementary divisors and one multiset of invariant factors for \(G \). This completes the proof. \(\square \)

Cor 2.12. Two finitely generated abelian groups \(G \) and \(H \) are isomorphic if and only if \(G/G_\tau \) and \(H/H_\tau \) have the same rank and \(G \) and \(H \) have the same invariant factors [resp. elementary divisors].

Ex. How many Abelian groups of order 360 up to equivalence?

Ex. Find the invariant factors and elementary divisors of \(\mathbb{Z}_5 \oplus \mathbb{Z}_{15} \oplus \mathbb{Z}_{25} \oplus \mathbb{Z}_{36} \oplus \mathbb{Z}_{54} \).