

2.7 Nilpotent and Solvable Groups

2.7.1 Nilpotent Groups

The center $C(G)$ of a group G is a normal subgroup. Define $C_0(G) = \langle e \rangle$, and $C_i(G)$ the inverse image of $C(G/C_{i-1}(G))$ under the canonical projection $G \rightarrow G/C_{i-1}(G)$, for $i = 1, 2, \dots$. There is the **ascending central series** of G :

$$C_0(G) = \langle e \rangle \leq C_1(G) = C(G) \leq C_2(G) \leq \dots \quad (2.3)$$

In general, if $C_i \leq C_{i+1} \leq G$, $C_i \triangleleft G$ and $C_{i+1}/C_i \triangleleft G/C_i$, then $C_{i+1} \triangleleft G$. Therefore, $C_i(G) \triangleleft G$ for all i , by induction. (Excise) For $i = 1, 2, \dots$,

$$C_i(G) = \{x \in G \mid xyx^{-1}y^{-1} \in C_{i-1}(G) \text{ for all } y \in G\}. \quad (2.4)$$

Def. A group G is **nilpotent** if $C_n(G) = G$ for some n .

Every abelian group G is nilpotent since $C_1(G) = G$. Every subgroup or homomorphic image of a nilpotent group is nilpotent.

Thm 2.42. Every finite p -group G is nilpotent.

Proof. Every nontrivial quotient group of G is a finite p -group. Therefore, if $G/C_i(G)$ is nontrivial, then $C(G/C_i(G))$ is nontrivial (Lemma 2.31) so that $C_i(G) \not\leq C_{i+1}(G)$. So $C_n(G) = G$ for some n . \square

Thm 2.43. If $G = \prod_{j=1}^k G_j$, then G is nilpotent if and only if all G_j are nilpotent.

Proof. Use $C_i(G) = \prod_{j=1}^k C_i(G_j)$, which can be proved by induction or by (2.4). \square

LEM 2.44. Assume G is nilpotent. If $H \not\leq G$, then $H \not\leq N_G(H)$.

Proof. Let n be the largest integer such that $C_n(G) \leq H$. Choose $a \in C_{n+1}(G) \setminus H$. Then for $h \in H$, $aha^{-1}h^{-1} \in C_n \leq H$. Thus $aha^{-1} \in H$. Thus $a \in N_G(H) \setminus H$. \square

Thm 2.45. A finite group G is nilpotent if and only if it is the direct product of its Sylow subgroups.

Proof. If G is a direct product of Sylow subgroups, then G is nilpotent [Theorem 2.42 and Theorem 2.43]. Conversely, suppose G is nilpotent. For every Sylow subgroup P of G , $N_G(N_G(P)) = N_G(P)$ [Proposition 2.36]. Therefore, $N_G(P) = G$ [Lemma 2.44]. Then $P \triangleleft G$. Suppose that $|G|$ has distinct prime factors p_1, p_2, \dots, p_k . For each p_i there is a unique Sylow p_i -subgroup $P_i \triangleleft G$ [Second Sylow Theorem]. Then $\langle P_1, P_2, \dots, P_k \rangle = P_1 P_2 \cdots P_k$. Moreover, $P_i \cap (P_1 P_2 \cdots P_{i-1} P_{i+1} \cdots P_k) = \{e\}$ by investigating the possible orders of its elements. Therefore, $P_1 P_2 \cdots P_k = P_1 \times P_2 \times \cdots \times P_k$. Thus $G = P_1 \times P_2 \times \cdots \times P_k$ by comparing their orders. \square

Cor 2.46. *If G is a finite nilpotent group, then G contains a subgroup of order m for any factor m of $|G|$.*

2.7.2 Solvable Groups

Def. *Let G be a group. For $a, b \in G$, the element $aba^{-1}b^{-1}$ is called a **commutator**. The subgroup of G generated by all commutators:*

$$G' := \langle aba^{-1}b^{-1} \mid a, b \in G \rangle$$

*is called the **commutator subgroup** of G .*

Thm 2.47. $G' \triangleleft G$. Moreover, G' is the smallest normal subgroup such that G/G' is abelian. Precisely, $N \triangleleft G$ and G/N is abelian iff $G' \leq N \leq G$.

Proof. Let $f : G \rightarrow G$ be any automorphism. Then $f(G') \leq G'$ since

$$f(aba^{-1}b^{-1}) = f(a)f(b)f(a)^{-1}f(b)^{-1} \in G'.$$

In particular, for any $a \in G$, if $f(g) = aga^{-1}$ for $g \in G$, then $aG'a^{-1} \leq G'$. Hence $G' \triangleleft G$. Since $abG' = ab(b^{-1}a^{-1}ba)G' = baG'$, G/G' is abelian.

If $N \triangleleft G$ and G/N is abelian, then $xyN = yxN$ for all $x, y \in G$; then $x^{-1}y^{-1}xy \in N$ for all $x, y \in G$; then $G' \leq N$. The converse is easy. \square

Def. *For a group G , let $G^{(0)} := G$ and $G^{(i)} := (G^{(i-1)})'$ for $i = 1, 2, \dots$. Then*

$$G^{(0)} = G \geq G^{(1)} = G' \geq G^{(2)} \geq \dots,$$

*where $G^{(i)}$ is called the i -th **derived subgroup** of G .*

(Exercise) It can be shown that $G^{(i)} \triangleleft G$ for all i .

Def. *A group G is said to be **solvable** if $G^{(n)} = \langle e \rangle$ for some n .*

Prop 2.48. *Every nilpotent group is solvable.*

Proof. Since $C_i(G)/C_{i-1}(G)$ is abelian, we have $C_i(G)' \leq C_{i-1}(G)$. If $C_n(G) = G$, then $G^{(n)} = (C_n(G))^{(n)} \leq (C_{n-1}(G))^{(n-1)} \leq \dots \leq C_0(G) = \langle e \rangle$. \square

Thm 2.49.

1. *Every subgroup or homomorphic image of a solvable group is solvable.*
2. *If $N \triangleleft G$, and N and G/N are solvable, then G is solvable.*

Proof.

1. Suppose that G is solvable. If $H \leq G$, then $H^{(i)} \leq G^{(i)}$. So H is solvable. If $f : G \rightarrow H$ is a homomorphism, then $f(G^{(i)}) = f(G)^{(i)}$. So $f(G)$ is solvable.
2. Assume that $N \triangleleft G$, and N and G/N are solvable. Then

$$\begin{aligned} N &= N^{(0)} > N^{(1)} > \cdots > N^{(s)} = \langle e \rangle \quad \text{and} \\ G/N &= (G/N)^{(0)} > (G/N)^{(1)} > \cdots > (G/N)^{(t)} = \{N\} \end{aligned}$$

for some $s, t \in \mathbb{N}$. Then $G^{(i)}N/N = (G/N)^{(i)}$ so that $G^{(t)} \leq N$. So $G^{(t+s)} \leq N^{(s)} = \langle e \rangle$.

□

Cor 2.50. *The symmetric group S_n for $n \geq 5$ is not solvable.*

A generalization of the Sylow theorems for finite solvable groups is below:

Prop 2.51 (P. Hall). *Let G be a finite solvable group of order mn , with $\gcd(m, n) = 1$. Then*

1. *G contains a subgroup of order m ; conversely, if G is a finite group such that whenever $|G| = mn$ with $\gcd(m, n) = 1$, G has a subgroup of order m , then G is solvable.*
2. *any two subgroups of G of order m are conjugate;*
3. *any subgroup of G of order k , where $k \mid m$, is contained in a subgroup of order m .*

The proof is skipped. P. Hall also shown that: If G is a finite group having a p -complement for every prime factor p of $|G|$, then G is solvable.

Every finite group of odd order is solvable [conjectured by Burnside, proved by W. Feit and J. Thompson in 1963].