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2.7 Nilpotent and Solvable Groups

2.7.1 Nilpotent Groups

The center C(G) of a group G is a normal subgroup. Define C0(G) = 〈e〉, and Ci(G) the inverse
image of C(G/Ci−1(G)) under the canonical projection G → G/Ci−1(G), for i = 1, 2, · · · .
There is the ascending central series of G:

C0(G) = 〈e〉 ≤ C1(G) = C(G) ≤ C2(G) ≤ · · · (2.3)

In general, if Ci ≤ Ci+1 ≤ G, CiCG and Ci+1/CiCG/Ci, then Ci+1CG. Therefore, Ci(G)CG
for all i, by induction. (Excise) For i = 1, 2, · · · ,

Ci(G) = {x ∈ G | xyx−1y−1 ∈ Ci−1(G) for all y ∈ G}. (2.4)

Def. A group G is nilpotent if Cn(G) = G for some n.

Every abelian group G is nilpotent since C1(G) = G. Every subgroup or homomorphic
image of a nilpotent group is nilpotent.

Thm 2.42. Every finite p-group G is nilpotent.

Proof. Every nontrivial quotient group of G is a finite p-group. Therefore, if G/Ci(G) is
nontrivial, then C(G/Ci(G)) is nontrivial (Lemma 2.31) so that Ci(G) � Ci+1(G). So Cn(G) =
G for some n.

Thm 2.43. If G =
∏k
j=1Gj, then G is nilpotent if and only if all Gj are nilpotent.

Proof. Use Ci(G) =
∏k
j=1Ci(Gj), which can be proved by induction or by (2.4).

Lem 2.44. Assume G is nilpotent. If H � G, then H � NG(H).

Proof. Let n be the largest integer such that Cn(G) ≤ H. Choose a ∈ Cn+1(G)\H. Then for
h ∈ H, aha−1h−1 ∈ Cn ≤ H. Thus aha−1 ∈ H. Thus a ∈ NG(H)\H.

Thm 2.45. A finite group G is nilpotent if and only if it is the direct product of its Sylow
subgroups.

Proof. If G is a direct product of Sylow subgroups, then G is nilpotent [Theorem 2.42 and
Theorem 2.43]. Conversely, suppose G is nilpotent. For every Sylow subgroup P of G,
NG(NG(P )) = NG(P ) [Proposition 2.36]. Therefore, NG(P ) = G [Lemma 2.44]. Then P CG.
Suppose that |G| has distinct prime factors p1, p2, · · · , pk. For each pi there is a unique
Sylow pi-subgroup Pi C G [Second Sylow Theorem]. Then 〈P1, P2, · · · , Pk〉 = P1P2 · · ·Pk.
Moreover, Pi ∩ (P1P2 · · ·Pi−1Pi+1 · · ·Pk) = {e} by investigating the possible orders of its
elements. Therefore, P1P2 · · ·Pk = P1 × P2 × · · · × Pk. Thus G = P1 × P2 × · · · × Pk by
comparing their orders.
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Cor 2.46. If G is a finite nilpotent group, then G contains a subgroup of order m for any
factor m of |G|.

2.7.2 Solvable Groups

Def. Let G be a group. For a, b ∈ G, the element aba−1b−1 is called a commutator. The
subgroup of G generated by all commutators:

G′ := 〈aba−1b−1 | a, b ∈ G〉

is called the commutator subgroup of G.

Thm 2.47. G′CG. Moreover, G′ is the smallest normal subgroup such that G/G′ is abelian.
Precisely, N CG and G/N is abelian iff G′ ≤ N ≤ G.

Proof. Let f : G→ G be any automorphism. Then f(G′) ≤ G′ since

f(aba−1b−1) = f(a)f(b)f(a)−1f(b)−1 ∈ G′.

In particular, for any a ∈ G, if f(g) = aga−1 for g ∈ G, then aG′a−1 ≤ G′. Hence G′ C G.
Since abG′ = ab(b−1a−1ba)G′ = baG′, G/G′ is abelian.

If N CG and G/N is abelian, then xyN = yxN for all x, y ∈ G; then x−1y−1xy ∈ N for
all x, y ∈ G; then G′ ≤ N . The converse is easy.

Def. For a group G, let G(0) := G and G(i) := (G(i−1))′ for i = 1, 2, · · · . Then

G(0) = G ≥ G(1) = G′ ≥ G(2) ≥ · · · ,

where G(i) is called the i-th derived subgroup of G.

(Exercise) It can be shown that G(i) CG for all i.

Def. A group G is said to be solvable if G(n) = 〈e〉 for some n.

Prop 2.48. Every nilpotent group is solvable.

Proof. Since Ci(G)/Ci−1(G) is abelian, we have Ci(G)′ ≤ Ci−1(G). If Cn(G) = G, then
G(n) = (Cn(G))(n) ≤ (Cn−1(G))(n−1) ≤ · · · ≤ C0(G) = 〈e〉.

Thm 2.49.

1. Every subgroup or homomorphic image of a solvable group is solvable.

2. If N CG, and N and G/N are solvable, then G is solvable.

Proof.
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1. Suppose that G is solvable. If H ≤ G, then H(i) ≤ G(i). So H is solvable. If f : G→ H
is a homomorphism, then f(G(i)) = f(G)(i). So f(G) is solvable.

2. Assume that N CG, and N and G/N are solvable. Then

N = N (0) > N (1) > · · · > N (s) = 〈e〉 and
G/N = (G/N)(0) > (G/N)(1) > · · · > (G/N)(t) = {N}

for some s, t ∈ N. Then G(i)N/N = (G/N)(i) so that G(t) ≤ N . So G(t+s) ≤ N (s) = 〈e〉.

Cor 2.50. The symmetric group Sn for n ≥ 5 is not solvable.

A generalization of the Sylow theorems for finite solvable groups is below:

Prop 2.51 (P. Hall). Let G be a finite solvable group of order mn, with gcd(m,n) = 1. Then

1. G contains a subgroup of order m; conversely, if G is a finite group such that whenever
|G| = mn with gcd(m,n) = 1, G has a subgroup of order m, then G is solvable.

2. any two subgroups of G of order m are conjugate;

3. any subgroup of G of order k, where k | m, is contained in a subgroup of order m.

The proof is skipped. P. Hall also shown that: If G is a finite group having a p-complement
for every prime factor p of |G|, then G is solvable.

Every finite group of odd order is solvable [conjectured by Burnside, proved by W. Feit
and J. Thompson in 1963].


