3.2 Ideals

Ideals to the rings are as normal subgroups to the groups.

Def. Let \((R, +, \cdot)\) be a ring.

- \(S\) is a **subring** of \(R\), denoted \(S \subseteq R\), if \(S \subseteq R\) and \((S, +, \cdot)\) is a ring.

- A subring \(I\) is a **left ideal** [resp. **right ideal**] of \(R\) if \(r \in R\) and \(x \in I\) implies that \(rx \in I\) [resp. \(xr \in I\)].

- A subring \(I\) is an **ideal** of \(R\), denoted \(I \trianglelefteq R\), if it is both a left and right ideal.

- An ideal \(I\) is **proper** if \(I \neq 0\) and \(I \neq R\).

If \(R\) has unity \(1_R\), then a nonzero ideal is proper iff it contains no units of \(R\).

Ex. The **center** of a ring \(R\) is \(C = \{c \in R \mid cr = rc\text{ for all }r \in R\}\). It is a subring but not necessarily an ideal.

Thm 3.5. A nonempty subset \(I\) of a ring \(R\) is an ideal iff for all \(a, b \in I\) and \(r \in R\):

1. \(a, b \in I\) implies that \(a - b \in I\); and
2. \(a \in I, r \in R\) implies that \(ar, ra \in I\).

Cor 3.6. If \(\{A_i \mid i \in I\}\) is a family of ideals of \(R\), then \(\bigcap_{i \in I} A_i\) is an ideal of \(R\).

Def.

- Let \(X \subseteq R\). Let \(\{A_i \mid i \in I\}\) be the family of ideals that contain \(X\). Then \((X) := \bigcap_{i \in I} A_i\) is called the **ideal** generated by \(X\). The elements of \(X\) are called the **generators** of the ideal \((X)\).

- If an ideal \(I = (X)\) where \(|X|\) is finite, then \(I\) is **finitely generated**.

- An ideal \((x)\) generated by an element is a **principal ideal**.

- A **principal ideal ring** (PIR) is a ring in which every ideal is principal.

- A **principal ideal domain** (PID) is a domain as well as a PIR.

Thm 3.7. Let \(R\) be a ring, \(a \in R\), and \(X \subseteq R\).

- The **principal ideal**

 \[
 (a) = \left\{ ra + as + na + \sum_{i=1}^{m} r_isi \mid r, s, r_i, s_i \in R, \ n \in \mathbb{Z}, \ m \in \mathbb{N}^* \right\}.
 \]
3.2. IDEALS

1. If R has unity, then $(a) = \{ \sum_{i=1}^{m} r_i a_i s_i \mid r_i, s_i \in R, \ m \in \mathbb{N}^* \}.$
2. If a is in the center of R, then $(a) = \{ ra + na \mid r \in R, \ n \in \mathbb{Z} \}.$

- $Ra = \{ ra \mid r \in R \}$ is a left ideal of R. If R has unity, then $a \in Ra$.
- If R has unity and X is in the center of R, then $(X) = \{ \sum_{i=1}^{m} r_i a_i \mid n \in \mathbb{N}^*, \ r_i, a_i \in X \}.$

Thm 3.8. Let $A, B, C, A_1, \cdots, A_n$ be [left] ideals of a ring R.

1. $A_1 + A_2 + \cdots + A_n$ and $A_1 A_2 \cdots A_n$ are [left] ideals.
2. $(A + B) + C = A + (B + C)$.
3. $(AB)C = ABC = A(BC)$.
4. $B(\sum_{i=1}^{n} A_i) = \sum_{i=1}^{n} BA_i$ and $(\sum_{i=1}^{n} A_i)C = \sum_{i=1}^{n} A_i C$.

When I is a subring of R, the set

$$R/I = \{ a + I \mid a \in I \}$$

is a well defined additive group. To make it a ring, we must have

$$(a + I)(b + I) = ab + aI + Ib + I = ab + I.$$

That is, $aI, Ib \subseteq I$. Therefore, I must be an ideal of R. It shows that ideals to rings are like normal subgroups to groups.

Thm 3.9. Let R be a ring and $I \subseteq R$. Then R/I is a ring with the multiplication $(a+I)(b+I) = ab + I$. If R is commutative or has an unity, then the same is true of R/I.

Thm 3.10. Let $f : R \to S$ be a ring homomorphism. Then $\text{Ker} f \subseteq R$ and $\text{Im} f \subseteq S$. Conversely, for any ideal $I \subseteq R$, there is the canonical projection $\pi : R \to R/I$, defined by $a \mapsto a + I$, such that $\text{Ker} \pi = I$.

Thm 3.11.

1. (First Isomorphism Theorem) Every ring homomorphism $f : R \to S$ induces a ring isomorphism

$$R/\text{Ker} f \simeq \text{Im} f$$

by $a + \text{Ker} f \mapsto f(a)$.
2. (Second Isomorphism Theorem) If \(I, J \subseteq R \), then
\[
I/(I \cap J) \simeq (I + J)/J.
\]

3. (Third Isomorphism Theorem) If \(I, J \subseteq R \) and \(I \subseteq J \), then \(J/I \trianglelefteq R/I \) and
\[
(R/I)/(J/I) \simeq R/J.
\]

Remark. There is a one-to-one correspondence between the set of all ideals of \(R \) which contain \(I \) and the set of all ideals of \(R/I \), given by \(J \mapsto J/I \).

Def. An ideal \(P \) of a ring \(R \) is **prime** if \(P \neq R \) and for any \(A, B \subseteq R \):
\[
AB \subseteq P \quad \Rightarrow \quad A \subseteq P \quad \text{or} \quad B \subseteq P.
\]

Thm 3.12. Suppose \(P \subseteq R \) and \(P \neq R \). If for all \(a, b \in R \),
\[
ab \in P \quad \Rightarrow \quad a \in P \quad \text{or} \quad b \in P,
\]
then \(P \) is prime. Conversely, if \(R \) is commutative with unity and \(P \) is prime, then (3.1) holds.

Proof. Suppose \(ab \in P \) implies that \(a \in P \) or \(b \in P \). Given \(A, B \subseteq R \) with \(AB \subseteq P \), if \(A \not\subseteq P \), then there is \(a \in A \setminus P \). Then \(ab \in P \) for all \(b \in B \), which implies that \(b \in P \). So \(B \subseteq P \). Thus \(P \) is prime.

Conversely, if \(R \) is commutative with unity and \(P \) is prime, then \((a) = aR \) and for \(a, b \in R \) with \(ab \in P \), \((a)(b) = (ab) \subseteq P \) so that \((a) \subseteq P \) or \((b) \subseteq P \), that is, \(a \in P \) or \(b \in P \). \(\Box \)

Thm 3.13. Suppose \(R \) is a commutative ring with unity \(1_R \neq 0 \). Then an ideal \(P \) is prime iff \(R/P \) is an integral domain.

Proof. Let \(P \triangleleft R \). Then \(R/P \) is a commutative ring with unity.

Suppose that \(P \) is prime in \(R \). Then \((a + P)(b + P) = P \) iff \(ab \in P \), iff \(a \in P \) or \(b \in P \), iff \(a + P = P \) or \(b + P = P \). So \(R/P \) is an integral domain.

Conversely, suppose that \(R/P \) is an integral domain. Then \(ab \in P \) iff \((a + P)(b + P) = P \), iff \(a + P = P \) or \(b + P = P \), iff \(a \in P \) or \(b \in P \). So \(P \) is prime. \(\Box \)

Def. An \([left]\) ideal \(M \) in a ring \(R \) is said to be **maximal** if \(M \neq R \) and there is no proper \([left]\) ideal containing \(M \).
3.2. IDEALS

Proof. Use Zorn’s Lemma.

Thm 3.15. Let \(R \) be a ring with unity, and \(M \subseteq R \).

1. If \(R \) is commutative and \(M \) is maximal, then \(R/M \) is a field.

2. If \(R/M \) is a division ring, then \(M \) is maximal.

Proof.

1. Suppose \(R \) is commutative with unity and \(M \) is maximal. Then \(R/M \) is commutative with unity. For any \(a \in R\setminus M \), if \(a + M \) is not a unit in \(R/M \), then \((a + M) = \{ b + M \mid b \in (a) \} \) is a proper ideal of \(R/M \), whence \((a) + M \) is a proper ideal of \(R \) that contains \(M \), a contradiction to the maximality of \(M \). Therefore \(R/M \) is a field.

2. If \(R/M \) is a division ring, then it contains no nonzero proper ideal. Hence there is no proper ideal of \(R \) that strictly contains \(M \). So \(M \) is maximal.

Cor 3.16. If \(R \) is a commutative ring with unity, then every maximal ideal \(M \) is prime.

Proof. If \(M \) is maximal, then \(R/M \) is a field, which is a domain. So \(M \) is prime.

Remark. The converse is false. e.g. \((0)\) is prime in \(\mathbb{Z} \), but \((0)\) is not maximal.

Cor 3.17. A commutative ring \(R \) with unity is a field iff \((0)\) is a maximal ideal.

Let \(\{ A_i \mid i \in I \} \) be a family of rings. The external/internal direct product \(\prod_{i \in I} A_i \) in additive group category becomes a ring with the induced addition and multiplication, which is the external/internal direct product of \(\{ A_i \mid i \in I \} \) in ring category.

Def. Let \(A \subseteq R \) and \(a,b \in R \). Then \(a \) is said to congruent to \(b \) modulo \(A \), denoted \(a \equiv b \pmod{A} \), if \(a - b \in A \) or \(a + A = b + A \).

Lem 3.18. If \(a_1 \equiv a_2 \pmod{A} \) and \(b_1 \equiv b_2 \pmod{A} \), then

\[a_1 + b_1 \equiv a_2 + b_2 \pmod{A}, \quad a_1b_1 \equiv a_2b_2 \pmod{A}. \]

Thm 3.19 (Chinese Remainder Theorem). Let \(R \) be a ring with unity. Let \(A_1, \ldots, A_n \) be ideals of \(R \) such that \(A_i + A_j = R \) for all \(i \neq j \). Then for any \(b_1, \ldots, b_n \in R \), there exists \(b \in R \) such that

\[b \equiv b_i \pmod{A_i} \quad (i = 1, 2, \cdots, n). \]

Furthermore \(b \) is uniquely determined up to congruence modulo the ideal \(A_1 \cap A_2 \cap \cdots \cap A_n \).
Chapter 3. Rings

Proof. We have \(R = A_1 + A_2 \). Assume inductively that
\[
R = A_1 + (A_2 \cap \cdots \cap A_{k-1}).
\]
Then
\[
R = R^2 = (A_1 + (A_2 \cap \cdots \cap A_{k-1}))(A_1 + A_k) \subseteq A_1 + (A_2 \cap \cdots \cap A_{k-1} \cap A_k).
\]
Therefore, \(R = A_1 + (A_2 \cap \cdots \cap A_k) \) and the induction step is proved.

Now for \(1 \leq k \leq n \), \(R = A_k + \left(\bigcap_{i \neq k} A_i \right) \).
For any \(b_k \in R \), there is \(a_k \in A_k \) and \(r_k \in \bigcap_{i \neq k} A_i \) such that \(b_k = a_k + r_k \). Then
\[
r_k \equiv b_k \mod A_k, \quad \text{and} \quad r_k \equiv 0 \mod A_i \quad \text{for} \quad i \neq k.
\]
Denote \(b := r_1 + \cdots + r_n \). Verify that
\[
b \equiv b_i \mod A_i \quad (i = 1, 2, \ldots, n).
\]
If \(c \in R \) such that \(c \equiv b_i \mod A_i \) for all \(i \), then \(c - b \equiv 0 \mod A_i \) for all \(i \). Therefore \(c - b \in \bigcap_{i=1}^n A_i \) for all \(i \) and \(c \equiv b \mod \bigcap_{i=1}^n A_i \).

Cor 3.20. Let \(m_1, \ldots, m_n \in \mathbb{N}^* \) such that \(\gcd(m_i, m_j) = 1 \) for \(i \neq j \). If \(b_1, \ldots, b_m \in \mathbb{Z} \), then the system of congruence equation
\[
x \equiv b_i \mod m_i \quad (i = 1, \ldots, n)
\]
has a integral solution unique modulo \(m = m_1m_2 \cdots m_n \).

Proof. Let \(A_i = (m_i) \). Then \(\bigcap_{i=1}^n A_i = (m) \) where \(m = \text{lcm}(m_1, \ldots, m_n) \). Note that \(\gcd(m_i, m_j) = 1 \) iff \(A_i + A_j = \mathbb{Z} \). Apply Theorem 3.19 to prove the result.

Cor 3.21. If \(A_1, \ldots, A_n \) are ideals in a ring \(R \) with unity, then there is a ring monomorphism
\[
\theta : R/(A_1 \cap \cdots \cap A_n) \rightarrow (R/A_1) \times (R/A_2) \times \cdots \times (R/A_n)
\]
defined by \(r + (A_1 \cap \cdots \cap A_n) \mapsto (r + A_1, \ldots, r + A_n) \). If \(A_i + A_j = R \) for all \(i \neq j \), then \(\theta \) is a ring isomorphism.

Proof. Define \(\pi : R \rightarrow (R/A_1) \times \cdots \times (R/A_n) \) by \(r \mapsto (r + A_1, \ldots, r + A_n) \). Then \(\pi \) is a ring homomorphism with \(\ker \pi = \bigcap_{i=1}^n A_i \). This induces the monomorphism \(\theta \). If \(A_i + A_j = R \) for all \(i \neq j \), then Chinese Remainder Theorem says that \(\theta \) is an epimorphism and thus an isomorphism.