3.6 Factorization in Polynomial Rings

In this section, let \(R \) be an integral domain.

The polynomial ring \(R[x_1, \cdots, x_n] \) consists of elements of a finite sum of monomials \(ax_1^{k_1} \cdots x_n^{k_n} \) with \(a \in R \) and \(k_1, \cdots, k_n \in \mathbb{N} \).

Define \(\deg 0 := -\infty \) for \(0 \in R[x] \).

Thm 3.29. Let \(f, g \in R[x_1, \cdots, x_n] \).

1. \(\deg(f + g) \leq \max(\deg f, \deg g) \).
2. \(\deg(fg) = \deg f + \deg g \).

Thm 3.30 (The Division Algorithm). Suppose \(f, g \in R[x] \) where the leading coefficient of \(g \) is a unit in \(R \). Then there exist unique polynomials \(q, r \in R[x] \) such that

\[
f = qg + r \quad \text{and} \quad \deg r < \deg g.
\]

It can be proved by induction on \(\deg f \).

Cor 3.31. If \(F \) is a field, then \(F[x] \) is a Euclidean domain, whence \(F[x] \) is a PID and a UFD.

Proof. Define \(\varphi : F[x] - \{0\} \to \mathbb{N} \) by \(\varphi(f) = \deg f \). Verify that \(F[x] \) with \(\varphi \) is a Euclidean domain. □

Cor 3.32 (Remainder Theorem). For any \(f(x) \in R[x] \) and \(c \in R \), there exists a unique \(q(x) \in R[x] \) such that

\[
f(x) = (x - c)q(x) + f(c).
\]

An \(n \)-tuple \((c_1, \cdots, c_n) \in R^n \) is called a root of \(f \in R[x_1, \cdots, x_n] \) if \(f(c_1, \cdots, c_n) = 0 \).

Cor 3.33. An element \(c \in R \) is a root of \(f \in R[x] \) iff \(x - c \) divides \(f \).

Thm 3.34. If \(f \in R[x] \) has degree \(n \), then \(f \) has at most \(n \) distinct roots in \(R \).

If \(f(x) = (x - c)^mg(x) \) where \(m \in \mathbb{N}^* \) and \((x - c) \nmid g(x) \), then \(m \) is called the multiplicity of the root \(c \) of \(f \). When \(m > 1 \), \(c \) is called a multiple root.

The formal derivative of \(f = \sum_{i=0}^{n} a_ix^i \in R[x] \) is \(f' = \sum_{k=1}^{n} ka_kx^{k-1} \).

Thm 3.35. Let \(f \in R[x] \) and \(c \in R \).

1. \(c \) is a multiple root of \(f \) iff \(f(c) = 0 \) and \(f'(c) = 0 \).
2. if \(R \) is a field and \(f' \) is relatively prime to \(f \), then \(f \) has no multiple roots in \(R \).
Def. The quotient field of an integral domain R is:

$$F := \{(a,b) \mid a \in R, b \in R - \{0\}\}/\sim,$$

where $(a_1,b_1) \sim (a_2,b_2)$ iff $a_1b_2 = a_2b_1$. Denote (a,b) by $\frac{a}{b}$ for convenience. F is a field under the operations:

$$\frac{a_1}{b_1} + \frac{a_2}{b_2} = \frac{a_1b_2 + a_2b_1}{b_1b_2}, \quad \frac{a_1}{b_1} \cdot \frac{a_2}{b_2} = \frac{a_1a_2}{b_1b_2}.$$

From now on, let R be a UFD and F the quotient field of R unless otherwise specified.

Prop 3.36. Let R be a UFD with quotient field F. Let $f = \sum_{i=0}^{n} a_i x^i \in R[x]$. If $u = c/d$ is a root of f, where gcd$(c,d) = 1$ in R, then $c | a_0$ and $d | a_n$ in R.

Proof. $f(u) = 0$ implies that $a_0 d^n = c \left(\sum_{i=1}^{n} (-a_i) c^{i-1} d^{n-i} \right)$ and $-a_n c^n = \left(\sum_{i=0}^{n-1} c^i d^{n-i-1} \right) d$. Consequently, if gcd$(c,d) = 1$, then $c | a_0$ and $d | a_n$. \qed

Ex. If $R = \mathbb{Z}$, then $F = \mathbb{Q}$. The proposition may be used to find the possible rational roots of a polynomial in $\mathbb{Z}[x]$ or $\mathbb{Q}[x]$.

Def. A **content** of $f = \sum_{i=0}^{n} a_i x^i \in R[x]$ is defined by: $C(f) := \gcd(a_0, \ldots, a_n)$.

$C(f)$ is unique up to associate.

f is called **primitive** if a_0, \ldots, a_n are relatively prime, i.e. $C(f) = 1_R$.

Every irreducible $f \in R[x]$ is primitive.

Lem 3.37. Let R be a UFD with quotient field F. Let $f, g \in R[x]$.

1. $f = C(f)f_1$ where f_1 is primitive in $R[x]$.
2. $C(fg) = C(f)C(g)$.
3. f and g are associates in $R[x]$ iff they are associates in $F[x]$.
4. f is irreducible in $R[x]$ iff f is irreducible in $F[x]$.

Check [Hungerford, Algebra] for the short proofs.

Thm 3.38. If R is a UFD, then so is $R[x_1, \ldots, x_n]$.
3.6. FACTORIZATION IN POLYNOMIAL RINGS

Proof. We prove that $R[x]$ is a UFD and then apply induction. Let F be the quotient field of R. Let $f \in R[x]$. If $f \in R$, then f obviously has unique factorization. Otherwise, deg $f \geq 1$. Write $f = C(f)f_1$ where f_1 is primitive. Either $C(f)$ is a unit or $C(f) = c_1 \cdots c_m$ with each c_i irreducible in R and hence in $R[x]$. The field $F[x]$ is a UFD, so $f_1 = p_1^{e_1} \cdots p_n^{e_n}$ with each $p_i^{e_i}$ irreducible in $F[x]$. Write $p_i^{e_i} = (a_i/b_i)p_i$ where $a_i/b_i \in F$ and p_i is primitive in $R[x]$. Then p_i is irreducible in $F[x]$ and hence in $R[x]$. Let $a = a_1 \cdots a_n$, $b = b_1 \cdots b_n$. Then $bf_1 = ap_1 \cdots p_n$. Hence $C(b) = C(bf_1) = C(ap_1 \cdots p_n) = C(a)$. Thus $u := a/b$ is a unit in R. So $f = uc_1 \cdots c_mp_1 \cdots p_n$ is a product of irreducibles in $R[x]$. The uniqueness of factorization in $R[x]$ is implied by the uniqueness of factorization in $F[x]$. □

Thm 3.39 (Eisenstein’s Criterion). Let R be a UFD with F its quotient field. Let $f = \sum_{i=0}^{n} a_i x^i \in R[x]$ with deg $f \geq 1$. If there is an irreducible $p \in R$ such that

\[
p \nmid a_n; \quad p \mid a_i \text{ for } i = 0, \ldots, n-1; \quad p^2 \nmid a_0,
\]

then f is irreducible in $F[x]$. If f is primitive, then f is irreducible in $R[x]$.

The proof is omitted.

Ex. Use Eisenstein’s Criterion to show that:

1. $f = 2x^5 - 6x^3 + 9x^2 - 15 \in \mathbb{Z}[x]$ is irreducible in $\mathbb{Z}[x]$.

2. Suppose R is a UFD. Then $f = y^3 + x^2y^2 + x^3y + x \in R[x,y]$ is irreducible in $R[x,y]$.