Chapter 2

Modules

2.1 Modules, Homomorphisms, and Exact Sequences

(IV.1) Module over a ring R is a generalization of abelian group. You may view an R-mod as a "vector space over R".

Def. Let R be a ring. A left R-module is an additive abelian group A together with a function $R \times A \to A$ (by $(r,a) \mapsto ra$) such that for all $r,s \in R$ and $a,b \in A$:

- 1. r(a+b) = ra + rb.
- 2. (r+s)a = ra + sa.
- 3. r(sa) = (rs)a.

If R has an identity 1_R and

4. $1_R a = a$ for all $a \in A$,

then A is said to be a unitary R-module. If R is a division ring, then a unitary R-module is called a (left) vector space.

The right R-module are similarly defined.

In this chapter, we assume that R is a ring with identity, and the R-modules refer to the left unitary R-modules.

- **Ex.** A vector space V over a field F is a F-mod.
- **Ex.** Abelian group $(G, +) \iff Z$ -module G.
- **Ex.** subring $S \leq R \iff R$ is a S-mod.

Ex. Suppose I is a left ideal of R.

- 1. I is a left R-mod under ring multiplication. In particular, 0 and R are R-mods.
- 2. R/I is a left R-module with the multiplication $r(r_1 + I) := rr_1 + I$.

Ex. $\varphi: R \to S$ a ring homomorphism. Every S-module A can be made into an R-module by $rx := \varphi(r)x$ for $x \in A$. The R-mod structure of A is given by pullback along φ .

Ex. Let $R = \mathbb{C}^{3\times 3}$. Let $A = \mathbb{C}^{3\times 2}$. Then under matrix multiplication, A is a left R-mod.

Ex. Let A be an abelian group (resp. ring, vector space, module), and End A its (corresponding) endomorphism ring. Then A is a unitary End A-mod, with fa := f(a) for $f \in End A$ and $a \in A$.

Def. A an R-module. A subset B of A is a **submodule** of A (denoted by $B \leq_R A$ or $B \leq A$) if B is an additive subgroup of A and $rb \in B$ for all $r \in R$, $b \in B$.

Ex. • A subspace of a vector space is a submodule.

- A subgroup H of an abelian group G is a \mathbb{Z} -submodule of G.
- Both R[x] and R[[x]] are R-modules, and R[x] is an R-submodule of R[[x]].

Lem 2.1. A an R-mod. Then $B \subseteq A$ is an R-submod of A iff:

- 1. $a b \in B$ for all $a, b \in B$.
- 2. $ra \in B$ for all $r \in R$ and $a \in B$.

Thm 2.2. Let A be an R-module, $\{B_i \mid i \in I\}$ a family of submodules of A. Then $\bigcap_{i \in I} B_i$ and $\sum_{i \in I} B_i$ are submodules of A.

Ex. Let X be a subset of a R-mod A. The intersection of all submodules of A containing X is called the submodule generated by X.

Thm 2.3. Let R be a ring with identity, A a unitary left R-module.

1. Given $a \in A$, $Ra = \{ra \mid r \in R\}$ is the submodule of A generated by $\{a\}$. It is called the **cyclic submodule** generated by a.

2. Given a subset X of A, the submodule generated by X is

$$RX = \{\sum_{i=1}^{s} r_i a_i \mid s \in \mathbb{N} \cup \{0\}; \ a_i \in X; \ r_i \in R\} = \sum_{x \in X} Rx$$

Def. Let A and B be R-modules over R. A function $f: A \to B$ is an R-module homomorphism provided that for $a, c \in A$ and $r \in R$:

$$f(a+c) = f(a) + f(c)$$
 and $f(ra) = rf(a)$.

If R is a division ring, then an R-mod homom is called a linear transformation.

The **kernel** of $f: A \to B$ is the following submodule of A:

$$Ker f = \{a \in A \mid f(a) = 0\} \le A.$$

The **image** of f is the following submodule of B:

$$Im f = \{ f(a) \mid a \in A \} \le B.$$

Likewise, we can define R-module

monomorphism

 $\operatorname{Ker} f = \{0_A\}$

epimorphism

 $\operatorname{Im} f = B$

isomorphism

monomorphism + epimorphism

Ex. Let $f: A \to B$ be a R-mod homom.

- If C < A, then f(C) < B.
- If D < B, then $f^{-1}(D) = \{a \in A \mid f(a) \in D\} < A$.

Ex. An abelian group homomorphism $f: A \to B$ is a **Z**-mod homom.

Ex. Let A be a R-mod and $a \in A$. The map $\phi_a : R \to Ra$ given by $\phi_a(r) = ra$ is an epimorphism. The kernel

$$Ker \phi_a = \{r \in R \mid ra = 0_A\} := Ann(a)$$

is a left ideal of R.

Thm 2.4. Let A be an R-mod and $B \leq A$. Then the quotient group A/B is an R-module with

$$r(a+B) = ra + B$$
 for $r \in R$, $a \in A$.

The map $\pi: A \to A/B$ given by $a \mapsto a + B$ is an R-module epimorphism with kernel B (called canonical epimorphism or projection).

Similar to group and ring homomorphisms, we have three isomorphism theorem for *R*-module homomorphisms.

Thm 2.5. If $f: A \to A'$ is an R-mod homom, then $A/Kerf \simeq Imf$ as R-mods.

Thm 2.6. Let B and C be submods of an R-mod A.

- 1. $T B/(B \cap C) \simeq (B+C)/C$ as R-mods;
- 2. If $C \leq B$, then $B/C \leq A/C$, and $(A/C)/(B/C) \simeq A/B$ as R-mods.

(The constructions of isomorphisms are the same as those for groups.) We define the **product** and **coproduct** of *R*-modules.

Thm 2.7. Let R be a ring and $\{A_i \mid i \in I\}$ a nonempty family of R-modules, $\prod_{i \in I} A_i$ the direct product of the abelian groups A_i , and $\sum_{i \in I} A_i$ the direct sum of the abelian groups A_i .

- 1. $\prod_{i \in I} A_i$ is an R-module with the action of R given by $r\{a_i\} = \{ra_i\}$.
- 2. $\sum_{i \in I} A_i$ is an submodule of $\prod_{i \in I} A_i$.
- 3. For each $k \in I$, we have the commutative diagram:

$$A_k \xrightarrow{\iota_k} \prod_{i \in I} A_i \xrightarrow{\pi_k} A_k$$

where the canonical injection ι_k is an R-mod monomorphism, and the canonical projection π_k is an R-mod epimorphism. Similarly, we have the commutative diagram for coproduct (direct sum) of $\{A_i \mid i \in I\}$:

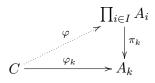
$$A_k \xrightarrow{\iota_k} \sum_{i \in I} A_i \xrightarrow{\pi_k} A_k$$

Thm 2.8. Let R be a ring and $\{A_i \mid i \in I\}$ a family of R-modules.

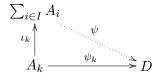
1. If C is an R-mod and $\{\varphi_i: C \to A_i \mid i \in I\}$ is a family of R-mod homoms, then there is a unique R-mod homom $\varphi: C \to \prod_{i \in I} A_i$

31

such that $\pi_k \circ \varphi = \varphi_k$ for all $k \in I$. The R-mod $\prod_{i \in I} A_i$ is uniquely determined up to isomorphism by this property.



2. If D is an R-mod and $\{\psi_i : A_i \to D \mid i \in I\}$ is a family of R-mod homoms, then there is a unique R-mod homom $\psi : \sum_{i \in I} A_i \to D$ such that $\psi \circ \iota_k = \psi_k$ for all $k \in I$. The R-mod $\sum_{i \in I} A_i$ is uniquely determined up to isomorphism by this property.



(proof)

Thm 2.9. Let R be a ring and $\{A_i \mid i \in I\}$ a family of submodules of an R-module A such that

- 1. A is the sum of the family $\{A_i \mid i \in I\}$;
- 2. for each $k \in I$, $A_k \cap A_k^* = \{0\}$, where A_k^* is the sum of the family $\{A_i \mid i \neq k\}$. Then there is an isomorphism $A \simeq \sum_{i \in I} A_i$.

(exercise)

Def. A pair of module homomorphisms $A \xrightarrow{f} B \xrightarrow{g} C$ is said to be **exact** at B provided Im f = Kerg. A sequence of module homomorphisms

$$\cdots \xrightarrow{f_{i-1}} A_{i-1} \xrightarrow{f_i} A_i \xrightarrow{f_{i+1}} A_{i+1} \xrightarrow{f_{i+2}} \cdots$$

is exact provided that $Im f_i = Ker f_{i+1}$ for all indices i.

Note that for any module A, there are unique module homomorphisms $0 \to A$ and $A \to 0$.

1. The sequence of R-mod homoms $0 \to A \xrightarrow{f} B$ is exact if and only if f is a monomorphism.

- 2. The sequence of R-mod homoms $B \stackrel{g}{\to} C \to 0$ is exact if and only if g is a epimorphism.
- 3. If $A \xrightarrow{f} B \xrightarrow{g} C$ is exact, then gf = 0.

An exact sequence of the form $0 \to A \xrightarrow{f} B \xrightarrow{g} C \to 0$ is called a **short exact sequence**. In such a sequence,

$$A \simeq \operatorname{Im} f = \operatorname{Ker} q$$
, $B/A \simeq B/\operatorname{Ker} q \simeq \operatorname{Im} q = C$.

In general, if A is a submod of B, then we have the exact sequence

$$0 \to A \xrightarrow{\iota} B \xrightarrow{\pi} B/A \to 0$$

Ex. If $f: A \to B$ is an R-mod homom, then A/Kerf is the **coimage** of f (denoted Coimf), and B/Imf is the **cokernel** of f (denoted Cokerf). We have the exact sequences:

$$\begin{split} 0 \to Kerf \to A \to Coim \, f \to 0 \\ 0 \to Im \, f \to B \to Coker \, f \to 0 \\ 0 \to Ker \, f \to A \xrightarrow{f} B \to Coker \, f \to 0 \end{split}$$

Lem 2.10. (The Short Five Lemma) Let R be a ring and

$$0 \longrightarrow A \xrightarrow{f} B \xrightarrow{g} C \longrightarrow 0$$

$$\downarrow^{\alpha} \qquad \downarrow^{\beta} \qquad \downarrow^{\gamma}$$

$$0 \longrightarrow A' \xrightarrow{f'} B' \xrightarrow{g'} C' \longrightarrow 0$$

a commutative diagram of R-mod homoms such that each row is a short exact sequence. Then

- 1. α and γ are monomorphisms $\Longrightarrow \beta$ is a monomorphism;
- 2. α and γ are epimorphisms $\Longrightarrow \beta$ is a epimorphism;
- 3. α and γ are isomorphisms $\Longrightarrow \beta$ is a isomorphism; (proof)

When α , β , and γ above are isomorphisms, the row short exact sequences are said to be **isomorphic**, and we have the commutative diagram:

$$0 \longrightarrow A \xrightarrow{f} B \xrightarrow{g} C \longrightarrow 0$$

$$\uparrow^{\alpha^{-1}} \uparrow^{\beta^{-1}} \uparrow^{\gamma^{-1}}$$

$$0 \longrightarrow A' \xrightarrow{f'} B' \xrightarrow{g'} C' \longrightarrow 0$$

Thm 2.11. Let R be a ring and $0 \to A_1 \xrightarrow{f} B \xrightarrow{g} A_2 \to 0$ a short exact sequence of R-mod homoms. Then the following conditions are equivalent:

- 1. There is a R-mod homom $h: A_2 \to B$ with $gh = 1_{A_2}$;
- 2. There is a R-mod homom $k: B \to A_1$ with $kf = 1_{A_1}$;
- 3. The given sequence is isomorphic to the direct sum short exact sequence $0 \to A_1 \stackrel{\iota_1}{\to} A_1 \oplus A_2 \stackrel{\pi_2}{\to} A_2 \to 0$; in particular $B \simeq A_1 \oplus A_2$. We call such a sequence a split exact sequence.

(proof)

2.2 Free Modules and Vector Spaces

(IV.2)

Def. Let A be an R-mod and X a subset of A.

- X is linearly independent if for distinct $x_1, \dots, x_n \in X$ and $r_i \in R$, $r_1x_1 + \dots + r_nx_n = 0 \implies r_i = 0$ for every i.
- X spans A if every $a \in A$ can be written as $a = r_1x_1 + \dots + r_nx_n \quad \text{for} \quad r_1, \dots, r_n \in R, \quad x_1, \dots, x_n \in X.$
- X is a basis of A if X is linearly independent and X spans A.

Def. A unitary R-mod A with a nonempty basis X is called a **free** R-module on the set X.

Ex.

- 1. A finitely generated free abelian group is isomorphic to \mathbb{Z}^n . It is a free \mathbb{Z} -mod.
- 2. The vector space \mathbf{K}^n for a field \mathbf{K} is a free module of \mathbf{K} . It can be generated by n elements (i.e. $\dim_{\mathbf{K}} \mathbf{K}^n = n$). We can define linear independence, spanning set, basis, dimensions, etc, on \mathbf{K}^n .
- 3. \mathbf{Z}_m for $m \in \mathbf{N}$ is <u>not</u> a free **Z**-module.
- 4. Q is <u>not</u> a free **Z**-mod. However, **Q** is a free **Q**-mod. Similarly, **R** and **C** are <u>not</u> free **Z**-mods.
- 5. A ring R with no zero divisor is a free R-mod.

Thm 2.12. The following conditions on a unitary R-mod F are equivalent:

- 1. F has a nonempty basis;
- 2. F is the internal direct sum of a family of cyclic R-mods, each of which is isomorphic as a left R-mod to R.
- 3. F is isomorphic to a direct sum of copies of the left R-mod R;
- 4. there exists a nonempty set X and a function $\iota: X \to F$ with the following property: given any unitary R-mod A and function $f: X \to A$, there exists a unique R-mod homom $\overline{f}: F \to A$ such that $\overline{f}\iota = f$.

(proof)

Cor 2.13. Every unitary R-mod A is the homomorphic image of a free R-mod F. If A is finitely generated, then F may be chosen to be finitely generated.

(proof)

Thm 2.14. Let R be a ring with identity and F a free R-mod with an <u>infinite</u> basis X, then every basis of F has the same cardinality as X.

Proof. Let Y be another basis of R.

1. Claim: Y is infinite.

Suppose on the contrary, Y were finite. Since every element of Y is a linear combination of a finite number of elements of X, there is a finite subset $\{x_1, \dots, x_m\}$ of X that generates all elements of Y and thus generates F. Then every $x \in X - \{x_1, \dots, x_m\}$ is a linear combination of x_1, \dots, x_m , which contradicts the linear independence of X. So Y is infinite.

2. Claim: Y has the same cardinality as X.

Let K(Y) be the set of all finite subsets of Y. Then |K(Y)| = |Y|. Define a map $f: X \to K(Y)$ by $x \mapsto \{y_1, \dots, y_n\}$, where $x = r_1y_1 + \dots + r_ny_n$ and $r_i \neq 0$ for all i. It is well-defined since Y is a basis of F.

For every $T \in K(Y)$, $f^{-1}(T)$ is a finite subset of X (by the similar argument as in the preceding paragraph). For each $T \in \text{Im } f$, order the elements of $f^{-1}(T)$, say x_1, \dots, x_n , and define an injective map $g_T: f^{-1}(T) \to \text{Im } f \times \mathbf{N}$ by $x_k \mapsto (T, k)$. Then we get an injective map $X \to \text{Im } f \times \mathbf{N}$. Therefore,

$$|X| \le |\operatorname{Im} f \times \mathbf{N}| = |\operatorname{Im} f| \le |K(Y)| = |Y|.$$

Similar argument shows that $|Y| \leq |X|$. Therefore, |Y| = |X|.

Theorem 2.14 works only on free R-mods with *infinite cardinality* bases. For finitely generated R-modules, we consider the rings R with invariant dimension property.

Def. Suppose ring R satisfies that any two bases of any free R-mod F have the same cardinality. Then R is said to have the **invariant dimension property (IDP)** and the cardinality number of any basis of F is called the **dimension** (or **rank**) of F over R.

Prop 2.15. Let E and F be free mods over a ring R with the IDP. Then $E \simeq F$ if and only if E and F have the same dimension. (exercise)

Lem 2.16. R a ring with identity. $I \triangleleft R$. F a free R-mod with basis X. $\pi: F \rightarrow F/IF$ the canonical projection. Then F/IF is a free R/I-mod with basis $\pi(X)$ and $|\pi(X)| = |X|$.

(sketch of proof: 1. $\pi(X)$ generates F/IF. 2. $\pi(X)$ are linearly independent. 3. $|\pi(X)| = |X|$.)

Prop 2.17. Let $f: R \to S$ be a nonzero epimorphism of rings with identity. If S has the IDP, then so does R.

(Use Lemma 2.16 and $S \simeq R/I$ for $I := \operatorname{Ker} f \triangleleft R$.)

Ex. Some examples of rings with IDP

- 1. If R is a ring with identity that has a homomorphic image which is a division ring, then R has the IDP. In particular, every commutative ring with identity has the IDP.
- 2. Every division ring D has IDP. In fact, every D-mod V is free. V is called a vector space over D.

Prop 2.18. Let V be a vector space over a division ring D.

- 1. V always has a basis and is a free D-mod.
- 2. Every maximal linearly independent subset X of V is a basis of V.
- 3. If Y is a subset of V that spans V, then Y contains a basis of V.
- 4. Every two bases of V have the same cardinality.

Prop 2.19. Let V be a vector space over a division ring D. Let W and U be subspaces of V.

1. $\dim_D V = \dim_D W + \dim_D (V/W)$. In particular, $\dim_D W \leq \dim_D V$; and if $\dim_D W = \dim_D V$ is finite, then W = V.

2. $\dim_D U + \dim_D W = \dim_D (U + W) + \dim_D (U \cap W)$.

(Proof by constructing the bases.)

The following result would be used in Galois Theory.

Thm 2.20. Let R, S, T be division rings such that $R \subset S \subset T$. Then

$$\dim_R T = (\dim_S T)(\dim_R S).$$

Precisely, if $\{s_i \mid i \in I\}$ is a basis of S over R, and $\{t_j \mid j \in J\}$ is a basis of T over S, then $\{s_it_j \mid i \in I, j \in J\}$ is a basis of T over R.

2.3 Projective and Injective Modules

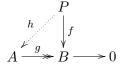
(IV.3)

2.3.1 Projective Modules

Def. An R-mod P is **projective** if given any R-mod homom diagram

$$P \\ \downarrow f \\ A \xrightarrow{g} B \longrightarrow 0$$

with bottom row exact (i.e. g an epimorphism), there exists an R-mod homom $h: P \to A$ such that $g \circ h = f$:



Projective modules include all free modules:

Thm 2.21. Every free R-module is projective.

(Proof: Suppose F is a free module with a basis X. We construct the commutative diagram on X first. Then apply Theorem 2.12 (4).)

Cor 2.22. Every module A is the homomorphic image of a projective R-module.

(Proof: Recall that if X generates A, then A is the homomorphic image of the free module generated by X.)

Projective modules are characterized by the important theorem below.

Thm 2.23. The following condition on an R-mod P are equivalent:

- 1. P is projective;
- 2. Every short exact sequence $0 \to A \stackrel{f}{\hookrightarrow} B \stackrel{g}{\twoheadrightarrow} P \to 0$ is split exact (hence $B \simeq A \oplus P$);
- 3. there is a free module F and an R-module K such that $F \simeq K \oplus P$.

(Proof:
$$1 \to 2, 2 \to 3, 3 \to 1.$$
)

So a module is projective if and only if it is the direct sum component of a free module.

Ex. Let $R = \mathbf{Z}_6$. Then $\mathbf{Z}_6 \simeq \mathbf{Z}_2 \oplus \mathbf{Z}_3$ as \mathbf{Z}_6 -modules. So both \mathbf{Z}_2 and \mathbf{Z}_3 are projective \mathbf{Z}_6 -modules, although they are not free \mathbf{Z}_6 -modules.

Ex. \mathbb{Z}_2 is NOT a projective \mathbb{Z}_4 -module.

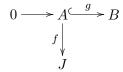
Thm 2.24. A direct sum of R-mods $\bigoplus_{i \in I} P_i$ is projective if and only if each P_i is projective.

(Proof)

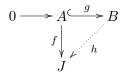
2.3.2 Injective Modules

Injectivity is the dual notation to projectivity.

Def. An R-mod J is **injective** if given any R-mod homom diagram:



with top row exact (i.e. g a monomorphism), there exists an R-mod homom $h: B \to J$ such that $h \circ g = f$:



There is a dual result to Cor 2.22 for injective modules:

Prop 2.25. Every R-mod A may be embedded in an injective R-module.

(The proof is complex and we skip it.)

Thm 2.26. The following conditions on an R-mod J are equivalent:

- 1. J is injective;
- 2. every short exact sequence $0 \to J \stackrel{f}{\hookrightarrow} B \stackrel{g}{\twoheadrightarrow} C \to 0$ is split exact (hence $B \simeq J \oplus C$).

3. J is a direct summand of any module B of which J is a submodule.

(proof)

The dual result to Thm 2.24 for injective module is:

Thm 2.27. A direct product of R-mods $\prod_{i \in I} J_i$ is injective if and only if J_i is injective for every $i \in I$.

(exercise)

2.4 Modules over a Principal Ideal Domain

(IV.6) In this section, the ring R is a principal ideal domain (PID).

Ex. An finitely generated abelian group (i.e. a finitely generated **Z**-module) is isomorphic to $\mathbf{Z}^r \bigoplus_{i=1}^k \mathbf{Z}_{p_i^{s_i}}$ for (not necessary distinct) primes p_i and integers r, k, s_i .

Thm 2.28. Let R be a PID, F a free R-module, and G a submodule of F. Then G is a free R-mod and $rank G \leq rank F$.

Proof. Let $\{x_i \mid i \in I\}$ be a basis of F. Choose a well ordering \leq of I (Introduction, Section 7), and denote the immediate successor of i by i+1 (Introduction, Ex 7.7). Choose $\alpha \notin I$. Let $J = I \cup \{\alpha\}$ and let $i < \alpha$ for all $i \in I$. For each $j \in J$ Let F_j be the submodule generated by $\{x_i \mid i < j\}$. Let $G_j = G \cap F_j$.

- 1. $F_{i+1}/F_i \simeq Rx_i \simeq R$ (apply 3rd Isomorphism Thm on the canonical projection $F_{i+1} \to Rx_i$).
- 2. $G_i = G_{i+1} \cap F_i$.
- 3. $G_{i+1}/G_i = G_{i+1}/(G_{i+1} \cap F_i) \simeq (G_{i+1} + F_i)/F_i$.

But $(G_{i+1}+F_i)/F_i$ is a submodule of $F_{i+1}/F_i \simeq R$, and every submodule of R is an ideal and is of the form Rc for some $c \in R$. So G_{i+1}/G_i is free of rank 0 or 1. Then $0 \to G_i \to G_{i+1} \to G_{i+1}/G_i \to 0$ is split exact. So $G_{i+1} = G_i \oplus Rb_i$ for $b_i = 0$ or $b_i \in G_{i+1} - G_i$. Let $B = \{b_i \mid b_i \neq 0, i \in I\}$. Then $|B| \leq |I|$. We can show that B is a basis of G (Exercise).

Likewise, if every ideal of a generic ring R is finitely generated (for example, if R is a Noetherian Ring), then every submodule of a finitely generated R-module is finitely generated.

Cor 2.29. Let R be a PID. If A is a finitely generated R-mod generated by n elements, then every submodule of A may be generated by m elements with $m \le n$.

Cor 2.30. A module A over a PID R is free if and only if A is projective.

Lem 2.31. Let A be a left module over a PID R and for each $a \in A$ let $\mathcal{O}_a = \{r \in R \mid ra = 0\}.$

1. \mathcal{O}_a is an ideal of R for each $a \in A$.

- 2. $A_t = \{a \in A \mid \mathcal{O}_a \neq 0\}$ is a submodule of A, the **torsion submodule** of A. Indeed, $\mathcal{O}_{ra} \supset \mathcal{O}_a$ and $\mathcal{O}_{a+b} \supset \mathcal{O}_a \cap \mathcal{O}_b$ for $r \in R \{0\}$ and $a, b \in A$.
- 3. For each $a \in A$ there is an isomorphism of left modules

$$R/\mathcal{O}_a \simeq Ra = \{ra \mid r \in R\}.$$

Remark.

- 1. A is a torsion module if $A = A_t$; A is torsion-free if $A_t = 0$.
- 2. Every free module is torsion-free. However, a torsion-free (not finitely generated) module may not be free. The **Z**-module **Q** is a counter-example. See theorem below for the finitely generated case.
- 3. Given $a \in A$, suppose that $\mathcal{O}_a = (r)$ for $r \in R$. Then

$$Ra \simeq R/\mathcal{O}_a = R/(r)$$

is said to be cyclic of order r.

Ex. Let A be an abelian group (i.e. Z-module). If the group theoretic order of $a \in A$ is $n \in \mathbb{N}$, then $\mathbb{Z}a \simeq \mathbb{Z}/(n)$ as Z-mod; if a has infinite order, then $\mathbb{Z}a \simeq \mathbb{Z}/(0) \simeq \mathbb{Z}$.

Thm 2.32. A finitely generated torsion-free module A over a PID R is free.

Proof. Let X be a set of elements that generate A. Let $S = \{x_1, \dots, x_k\}$ be a maximal subset of X such that

$$r_1x_1 + \dots + r_kx_k = 0 \implies r_1 = \dots = r_k = 0.$$

Then S is nonempty. Let F be the submodule generated by S. Then F is a free submodule of A. Given $y \in X-S$, there exists $r_y \neq 0$ and $r_1, \cdots, r_k \in R$ such that $r_y y + r_1 x_1 + \cdots r_k x_k = 0$. Then $r_y y \in F$. This shows that there exists $r = \prod_{y \in X-S} r_y \neq 0$, such that $rX \leq F$. Then $X \simeq rX$ is free. \square

Thm 2.33. If A is a finitely generated module over a PID R, then $A = A_t \oplus F$, where F is a free R-module of finite rank and $F \simeq A/A_t$.

Let us invesetigate the torsion part of A.

Lem 2.34. Let A be a torsion module over a PID R and for each prime $p \in R$ let $A(p) = \{a \in A \mid a \text{ has order a power of } p\}$.

- 1. A(p) is a submodule of A for each prime $p \in R$;
- 2. $A = \bigoplus A(p)$, where the sum is over all primes $p \in R$. If A is finitely generated, only finitely many of the A(p) are nonzero.

Proof. 1. Easy.

2. Given $a \in A$, suppose $\mathcal{O}_a = (r)$ and $r = p_1^{n_1} \cdots p_k^{n_k}$. Let $r_i \in R$ satisfy that $r = p_i^{n_i} r_i$. Then $\gcd(r_1, \cdots, r_k) = 1$ and there exist $s_1, \cdots, s_k \in R$ such that $s_1 r_1 + \cdots + s_k r_k = 1$. Then $a = s_1 r_1 a + \cdots + s_k r_k a$ and $s_i r_i a \in A(p_i)$. So $A = \sum A(p)$. Now for any prime p, we set $A_p := \sum_{q \neq p} A(q)$. Verify that $A(p) \cap A_p = \{0\}$. Then $A = \bigoplus A(p)$. If $A = \langle a_1, \cdots, a_n \rangle$. Let $\mathcal{O}_{a_i} = (r_i)$. Let q_1, \cdots, q_ℓ be all distinct primes (up to associate) that divides one of r_1, \cdots, r_n . Then $A = \bigoplus_{i=1}^\ell A(q_i)$.

Lem 2.35. Let R be a PID and $p \in R$ be a prime. Let A be a fin gen R-mod such that every nonzero element of A has order a power of p. Then

$$A \simeq \bigoplus_{i=1}^{k} R/(p^{n_i}) \text{ for some } n_1 \geq n_2 \geq \cdots \geq n_k \geq 1.$$

(The proof is skipped here.)

Lem 2.36. If $r = p_1^{n_1} \cdots p_k^{n_k}$ where p_i are distinct primes, then

$$R/(r) \simeq \bigoplus_{i=1}^{k} R/(p_i^{n_i})$$
 as left R-modules.

Proof. Define $\phi: R/(r) \to \bigoplus_{i=1}^k R/(p_i^{n_i})$ by

$$\phi(a+(r)) = \left(a+(p_1^{n_1}), a+(p_2^{n_2}), \cdots, a+(p_k^{n_k})\right).$$

Verify that ϕ is a well-defined R-mod monomorphism. Let $A_i = (p_i^{n_i})$ in R. Then $A_i + A_j = R$ for $i \neq j$. By Chinese Remainder Theorem, ϕ is an epimorphism.

The classification theorem of finitely generated modules over a PID is:

Thm 2.37. Let A be a finitely generated module over a PID R.

1.

$$A \simeq R^r \bigoplus_{i=1}^k R/(p_i^{s_i}),$$

where $r \in \mathbb{N}$, p_1, \dots, p_k are (not necessary distinct) primes in R and s_1, \dots, s_k are (not necessary distinct) positive integers. The elements $p_1^{s_1}, \dots, p_k^{s_k}$ are called the **elementary divisors** of A. The rank r and the list of ideals $(p_1^{s_1}), \dots, (p_k^{s_k})$ are uniquely determined by A.

2.

$$A \simeq R^r \bigoplus_{j=1}^t R/(r_j)$$

where $r \in \mathbb{N}$, r_1, \dots, r_t are (not necessary distinct) nonzero nonunit elements of R such that $r_1 \mid r_2 \mid \dots \mid r_t$. The elements r_1, \dots, r_t are called the **invariant factors** of A. The rank r and the list of ideals $(r_1), \dots, (r_t)$ are uniquely determined by A.

Ex. The **Z**-mod $A = \mathbf{Z}^6 \oplus \mathbf{Z}_7 \oplus \mathbf{Z}_{10} \oplus \mathbf{Z}_{12} \oplus \mathbf{Z}_{14} \oplus \mathbf{Z}_{18} \oplus \mathbf{Z}_{24}$ is classified by

$$A \simeq \mathbf{Z}^6 \oplus \mathbf{Z}_2 \oplus \mathbf{Z}_2 \oplus \mathbf{Z}_2 \oplus \mathbf{Z}_{2^2} \oplus \mathbf{Z}_{2^3} \oplus \mathbf{Z}_3 \oplus \mathbf{Z}_3 \oplus \mathbf{Z}_{3^2} \oplus \mathbf{Z}_5 \oplus \mathbf{Z}_7 \oplus \mathbf{Z}_7$$

We work out the following table:

		p			$ t_j $
$p_i^{s_i}$	2^3	3^{2}	5	7	2520
	2^{2}	3		7	2520 84
	2	3			6
	2				2
	2				2

Therefore, A has another classification into cyclic modules:

$$A \simeq \mathbf{Z}^6 \oplus \mathbf{Z}_2 \oplus \mathbf{Z}_2 \oplus \mathbf{Z}_6 \oplus \mathbf{Z}_{84} \oplus \mathbf{Z}_{2520}$$
 where $2 \mid 2 \mid 6 \mid 84 \mid 2520$

Cor 2.38. Two finitely generated modules A and B over a PID are isomorphic if and only if A/A_t and B/B_t have the same rank and A and B have the same invariant factors (resp. elementary divisors).