Chapter 4

Fields and Galois Theory

4.1 Field Extensions

4.1.1 K[u] and K(u)

Def. A field F is an extension field of a field K if $F \ge K$.

Obviously, $F \ge K \implies 1_F = 1_K$.

Def. When $F \ge K$, let $[F:K] := \dim_K F$ denote the dim of F over K.

Def. Let K be a field.

$$\begin{split} K[x] &:= the \ polynomial \ ring \ of \ K, \\ K(x) &:= \left\{ \frac{f}{g} \mid f, g \in K[x], g \neq 0 \right\} \\ &= the \ rational \ function \ field \ of \ K = the \ quotient \ field \ of \ K[x] \end{split}$$

If $F \ge K$ and $u \in F$, denote

$$\begin{array}{lll} K[u] &:= & the \ subring \ of \ F \ generated \ by \ K \ and \ u \\ &= & \{f(u) \mid f \in K[x]\}, \\ K(u) &:= & the \ subfield \ of \ F \ generated \ by \ K \ and \ u \\ &= & \{f(u)/g(u) \mid f,g \in K[x],g(u) \neq 0\}. \end{array}$$

Def. Suppose $F \ge K$ and $u \in F$.

- u is called algebraic over K if g(u) = 0 for some nonzero polyn $g \in K[x];$
- otherwise, u is called transcendental over K.

Every $u \in F$ induces a ring homom

$$\phi_u: K[x] \to F, \qquad \phi_u(f) := f(u).$$

Since K[x] is a PID,

$$\operatorname{Ker} \phi_u = \{ f \in K[x] \mid f(u) = 0 \} = (p_u)$$

for a monic polyn $p_u \in K[x]$.

Thm 4.1. Suppose $F \ge K$.

1. if $u \in F$ is algebraic over K, then

4.1. FIELD EXTENSIONS

- (a) $p_u(x)$ is irreducible in K[x], called the **irreducible polynomial** of u over K, denoted by $irr(u, K) = p_u$. For $f \in K[x]$, f(u) = 0 iff $p_u \mid f$,
- (b) The ring $K[u] = K(u) \simeq K[x]/(p_u)$ is a field, and $[K[u]:K] = [K(u):K] = \deg p_u =: \deg_K(u)$ (the degree of u over K.) Indeed, K[u] = K(u) has a K-basis $\{1, u, u^2, \cdots, u^{n-1}\}$ for $n = \deg p_u$.
- 2. if $u \in F$ is transcendental over K, then
 - (a) $p_u = 0$,

(b)
$$K[u] \simeq K[x]$$
 and $K(u) \simeq K(x)$, both have infinite dim over K.

$\mathbf{E}\mathbf{x}.$

1.

$$\begin{aligned} \mathbf{R} &\geq \mathbf{Q}, \ u &= \sqrt{3} + \sqrt[3]{2} \in \mathbf{R} \ is \ algebraic \ over \ \mathbf{Q}. \ Then \\ u &- \sqrt{3} = \sqrt[3]{2} \implies (u - \sqrt{3})^3 = 2 \\ \implies u^3 + 9u - 8 = 3\sqrt{3}(u^2 + 1) \\ \implies (u^3 + 9u - 8)^2 = 27(u^2 + 1)^2 \\ \implies u^6 - 9u^4 - 16u^3 + 27u^2 - 144u + 37 = 0. \end{aligned}$$

Then $p(x) = x^6 - 9x^4 - 16x^3 + 27x^2 - 144x + 37$ is the irred polyn of $u = \sqrt{2} + \sqrt[3]{2}$ in **Q**. Any $f \in \mathbf{Q}[x]$ satisfies f(u) = 0 iff $p \mid f$. $\mathbf{Q}[u] = \mathbf{Q}(u), \ [\mathbf{Q}(u) : \mathbf{Q}] = 6, \ and \ \{1, u, \dots, u^5\}$ is a basis of $\mathbf{Q}(u)$ in \mathbf{Q} .

2. $\mathbf{R} \geq \mathbf{Q}, \ \pi \in \mathbf{R}$ is transcendental over \mathbf{Q} . Then $\mathbf{Q}[\pi] \simeq \mathbf{Q}[x]$ and $\mathbf{Q}(\pi) \simeq \mathbf{Q}(x)$, both have infinite dim.

4.1.2 Field Extensions

Def.

- F is a finite extension of K if $[F:K] < \infty$,
- F is an infinite extension of K if [F:K] is infinite.

Thm 4.2. (proved) If $F \ge E \ge K$, then

$$[F:K] = [F:E][E:K].$$

Moreover, [F:K] is finite iff [F:E] and [E:K] are finite.

It implies the following theorem:

Thm 4.3. $F \ge K$, $u \in F$. The foll are equiv:

- 1. u is algebraic over K,
- 2. K(u) is a finite extension of K,
- 3. every $v \in K(u)$ is algebraic over K, and $\deg_K(v) | \deg_K(u)$.

Def. $F \ge K$ and $X \subseteq F$. Let K[X] (resp. K(X)) denote the subring (resp. the subfield) of F generated by $K \cup X$.

Def. $F \ge K$ is a

- simple extension of K if F = K(u) for some $u \in F$;
- finitely generated extension of K if $F = K(u_1, \dots, u_n)$ for some $u_1, \dots, u_n \in F$.

Ex. Every fin ext is a fin gen ext. The converse is false. e.g. K(x) is a fin gen ext of K but not a fin ext of K.

Def. $F \ge K$ is an algebraic extension if every element of F is algebraic over K.

Thm 4.4. $F \ge K$ is a finite extension iff $F = K[u_1, \dots, u_n]$ where each u_i is algebraic over K. In particular, finite extensions are algebraic extensions.

Thm 4.5. $F \ge E \ge K$. Then F is alg ext of K iff F is alg ext of E and E is alg ext of K.

Ex. $\mathbf{Q}(\sqrt{2})$ is algebraic extension over \mathbf{Q} , and $\mathbf{Q}(\sqrt{2}, \sqrt[5]{3})$ is an algebraic extension over $\mathbf{Q}(\sqrt{2})$. Then $\mathbf{Q}(\sqrt{2}, \sqrt[5]{3})$ is an algebraic extension over \mathbf{Q} . For example, both $\sqrt{2} - \sqrt[5]{3}$ and $\sqrt{2}\sqrt[5]{3}$ are algebraic numbers over \mathbf{Q} .

Thm 4.6. $F \geq K$. The set of all elements of F that are algebraic over K forms an intermediate field \widehat{K} between F and K ($F \geq \widehat{K} \geq K$), called the **algebraic closure of** K in F. Moreover, every element of $F - \widehat{K}$ is transcendental over \widehat{K} .

Remark.

1. Given a field K and an irreducible monic polynomial $p(x) \in K[x]$, we can always construct an algebraic extension $F \ge K$ such that the irred polyn of certain $u \in F$ in K is p(x):

66

4.1. FIELD EXTENSIONS

- (a) The quotient ring F := K[x]/(p(x)) is a field since p(x) is irreducible.
- (b) Let $\iota : K \to K[x]$ be the canonical inclusion, and $\pi : K[x] \to K[x]/(p(x))$ the canonical projection. Then $\pi\iota(K) \simeq K$ and $F \ge \pi\iota(K)$.
- (c) The element $u := \pi(x) \in F$ has irred polyn p(x) in $\pi\iota(K) \simeq K$.
- 2. Any field K can be extended to an algebraic closure field \overline{K} that contains the roots of all irreducible polynomials of K[x], using Zorn's Lemma and the above remark. Any two algebraic closures of K are K-isomorphic (Hungerford, Thm V.3.6).

4.2 Galois Theory

We will focus on Galois theory for finite extensions (i.e., fin gen alg exts).

4.2.1 K-automorphism

Thm 4.7. $F \ge K$ and $u, v \in F$. Then $\phi_{u,v} : K(u) \to K(v)$ def by $\phi_{u,v}|_K = id|_K$ and $\phi_{u,v}(u) = v$ is a field isomorphism iff one the followings holds:

- 1. Both u and v are algebraic and irr(u, K) = irr(v, K). u and v are said to be conjugate over K.
- 2. Both u and v are transcendental over K.

Def. Let $E \ge K$ and $F \ge K$. A map $\sigma : E \to F$ is a K-isomorphism if σ is both a field isomorphism and a K-mod isomorphism. If E = F, then σ is a K-automorphism. All K-automorphisms of F form a group $G(F/K) = Aut_K F$, called the **Galois group of** F **over** K.

Remark.

- 1. $\sigma: E \to F$ is a K-isomorphism iff σ is a field isomorphism that acts as identity map on K.
- 2. Let $B := \begin{cases} \mathbf{Q}, & \text{if } char F = 0, \\ \mathbf{Z}_p, & \text{if } char F = p, \end{cases}$ be the base field of F. Then a chain of fields

$$F \ge F_1 \ge F_2 \ge \dots \ge B$$

induces a chain of automorphism groups

$$\{1\} = G(F/F) \le G(F/F_1) \le G(F/F_2) \le \dots \le G(F/B) = Aut(F).$$

Thm 4.8. Let $F \ge K$ be an algebraic extension, and $\sigma \in G(F/K)$. Then $irr(u, K) = irr(\sigma(u), K)$ for every $u \in F$.

Proof. A special case of Thm 4.7.

Remark. This important theorem can be used to determined all elements of G(F/K) when $F = K(u_1, \dots, u_n)$, in particular when $[F:K] < \infty$.

Ex. Consider $K = \mathbf{Q}$ and $F = \mathbf{Q}(\sqrt{2}, \sqrt{3})$. Clearly $\sqrt{3} \notin \mathbf{Q}(\sqrt{2})$ and so $[\mathbf{Q}(\sqrt{2}, \sqrt{3}) : \mathbf{Q}] = 4$. Then

$$\mathbf{Q}(\sqrt{2},\sqrt{3}) = 1\mathbf{Q} + \sqrt{2}\mathbf{Q} + \sqrt{3}\mathbf{Q} + \sqrt{6}\mathbf{Q}.$$

Then G(F/K) consists of 4 elements: (classified by their actions on generators $\sqrt{2}$ and $\sqrt{3}$)

G(F/K)	1	σ	au	$\sigma\tau=\tau\sigma$
image of $\sqrt{2}$	$\sqrt{2}$	$\sqrt{2}$	$-\sqrt{2}$	$-\sqrt{2}$
image of $\sqrt{3}$	$\sqrt{3}$	$-\sqrt{3}$	$\sqrt{3}$	$-\sqrt{3}$

For example, $\sigma(a + b\sqrt{2} + c\sqrt{3} + d\sqrt{6}) = a + b\sqrt{2} - c\sqrt{3} - d\sqrt{6}$.

Remark. G(F/K) stabilizes the algebraic closure of K in F.

Ex. Let $F = \mathbf{Q}(\sqrt{2}, \sqrt{3}, x) \geq \mathbf{Q} = K$, where x is transcendental over \mathbf{Q} . The algebraic closure of K in F is $\widehat{K} = \mathbf{Q}(\sqrt{2}, \sqrt{3})$. Suppose $\sigma \in G(F/K)$. Then $\sigma(\mathbf{Q}(\sqrt{2}, \sqrt{3})) = \mathbf{Q}(\sqrt{2}, \sqrt{3})$. So σ sends $\sqrt{2}$ to $\pm\sqrt{2}$, sends $\sqrt{3}$ to $\pm\sqrt{3}$, and sends x to $\frac{ax+b}{cx+d}$ for $a, b, c, d \in \mathbf{Q}(\sqrt{2}, \sqrt{3})$ and $ad - bc \neq 0$ (since from $u = \sigma(x)$ we should get a rational function expression of x). The group $(\mathbf{Z}_2 \times \mathbf{Z}_2) \ltimes G(F/K) \simeq PGL(2, \widehat{K})$.

4.2.2 Splitting Field

Def. A polyn $f \in F[x]$ is split over F (or to split in F[x]) if f can be written as a product of degree one polyns in F[x].

Ex. $F = \mathbf{Q}(\sqrt{2}, \sqrt[3]{3})$. Then $x^2 - 2$ is split over F, but $x^2 - 3$ is not split over F.

Def. Suppose $\overline{K} \ge F \ge K$. Then

- 1. Let $\{f_i \mid i \in I\}$ be a set of polyns in K[x]. F is the splitting field over K of $\{f_i \mid i \in I\}$ if F is generated over K by the roots of all f_i .
- 2. F is a splitting field over K if F is the splitting field of some set of polynomials in K[x].

Ex. Let $\alpha_1, \dots, \alpha_n$ be the roots of $f \in K[x]$ in \overline{K} . The splitting field over K of f is $F := K(\alpha_1, \dots, \alpha_n)$. Note that $[F : K] \ge \deg f(x)$.

Ex. \overline{K} is a splitting field over K of K[x]. Every $f \in K[x]$ is split over \overline{K} .

Ex. $E := \mathbf{Q}(\sqrt{2}, \sqrt{3})$ splitting over \mathbf{Q} of $\{x^2 - 2, x^2 - 3\}$. The polynomials $x^2 - 2, x^2 - 3, x^4 - 5x^2 + 6$, are split over E.

Ex. What is the splitting field F over **Q** of $x^3 - 2$? What are the elements of G(F/Q)?

Thm 4.9. Any two splitting fields of $S \subseteq K[x]$ over K are K-isomorphic.

(c.f. Any two algebraic closures of K are K-isomorphic.)

Thm 4.10. $F \geq K$, $[F:K] < \infty$. Let $\sigma: K \to K_1$ be a field isomorphism, and $\overline{K_1}$ an algebraic closure of K_1 . The number of extensions of σ to a field isomorphism τ of F onto a subfield of $\overline{K_1}$ is finite, and is completely determined by F and K (so the number is not relative to K_1 , $\overline{K_1}$, and σ .)

Proof. It suffices to prove for simple extension F = K(u) and then apply induction. Suppose

$$\operatorname{irr}(u, K) = p(x) = c_0 + c_1 x + \dots + c_n x^n \in K[x].$$

Any extension of σ to $\tau: F \to F_1$ with $F_1 \leq \overline{K_1}$ is uniquely determined by $\tau(u)$, which is a root of

$$\operatorname{irr}(\tau(u), K_1) = p_{\sigma}(x) = \sigma(c_0) + \sigma(c_1)x + \dots + \sigma(c_n)x^n \in K_1[x].$$

Therefore, the number of extensions of σ to an isomorphism of F onto a subfield of $\overline{K_1}$ equals to the number of distinct roots of $p_{\sigma}(x)$, or the number of distinct roots of p(x), which is completely determined by F and K. \Box

Def. Let $\overline{K} \ge F \ge K$ with $[F:K] < \infty$. The number of K-isomorphisms of F onto a subfield of \overline{K} is the index of F over K, denoted by $\{F:K\}$.

Remark.

- {F: K} is called the separable degree [F: K]_s of F over K in [Hungerford, Def. V.6.10].
- 2. $|G(F/K)| \leq \{F:K\}$. In fact, |G(F/K)| divides $\{F:K\}$.
- 3. $\{F:K\} \leq [F:K]$. In fact, $\{F:K\}$ divides [F:K].

Thm 4.11. If $F \ge L \ge K$ and $[F:K] < \infty$, then

$$\{F:K\} = \{F:L\}\{L:K\}$$

Proof. There are $\{L : K\}$ many K-isomorphisms of L onto a subfield of \overline{K} . By Theorem 4.10, each such K-isomorphism has $\{F : L\}$ many extensions to a K-isomorphisms of F onto a subfield of \overline{K} .

Remark.

- 1. Compare: If $F \ge L \ge K$, then [F:K] = [F:L][L:K].
- 2. By the Theorem, if $F = K(\alpha_1, \dots, \alpha_r)$ is a finite extension of K, let $F_i := K(\alpha_1, \dots, \alpha_i)$ so that $F_i = F_{i-1}(\alpha_i)$. Then

$$\{F: K\} = \{F: F_{r-1}\}\{F_{r-1}: F_{r-2}\} \cdots \{F_1: K\} \\ = \{F_{r-1}(\alpha_r): F_{r-1}\} \cdots \{K(\alpha_1): K\}$$

where

 $\{F_{i-1}(\alpha_i): F_{i-1}\} = \text{the number of distinct roots in } irr(\alpha_i, F_{i-1}).$

3. When α is algebraic over K, the index $\{K(\alpha) : K\}$ equals the number of distinct roots of $irr(\alpha, K)$. So $\{K(\alpha) : K\} \leq [K(\alpha) : K]$ and thus $\{F : K\} \leq [F : K]$ in general.

Ex. $F = \mathbf{Q}(\sqrt{2}, \sqrt[3]{3}) \ge \mathbf{Q} = K$. Compute the order |G(F/K)|, the index $\{F: K\}$, and the degree [F: K].

Thm 4.12. $F \ge K$ with $[F:K] < \infty$. F is a splitting field over K iff every K-isomorphism of F onto a subfield of \overline{K} is a K-automorphism of F (i.e., in G(F/K)), iff $|G(F/K)| = \{F:K\}$.

Cor 4.13. $F \ge K$ splitting. Then every irred polyn in K[x] having a zero in F splits in F[x].

4.2.3 Separable Extension

Def.

- 1. A polyn $f \in K[x]$ is separable if in some splitting field of f over K every root of f is a simple root.
- 2. $F \ge K$. $u \in F$ is called separable over K if irr(u, K) is separable.
- 3. $F \ge K$ is called a separable extension of K if every element of F is separable over K.

Thm 4.14. If $p(x) \in K[x]$ is an irred polyn, then every root of p(x) has the same multiplicity.

Proof. Suppose α and β are two roots of p(x) with multiplicities m_{α} and m_{β} respectively, so that $(x-\alpha)^{m_{\alpha}}$ and $(x-\beta)^{m_{\beta}}$ are factors of p(x). The K-isomorphism $\phi_{\alpha,\beta}: K(\alpha) \to K(\beta)$ that sends α to β can be extended (by Zorn's Lemma) to a K-automorphism $\overline{\phi}: \overline{K} \to \overline{K}$, and be further extended to a ring automorphism $\widetilde{\phi}: \overline{K}[x] \to \overline{K}[x]$. One has $\widetilde{\phi}(p(x)) = p(x)$ since $\widetilde{\phi}$ fixes every element of K. Then $\widetilde{\phi}((x-\alpha)^{m_{\alpha}}) = (x-\beta)^{m_{\beta}}$ and so $m_{\alpha} = m_{\beta}$.

Remark. $p(x) \in K[x]$ monic irreducible. Then $p(x) = [\prod_i (x - \alpha_i)]^m$, where m is the multiplicity of a root of p(x), and α_i are distinct.

- 1. The multiplicity m divides deg p(x).
- 2. $\{K(\alpha_i):K\} = \frac{1}{m} \deg p(x) \text{ divides } [K(\alpha_i):K] = \deg p(x).$
- 3. If char K = 0, then $m \equiv 1$ and $\{F : K\} = [F : K]$ for any $F \geq K$. So any extension is a separable extension.

4. If char
$$K = p$$
, then $\frac{[K(\alpha_i) : K]}{\{K(\alpha_i) : K\}} = m = p^r$ for some $r \ge 0$.

3. and 4. can be proved by derivative technique.

Thm 4.15. A finite extension $F \ge K$ is a separable extension of K iff $\{F: K\} = [F: K]$.

- $F \ge K$ fin ext. Then $|G(F/K)| | \{F:K\} | [F:K]$:
- F is splitting over K iff $|G(F/K)| = \{F : K\},\$
- F is separable over K iff $\{F: K\} = [F: K]$.

Thm 4.16. $F \ge L \ge K$, $[F:K] < \infty$. Then F is separable over K iff F is separable over L and L is separable over K.

Ex. Let $K = \mathbf{Q}$ and $F = \mathbf{Q}(\sqrt{2}, \sqrt{3})$. Then $\{\mathbf{Q}(\sqrt{2}, \sqrt{3}) : \mathbf{Q}\} = 4 = [\mathbf{Q}(\sqrt{2}, \sqrt{3}) : \mathbf{Q}]$. So $\mathbf{Q}(\sqrt{2}, \sqrt{3})$ is a separable extension over \mathbf{Q} .

Thm 4.17 (Primitive Element Theorem). A finite separable extension $F \ge K$ is always a simple extension, i.e. F = K(u) for some $u \in F$.

Ex. $\mathbf{Q}(\sqrt{2}, \sqrt{3}) = \mathbf{Q}(\sqrt{2} + \sqrt{3})$ is a simple extension over \mathbf{Q} .

Proof of Thm 4.17. If $|K| < \infty$, then F and K are finite fields. Then $F^* = \langle u \rangle$ for some $u \in F^*$ (to be shown later). Hence F = K(u).

Suppose K is an infinite field. By induction, we may assume that F = K(v, w) for some $v, w \in F$. Let $p = \operatorname{irr}(v, K)$ and $q = \operatorname{irr}(w, K)$. Let $v_1 = v, v_2, \cdots, v_m$ and $w_1 = w, w_2, \cdots, w_n$ be the roots of p and q in F. Then v_i 's are distinct since F is separable. Similarly, w_j 's are distinct. As K is infinite, there is $a \in K$ such that $a \neq \frac{v_i - v}{w - w_j}$ for all i and all $j \neq 1$. Let u := v + aw and E := K(u). Then $F \geq E \geq K$. We show that $w \in E$. Obviously, $\operatorname{irr}(w, E) \mid \operatorname{irr}(w, K) = q$. Define $f := p(u - ax) \in E[x]$. Then f(w) = p(v) = 0 and so $\operatorname{irr}(w, E) \mid f$. However, $f(w_j) \neq 0$ for $j \neq 1$. Therefore, $\operatorname{gcd}(q, f) = x - w$ and $\operatorname{irr}(w, E) = x - w$. So $w \in E$. Then $v = u - aw \in E$ so that F = E = K(u) is a simple extension.

So inseparable extensions exist in some characteristic p infinite fields.

Def. $F \ge K$. $u \in F$ is **purely inseparable** over K if $irr(u, K) = (x-u)^m$ (m must be a power of p). F is a **purely inseparable extension of** K if every element of F is purely inseparable over K.

Prop 4.18. If $F \ge L \ge K$, then F is purely insep over K iff F is purely insep over L and L is purely insep over K.

Thm 4.19. Let $F \ge K$, $[F:K] < \infty$, and charK = p. Then $\alpha \in F$ is purely insep iff $\alpha^{p^r} \in K$ for some $r \in \mathbf{N}$.

Ex. Let $K := \mathbf{Z}_p(y)$ (p prime, y transcendental over \mathbf{Z}_p). The polyn $x^p - y$ is inseparable irreducible over K. If $u \in \overline{K}$ is a root of $x^p - y$, then u is purely insep over K.

Remark. $F \ge K$. The set of all elements of F purely insep over K forms a field T, the **purely inseparable closure of** K **in** F. Then $F \ge T \ge K$, F is separable over T, and T is purely inseparable over K.

Similarly, there exists L, the separable closure of K in F, such that $F \ge L \ge K$, F is purely inseparable over L, and L is separable over K.

4.2.4 Galois Theory

Def. $F \geq K$. For a subgroup $H \leq G(F/K)$, the set

$$F_H := \{ u \in F \mid \sigma(u) = u \text{ for every } \sigma \in H \}$$

is an intermediate field between F and K, called the fixed field of H in F.

Lem 4.20. Let $F \ge K$. Then

- 1. a field $L \leq F \implies L \leq F_{G(F/L)};$
- 2. a subgroup $H \leq G(F/K) \implies H \leq G(F/F_H)$.

(exercise)

Def. A finite extension $F \ge K$ is a finite normal extension of K if $|G(F/K)| = \{F : K\} = [F : K]$, *i.e.*, F is a separable splitting field of K.

Let $F \ge K$ be a finite separable extension. Then F = K(u) for some $u \in F$. The splitting field L over K of irr(u, K) satisfies that $L \ge F \ge K$, where $L \ge K$ is a normal extension.

Lem 4.21. $\overline{K} \ge F \ge L \ge K$. If F is a finite normal extension of K, then F is a finite normal extension of L. The group $G(F/L) \le G(F/K)$. Moreover, two K-automorphisms $\sigma, \tau \in G(F/K)$ induce the same K-isomorphism of L onto a subfield of \overline{K} iff σ and τ are in the same left coset of G(F/L) in G(F/K).

Proof. If F is the splitting field of a set of polynomials of K[x] over K, then F is the splitting field of the same set of polynomials of L[x] over L. So F is splitting over L. Moreover, "F is separable over K" implies that "F is separable over L". Thus F is a finite normal extension over L.

Two automorphisms $\sigma, \tau \in G(F/K)$ satisfy that $\sigma|_L = \tau|_L$ iff $(\sigma^{-1} \circ \tau)|_L = 1|_L$, iff $\sigma^{-1} \circ \tau \in G(F/L)$, iff $\tau \in \sigma \cdot G(F/L)$, that is, σ and τ are in the same left coset of G(F/L).

Thm 4.22 (Fundamental Theorem of Galois Theory). Let F be a finite normal extension of K (i.e. $|G(F/K)| = \{F : K\} = [F : K]$). Let L denote an intermediate field $(F \ge L \ge K)$. Then $L \leftrightarrow G(F/L)$ is a bijection of the set of all intermediate fields between F and K onto the set of all subgroups of G(F/K). Moreover,

- 1. $L = F_{G(F/L)}$ for every intermediate field L with $F \ge L \ge K$.
- 2. $H = G(F/F_H)$ for every subgroup $H \leq G(F/K)$.
- 3. L is a normal extension of K if and only if G(F/L) is a normal subgroup of G(F/K). In such situation,

$$G(L/K) \simeq G(F/K)/G(F/L)$$

74

4.2. GALOIS THEORY

4. The subgroup diagram of G(F/K) is the inverted diagram of the intermediate field diagram of F over K.

Galois theory implies that: To understand the field extensions in $F \ge K$, it suffices to understand the group structure of G(F/K).

Proof. (Sketch)

- 1. Every automorphism in G(F/L) leaves L fixed. So $L \subseteq F_{G(F/L)}$. Note that F is normal over L. Given $\alpha \in F L$, there is another root $\beta \in F L$ of the polynomial $\operatorname{irr}(\alpha, L)$. By Thm 4.7, There is an automorphism in G(F/L) that sends α to β . So every $\alpha \in F L$ is not fixed by G(F/L). Hence $F_{G(F/L)} \subseteq L$. So $L = F_{G(F/L)}$.
- 2. Let $H \leq G(F/K)$. Every element of H leaves F_H fixed. So $H \leq G(F/F_H)$. It remains to prove that $|H| \geq |G(F/F_H)|$ (= $[F : F_H]$) so that $H = G(F/F_H)$. Since F is a finite normal (=separable+splitting) extension over F_H , we can write $F = F_H(\alpha)$ for some $\alpha \in F F_H$. Suppose $H := \{\sigma_1, \dots, \sigma_{|H|}\}$. Denote

$$f(x) := \prod_{i=1}^{|H|} (x - \sigma_i(\alpha)) \in F[x].$$

Every $\sigma_k \in H \leq G(F/K)$ induces a ring automorphism of F[x], with

$$\sigma_k(f(x)) = \prod_{i=1}^{|H|} (x - \sigma_k \sigma_i(\alpha)) = \prod_{i=1}^{|H|} (x - \sigma_i(\alpha)) = f(x).$$

So the coefficients of f(x) are in F_H and $f(x) \in F_H[x]$. The group H contains identity automorphism. So there is some $\sigma_i(\alpha) = \alpha$. So $f(\alpha) = 0$. Then $\operatorname{irr}(\alpha, F_H) \mid f(x)$. So

$$|G(F/F_H)| = [F:F_H] = [F_H(\alpha):F_H] = \deg(\alpha, F_H) \le \deg f(x) = |H|.$$

Therefore $H = G(F/F_H)$.

3. *L* is a normal extension over *K* iff *L* is splitting (and separable) over *K*; iff $\sigma(\alpha) \in L$ for any $\alpha \in L$; (notice that $L = F_{G(F/L)}$) iff $\tau \sigma(\alpha) = \sigma(\alpha)$ for every $\tau \in G(F/L)$; iff $\sigma^{-1} \tau \sigma(\alpha) = \alpha$; iff $\sigma^{-1}\tau\sigma \in G(F/L)$ for every $\tau \in G(F/L)$ and $\sigma \in G(F/K)$; iff G(F/L) is a normal subgroup of G(F/K).

Suppose L is a normal extension over K. We show that $G(L/K) \simeq G(F/K)/G(F/L)$. Since L is splitting over K, if $\sigma \in G(F/K)$ then $\sigma|_L \in G(L/K)$. Define $\phi: G(F/K) \to G(L/K)$ by $\phi(\sigma) := \sigma|_L$. Then ϕ is a group homomorphism. On one hand, every $\tilde{\gamma} \in G(L/K)$ can be extended to an element $\gamma \in G(F/K)$, with $\phi(\gamma) = \gamma|_L = \tilde{\gamma}$. So ϕ is onto. On the other hand, Ker $(\phi) = G(F/L)$. Therefore,

$$G(L/K) \simeq G(F/K)/G(F/L).$$

4. The statements 1. and 2. build up the bijection between the set of intermediate fields of F over K and the set of subgroups of G(F/K) in desired order.

The following Lagrange's Theorem on Natural Irrationalities discloses further relations on Galois correspondence.

Thm 4.23. If L and M are intermediate fields between F and K such that L is a finite normal extension of K, then the field (L, M) is finite normal extension of M and $G((L, M)/M) \simeq G(L/L \cap M)$. (show by graph)

Proof. The idea is to show that: if L is the splitting field over $L \cap M$ of an irred polyn $f \in (L \cap M)[x]$, then (L, M) is the splitting field over M of f. This makes the correspondence.

Ex. (HW) Let $K := \mathbf{Q}$ and $F := \mathbf{Q}(\sqrt{2}, \sqrt{3})$. Then G(F/K) consists of 4 elements $\{\iota, \sigma, \tau, \sigma\tau\} \simeq \mathbf{Z}_2 \times \mathbf{Z}_2$:

$$\begin{split} \iota(a + b\sqrt{2} + c\sqrt{3} + d\sqrt{6}) &:= a + b\sqrt{2} + c\sqrt{3} + d\sqrt{6} \\ \sigma(a + b\sqrt{2} + c\sqrt{3} + d\sqrt{6}) &:= a + b\sqrt{2} - c\sqrt{3} - d\sqrt{6} \\ \tau(a + b\sqrt{2} + c\sqrt{3} + d\sqrt{6}) &:= a - b\sqrt{2} + c\sqrt{3} - d\sqrt{6} \\ \sigma\tau(a + b\sqrt{2} + c\sqrt{3} + d\sqrt{6}) &:= a - b\sqrt{2} - c\sqrt{3} + d\sqrt{6} \end{split}$$

The intermediate field diagram of F over K and the subgroup diagram of G(F/K) are inverted to each other.

Ex. Let $F = \mathbf{Q}(\sqrt[3]{2}, \mathbf{i}\sqrt{3})$ be the splitting field of $(x^3 - 2)$ over $K = \mathbf{Q}$.

1. Describe the six elements of G(F/K) by describing their actions on $\sqrt[3]{2}$ and $i\sqrt{3}$. (done)

4.2. GALOIS THEORY

- 2. To what group we have seen before is G(F/K) isomorphic? (done)
- 3. Give the diagrams for the subfields of F and for the subgroups of G(F/K).

4.3 Illustration of Galois Theory

4.3.1 Some Examples

Def. The Galois group of a polynomial $f \in K[x]$ over a field K, denoted by G(f/K), is the group G(F/K) where F is a splitting field over K of f.

When $K = \mathbf{Q}$, the preceding examples show

- 1. the Galois group of $(x^2 2)(x^2 3) \in \mathbf{Q}[x]$ is $\mathbf{Z}_2 \times \mathbf{Z}_2$, and
- 2. the Galois group of $x^3 2 \in \mathbf{Q}[x]$ is $S_3 = D_3$.

Here S_n denotes the group of permutations of n letters, and D_n denotes the symmetric group of a regular n-gon.

Ex. The Galois group of $x^3 - 1 \in \mathbf{Q}[x]$ is \mathbf{Z}_2 , which is totally different from the Galois group of $x^3 - 2 \in \mathbf{Q}[x]$.

Ex. Find the Galois groups of the following polynomials in $\mathbf{Q}[x]$:

- 1. $x^4 + 1$. $(\mathbf{Z}_2 \times \mathbf{Z}_2)$
- 2. $x^4 1$. (**Z**₂)
- 3. $x^4 2$. (D₄. See p.275 of [Hungerford, V.4])

The Galois group G of an irreducible separable polynomial $f(x) \in K[x]$ of degree n = 2, 3, 4 has been classified [see Hungerford, V.4].

- 1. n = 2, then G must be $S_2 \simeq \mathbf{Z}_2$.
- 2. n = 3, then G could be S_3 or $A_3 \simeq \mathbb{Z}_3$.
- 3. n = 4, then G could be S_4 , A_4 , D_4 , \mathbf{Z}_4 , or $\mathbf{Z}_2 \times \mathbf{Z}_2$.

Let us discuss the Galois group of irreducible $f(x) \in \mathbf{Q}[x]$ of degree 3.

Def. char $K \neq 2$; $f \in K[x]$ a polyn with distinct roots u_1, \dots, u_n . $F = K(u_1, \dots, u_n)$ the splitting field over K of f. Denote

$$\Delta = \prod_{i < j} (u_i - u_j) \in F;$$

define the discriminant of f as $D = \Delta^2$.

Prop 4.24. Let K, f, F and Δ be as in preceding definition.

- 1. For each $\sigma \in G(F/K) \leq S_n$, σ is an even [resp. odd] permutation iff $\sigma(\Delta) = \Delta$ [resp. $\sigma(\Delta) = -\Delta$].
- 2. The discriminant $\Delta^2 \in K$.

Cor 4.25. $F \ge K(\Delta) \ge K$. Consider $G = G(F/K) \le S_n$. In the Galois correspondence, the subfield $K(\Delta)$ corresponds to the subgroup $G \cap A_n$. In particular, G consists of even permutations iff $\Delta \in K$.

Cor 4.26. Given a degree 3 irred separable polyn $f(x) = x^3 + bx^2 + cx + d \in K[x]$, let

$$g(x) = f(x - b/3) = x^3 + px + q.$$

Then the discriminant of f(x) is $\Delta^2 = -4p^3 - 27q^2 \in K$.

- 1. If $-4p^3 27q^2$ is a square in K, then $G(f/K) = A_3 \simeq \mathbf{Z}_3$;
- 2. If $-4p^3 27q^2$ is not a square in K, then $G(f/K) = S_3$.

Ex. Consider the foll irred polyns in $\mathbf{Q}[x]$:

- 1. $f(x) = x^3 2$. Then $\Delta^2 = -27 \times 2^2$ is not a square in **Q**. So $G(f/\mathbf{Q}) = S_3$ (as we have proved).
- 2. $f(x) = x^3 + 3x^2 x 1$. Then $g(x) = f(x 3/3) = x^3 4x + 2$ is irreducible. The discriminant of f(x) is $-4(-4)^3 - 27(2)^2 = 148$, which is not a square in **Q**. Thus $G(f/\mathbf{Q}) = S_3$.
- 3. $f(x) = x^3 3x + 1$ is irreducible. The discriminant is $-4(-3)^3 27(1)^2 = 81$, which is a square in **Q**. So $G(f/\mathbf{Q}) = A_3 \simeq \mathbf{Z}_3$.

In general, it is difficult to compute the Galois group of an irreducible polynomial of degree $n \ge 5$. There is a special result:

Thm 4.27. *p* is prime, $f(x) \in \mathbf{Q}[x]$ an irred polyn of deg *p* with exactly two nonreal roots in **C**, then $G(f/\mathbf{Q}) = S_p$.

4.3.2 Finite Groups as Galois Groups

Thm 4.28. Let G be the Galois group of an irreducible separable polynomial $f(x) \in K[x]$ of degree n. Then $G \leq S_n$ and $n \mid |G| \mid n!$.

Next we show that every finite group is the Galois group of a finite normal extension.

Let y_1, \dots, y_n be indeterminates. The field $F := \mathbf{Q}(y_1, \dots, y_n)$ consists of all rational functions of y_1, \dots, y_n . Every permutation $\sigma \in S_n$ induces a map $\overline{\sigma} \in G(F/\mathbf{Q})$ by

$$\overline{\sigma}\left(\frac{f(y_1,\cdots,y_n)}{g(y_1,\cdots,y_n)}\right) := \frac{f(y_{\sigma(1)},\cdots,y_{\sigma(n)})}{g(y_{\sigma(1)},\cdots,y_{\sigma(n)})}.$$

Denote $\overline{S}_n := \{\overline{\sigma} \mid \sigma \in S_n\} \leq G(F/\mathbf{Q})$. The subfield of F fixed by \overline{S}_n is $K = \mathbf{Q}(s_1, \cdots, s_n)$, where s_1, \cdots, s_n are the following symmetric functions of y_1, \cdots, y_n over \mathbf{Q} :

$$s_{1} := y_{1} + y_{2} + \dots + y_{n},$$

$$s_{2} := y_{1}y_{2} + y_{1}y_{3} + \dots + y_{n-1}y_{n},$$

$$\dots$$

$$s_{n} := y_{1}y_{2} \cdots y_{n}$$

Now $F = K(y_1, \cdots, y_n)$, and

$$f(x) := (x - y_1)(x - y_2) \cdots (x - y_n)$$

= $x^n - s_1 x^{n-1} + s_2 x^{n-2} + \cdots + (-1)^n s_n \in K[x]$

So $F = \mathbf{Q}(y_1, \dots, y_n)$ is the splitting field of f(x) over $K = \mathbf{Q}(s_1, \dots, s_n)$, where y_1, \dots, y_n are the roots of f(x). Every element of G(F/K) permutes the *n* roots of f(x). This shows that:

- 1. $G(F/K) = \overline{S}_n \simeq S_n$ and |G(F/K)| = n!.
- 2. (Every finite group is the Galois group of a finite normal extension) By Cayley's Theorem, every finite group H is isomorphic to a subgroup of certain S_n . By Galois theory, there is an intermediate field F_0 such that $\mathbf{Q} \geq F \geq F_0 \geq K$, and $H \simeq G(F/F_0)$.
- 3. It is an open problem that which finite group is the Galois group of a finite normal extension over a given field (e.g. **Q**).

80

4.4 Cyclotomic Extensions

Def. The splitting field F of $x^n - 1$ over K is the cyclotomic extension of K of order n.

Def. An element $u \in \overline{K}$ is a primitive *n*-th root of unity if $u^n = 1$ and $u^k \neq 1$ for any positive integer k < n.

The cyclotomic extension of order n is related to the **Euler function** $\varphi(n)$, where $\varphi(n)$ is the number of integers i such that $1 \leq i \leq n$ and $\gcd(i,n) = 1$. If $n = p_1^{m_1} \cdots p_k^{m_k} = \prod_{i=1}^k p_i^{m_i}$ is the prime factorization of n (where p_i are distinct primes), then

$$\varphi(n) = \prod_{i=1}^{k} [p_i^{m_i - 1}(p_i - 1)] = n \prod_{i=1}^{k} (1 - 1/p_i)$$

When $d \mid n, \varphi(d)$ equals to the number of integers i such that $1 \leq i \leq n$ and gcd(i, n) = n/d. Therefore, $\sum_{d\mid n} \varphi(d) = n$.

4.4.1 Cyclotomic extensions over Q

Let $\overline{\mathbf{Q}} \subset \mathbf{C}$. Consider the splitting field of $x^n - 1$ over \mathbf{Q} . There exists a primitive *n*-th root of unity $\zeta \in \mathbf{C}$. All the other primitive *n*-th roots of unity are ζ^i where $1 \leq i \leq n$ and gcd(i, n) = 1. So there are $\varphi(n)$ elements conjugate to ζ over \mathbf{Q} . Denote

$$g_n(x) = \prod_{\substack{1 \le i \le n \\ \gcd(i,n)=1}} (x - \zeta^i).$$

Then $g_n(x) = \operatorname{irr}(\zeta, \mathbf{Q}) \in \mathbf{Q}[x]$ has degree $\varphi(n)$. $g_n(x)$ is called the *n*-th cyclotomic polynomial over \mathbf{Q} .

Thm 4.29. Let $F = \mathbf{Q}(\zeta)$ be a cyclotomic extension of order n of the field \mathbf{Q} , and $g_n(x)$ the n-th cyclotomic polynomial over \mathbf{Q} . Then

1. $g_n(x) \in \mathbf{Z}[x]$ and $g_n(x)$ is irreducible in $\mathbf{Z}[x]$ and $\mathbf{Q}[x]$. Moreover,

$$x^n - 1 = \prod_{d|n} g_d(x).$$

2. $[F : \mathbf{Q}] = \varphi(n)$, where φ is the Euler function.

3. The Galois group $G(F/\mathbf{Q})$ of $x^n - 1$ is isomorphic to the multiplicative group of units in the ring \mathbf{Z}_n .

Ex. If p is a prime, then the Galois group of $x^p - 1 \in \mathbf{Q}[x]$ is isomorphic to the cyclic group \mathbf{Z}_{p-1} .

Ex. Consider the cyclotomic extension F_n of degree n over \mathbf{Q} :

- 1. $n = 9 = 3^2$. Then $\varphi(9) = 3 \cdot 2 = 6$. The multiplicative group in \mathbb{Z}_9 is $A = \{1, 2, 4, 5, 7, 8\}$. Notice that 2 generates A. So $G(F_9/\mathbb{Q}) \simeq A \simeq \mathbb{Z}_6$.
- 2. $n = 12 = 2^2 \cdot 3$. Then $\varphi(12) = 2 \cdot 2 = 4$. The multiplicative group in \mathbf{Z}_{12} is $A = \{1, 5, 7, 11\} \simeq \mathbf{Z}_2 \oplus \mathbf{Z}_2$. So $G(F_{12}/\mathbf{Q}) \simeq A \simeq \mathbf{Z}_2 \oplus \mathbf{Z}_2$.
- 3. Likewise, $G(F_8/\mathbf{Q}) \simeq \mathbf{Z}_2 \oplus \mathbf{Z}_2$ and $G(F_{14}/\mathbf{Q}) \simeq \mathbf{Z}_6$.

4.4.2 Cyclotomic Extensions over K

If char $K = p \neq 0$ and $n = mp^t$ with gcd(p, m) = 1, then $x^n - 1 = (x^m - 1)^{p^t}$, so that a cyclotomic extension of order n coincides with one of order m.

Now we consider the cyclotomic extensions where char K = 0 or char K does not divide n. Let ζ denote a primitive n-th root of unity over K. Then all primitive n-th root of unity over K are ζ^i for $1 \le i \le n$ and gcd(i, n) = 1. However, some ζ^i may not be conjugate to ζ over K anymore. We have

$$\operatorname{irr}(\zeta, K) \mid g_n(x) = \prod_{\substack{1 \le i \le n \\ \gcd(i,n) = 1}} (x - \zeta^i),$$

where $g_n(x)$ is called **the** *n***-th cyclotomic polynomial over** *K*. Moreover, the following theorem says that $\deg(\zeta, K) \mid \deg g_n(x) = \varphi(n)$.

Thm 4.30. Let K be a field such that char K does not divide n, and F a cyclotomic extension of K of order n.

- 1. $F = K(\zeta)$, where $\zeta \in F$ is a primitive n-th root of unity.
- 2. G(F/K) is isomorphic to a subgroup of order d of the multiplicative group of units of \mathbb{Z}_n . In particular, [F:K] = |G(F/K)| = d divides $\varphi(n)$.
- 3. $x^n 1 = \prod_{d|n} g_d(x)$. Moreover, $\deg g_n(x) = \varphi(n)$, and the coefficients of $g_n(x)$ are integers (in \mathbb{Z} or \mathbb{Z}_p , depending on char K).

4.4. CYCLOTOMIC EXTENSIONS

- **Ex.** If ζ is a primitive 5th root of unity in **C**, then
 - 1. $\mathbf{Q}(\zeta)$ is a cyclotomic extension of \mathbf{Q} of order 5, with $G(\mathbf{Q}(\zeta)/\mathbf{Q}) \simeq \mathbf{Z}_4$.
 - 2. $\mathbf{R}(\zeta)$ is a cyclotomic extension of \mathbf{R} of order 5, with $G(\mathbf{R}(\zeta)/\mathbf{R}) \simeq \mathbf{Z}_2$. ζ satisfies that $\zeta + 1/\zeta = 2Re(\zeta)$. So $irr(\zeta, \mathbf{R}) = x^2 - 2Re(\zeta) x + 1$.

4.5 Galois Theory on Finite Fields

4.5.1 Structure of Finite Fields

Examples of finite fields include \mathbf{Z}_p for primes p. We will see that every finite field F has a prime characteristic p, and $F \simeq \mathbf{Z}_p(\alpha)$ where $\alpha \in \overline{Z}_p$ is a primitive root of $x^{p^n-1}-1$ in $\mathbf{Z}_p[x]$.

The characteristic of a field F is either 0 or a prime p.

- 1. If char F = 0, then F is an extension of **Q**.
- 2. If char F = p for a prime p, then F is an extension of \mathbf{Z}_p . A finite field F is simply a finite extension of \mathbf{Z}_p .

Thm 4.31. Let *E* be a finite extension of *F* with [E : F] = m, where *F* is a finite field of *q* elements. Then *E* has q^m elements. In particular, the finite field *E* contains exactly p^n elements for p = charE and $n = [E : \mathbf{Z}_p]$.

Thm 4.32. For every prime power p^n , there is a unique (up to isomorphism) finite field $GF(p^n)$ which contains exactly p^n elements. If $\overline{\mathbf{Z}_p} \geq GF(p^n) \geq \mathbf{Z}_p$, the elements of $GF(p^n)$ are precisely the roots of $x^{p^n} - x \in \mathbf{Z}_p[x]$ in $\overline{\mathbf{Z}_p}$.

• The multiplicative group $\langle F^*,\cdot\rangle$ of nonzero elements of a finite field F is cyclic.

• A finite extension E of a finite field F is a simple extension of F. Because if $|E| = p^n$ (i.e. E is a finite extension of $F := \mathbf{Z}_p$), let $\alpha \in \overline{Z}_p$ be a primitive $(p^n - 1)$ -th root of unity, then $E = \mathbf{Z}_p(\alpha) = F(\alpha)$.

• For $\alpha \in \overline{\mathbf{Z}}_p$, the degree $\deg(\alpha, \mathbf{Z}_p) = n$ iff $\mathbf{Z}_p(\alpha) = \operatorname{GF}(p^n)$, iff α is a primitive $(p^n - 1)$ -root of unity in $\overline{\mathbf{Z}}_p$.

Ex. That are $\varphi(p^n-1)$ many primitive (p^n-1) -roots of unity in $GF(p^n)$. So the number of degree n irreducible polynomials in $\mathbf{Z}_p[x]$ is equal to $\frac{\varphi(p^n-1)}{n}$. Moreover, $x(x^{p^n-1}-1) = x^{p^n} - x \in \mathbf{Z}_p[x]$ is the product of all degree m irreducible polynomials for $m \mid n$.

• If $\operatorname{GF}(p^n) \ge \operatorname{GF}(p^m) \ge \mathbf{Z}_p$, then $m \mid n$. So it is easy to draw the intermediate field diagram of $\operatorname{GF}(p^n)$. Moreover, every $\operatorname{GF}(p^n)$ is a normal extension over \mathbf{Z}_p and $\operatorname{GF}(p^m)$ for $m \mid n$.

4.5.2 Galois Groups of Finite Fields

Thm 4.33. If F is a field of characteristic p and r is a positive integer, then $\sigma_r : F \to F$ given by $\sigma_r(u) = u^{p^r}$ is a \mathbb{Z}_p -monomorphism of fields.

It is clear that $\sigma_r \sigma_s = \sigma_{r+s}$.

Cor 4.34.

- 1. $G(GF(p^n)/\mathbf{Z}_p) = \{1, \sigma_1, \sigma_2, \cdots, \sigma_{n-1}\} \simeq \mathbf{Z}_n.$
- 2. When $m \mid n, \ G(GF(p^n)/GF(p^m)) = \{1, \sigma_m, \sigma_{2m}, \cdots, \sigma_{(\frac{n}{m}-1)m}\} \simeq \mathbb{Z}_{n/m}.$
- 3. $G(\overline{Z_p}/\mathbf{Z}_p) \geq \{\cdots, \sigma_{-2}, \sigma_{-1}, 1, \sigma_1, \sigma_2, \cdots\} \simeq \mathbf{Z}.$

Ex. $x^3 - 3x + 1 \in \mathbb{Z}_5[x]$ is irreducible. The Galois group of $x^3 - 3x + 1$ over \mathbb{Z}_5 is $\{1, \sigma_1, \sigma_2\} \simeq \mathbb{Z}_3$.

Ex. Describe the Galois correspondence between the intermediate fields of $GF(p^{12})$ over \mathbf{Z}_p and the subgroups of $G(GF(p^{12})/\mathbf{Z}_p)$.

• If $\alpha \in \overline{\mathbf{Z}}_p$ has $\deg(\alpha, \mathbf{Z}_p) = [\mathbf{Z}_p(\alpha) : \mathbf{Z}_p] = n$, then all the \mathbf{Z}_p -conjugates of α in $\overline{\mathbf{Z}}_p$ are

$$\{1(\alpha), \sigma_1(\alpha), \sigma_2(\alpha), \cdots, \sigma_{n-1}(\alpha)\} = \{\alpha, \alpha^{p^1}, \alpha^{p^2}, \cdots, \alpha^{p^{n-1}}\}.$$

The irreducible polynomial of α over \mathbf{Z}_p is

$$\operatorname{irr}(\alpha, \mathbf{Z}_p) = \prod_{k=0}^{n-1} \left(x - \alpha^{p^k} \right)$$

Similarly, when $m \mid n$, the irreducible polynomial of α over $GF(p^m)$ is

$$\operatorname{irr}(\alpha, \operatorname{GF}(p^m)) = \prod_{k=0}^{\frac{n}{m}-1} \left(x - \alpha^{p^{km}} \right)$$

4.6 Radical Extensions

4.6.1 Solvable Groups

Def. A finite group G is solvable if there exists a subgroup sequence

$$\{1\} = G_0 \le G_1 \le G_2 \dots \le G_n = G \tag{4.1}$$

such that $G_i \triangleleft G_{i+1}$ and G_{i+1}/G_i is an abelian group for $i = 0, \dots, n-1$.

Remark. If H is a finite abelian group, then there exists a subgroup sequence

$$\{1\} = H_0 \le H_1 \le \dots \le H_t$$

such that H_{i+1}/H_i is a cyclic group of prime order. So after making a refinement on the equence (4.1), we may assume that $G_i \triangleleft G_{i+1}$ and G_{i+1}/G_i is an (abelian) cyclic group of prime order.

We give another definition of solvable groups using derived subgroups. The **commutator subgroup** G' of G is the subgroup of G generated by the set $\{aba^{-1}b^{-1} \mid a, b \in G\}$.

Lem 4.35. $G' \lhd G$, and G' is the minimal normal subgroup of G such that G/G' is an abelian group.

Let

$$G^{(0)} = G, \quad G^{(1)} = G', \quad \cdots, \quad G^{(i+1)} = (G^{(i)})', \quad \cdots$$

Then $G = G^{(0)} \ge G^{(1)} \ge G^{(2)} \ge \cdots$ and $G^{(i)} \triangleright G^{(i+1)}$ for $i = 0, 1, 2, \cdots$. The group $G^{(i)}$ is called **the** *i*-**th derived subgroup of** G.

Lem 4.36. A finite group G is solvable iff $G^{(n)} = \{1\}$ for some n.

Ex.

- 1. D_4 is solvable. Every finite group of order p^n for a prime p is solvable.
- 2. A_4 is solvable.
- 3. A_5 is insolvable. Indeed, A_5 is the smallest insolvable group.

Thm 4.37. If G is a finite solvable group, then every subgroup and every quotient group of G are solvable.

Equivalently, if G contains an insolvable subgroup or quotient group, then G is also insolvable.

A remarkable result by W. Feit and J. Thompson claims that every finite group of odd order is solvable.

4.6.2 Radical Extensions

Def. An extension field F of K is a radical extension of K if $F = K(u_1, \dots, u_n)$, some powers of u_1 lies in K and for each $i \ge 2$, some power of u_i lies in $K(u_1, \dots, u_{i-1})$.

In other words, $F = K(u_1, \dots, u_n)$ is a radical extension of K if each of u_i can be expressed by finite step operations of $+, -, \cdot, /,$ and $\sqrt[n]{}$ on certain elements of K.

Def. Let K be a field and $f \in K[x]$. The equation f(x) = 0 is solvable by radicals if there exists a radical extension F of K such that the splitting field E of f over K satisfies that $K \subset E \subset F$.

Thm 4.38. If F is a radical extension field of K and E is an intermediate field, then G(E/K) is a solvable group.

Here E is not required to be splitting or separable over K.

Thm 4.39. If $f(x) \in K[x]$ is separable over K, and E is the splitting (normal) field of f(x) over K, then f(x) = 0 is solvable by radicals if and only if G(E/K) is a solvable group.

Ex. When charK = 0, or p := charK does not divide n! where n := deg f(x), the polynomial f(x) is separable. So we can apply the theorem.

Ex. A_5 is insolvable. So S_5 is insolvable. There exists a degree 5 polynomial (a quintic) $f(x) \in K[x]$ that has Galois group isomorphic to S_5 . Then some roots of f(x) = 0 are insolvable by radicals.

For example, the Galois group of $f(x) = x^5 - 4x + 1 \in \mathbf{Q}[x]$ is S_5 , which is insolvable. So $x^5 - 4x + 1 = 0$ is insolvable by radicals over \mathbf{Q} .

Thus it is impossible to find a general radical formula to solve the roots of a generic polynomial of degree $n \ge 5$.

Ex. There are some famous geometric construction problems using a straightedge and a compass. A number α is **constructible** if α can be obtained by using straightedge and compass (initially with unit width) finitely many times.

It is easy to see that: if α and $\beta \neq 0$ are constructible, then so are $\alpha \pm \beta$, $\alpha \cdot \beta$, and α/β . So the set of all constructible numbers form a field. The curves drawn by straightedge and compass are of degrees 1 and 2. If a field K consists of constructible numbers, and $\deg(\alpha, K) = 2$, then α is constructible. In fact, every constructible number can be obtained by a sequence of field extensions

$$Q = F_0 \subset F_1 \subset F_2 \subset \cdots, \qquad [F_{i+1} : F_i] = 2.$$

So α is constructible iff α is algebraic over \mathbf{Q} and $\deg(\alpha, \mathbf{Q}) = 2^m$. Therefore, using straightedge and compass,

- 1. trisecting a generic angle is impossible;
- 2. doubling the volume of a cube is impossible;
- 3. (Gauss) a regular n-gon is constructible iff $\cos \frac{2\pi}{n}$ is constructible, iff a primitive n-root of unity, say ζ , is constructible, iff $\operatorname{irr}(\zeta, \mathbf{Q}) = \varphi(n) = 2^m$, iff n is a product of a power of 2 and some distinct odd primes of the form $p = 2^t + 1$. However, if t has an odd factor s > 1, then $2^{t/s} + 1$ divides $2^t + 1$. So $t = 2^k$ and thus $p = 2^{2^k} + 1$ (called a Fermat prime). Overall, a regular n-gon is constructible iff $n = 2^\ell p_1 p_2 \cdots p_q$, where p_i are distinct Fermat primes. The following regular n-gons are constructible using straightedge and compass:

 $n = 3, 4, 5, 6, 8, 10, 12, 15, 16, 17, 20, \dots, 120, \dots, 256, \dots$

However, the regular 9-gon is inconstructible.