## Chapter 4

## Fields and Galois Theory

### 4.1 Field Extensions

### 4.1.1 $K[u]$ and $K(u)$

Def. A field $F$ is an extension field of a field $K$ if $F \geq K$.
Obviously, $F \geq K \Longrightarrow 1_{F}=1_{K}$.
Def. When $F \geq K$, let $[F: K]:=\operatorname{dim}_{K} F$ denote the dim of $F$ over $K$.
Def. Let $K$ be a field.

$$
\begin{aligned}
K[x] & :=\text { the polynomial ring of } K, \\
K(x) & :=\left\{\left.\frac{f}{g} \right\rvert\, f, g \in K[x], g \neq 0\right\} \\
& =\text { the rational function field of } K=\text { the quotient field of } K[x] .
\end{aligned}
$$

If $F \geq K$ and $u \in F$, denote

$$
\begin{aligned}
K[u] & :=\text { the subring of } F \text { generated by } K \text { and } u \\
& =\{f(u) \mid f \in K[x]\}, \\
K(u) & :=\text { the subfield of } F \text { generated by } K \text { and } u \\
& =\{f(u) / g(u) \mid f, g \in K[x], g(u) \neq 0\} .
\end{aligned}
$$

Def. Suppose $F \geq K$ and $u \in F$.

- $u$ is called algebraic over $K$ if $g(u)=0$ for some nonzero polyn $g \in K[x]$;
- otherwise, $u$ is called transcendental over $K$.

Every $u \in F$ induces a ring homom

$$
\phi_{u}: K[x] \rightarrow F, \quad \phi_{u}(f):=f(u) .
$$

Since $K[x]$ is a PID,

$$
\operatorname{Ker} \phi_{u}=\{f \in K[x] \mid f(u)=0\}=\left(p_{u}\right)
$$

for a monic polyn $p_{u} \in K[x]$.
Thm 4.1. Suppose $F \geq K$.

1. if $u \in F$ is algebraic over $K$, then
(a) $p_{u}(x)$ is irreducible in $K[x]$, called the irreducible polynomial of $u$ over $K$, denoted by $\operatorname{irr}(u, K)=p_{u}$. For $f \in K[x], f(u)=0$ iff $p_{u} \mid f$,
(b) The ring $K[u]=K(u) \simeq K[x] /\left(p_{u}\right)$ is a field, and $[K[u]: K]=[K(u): K]=\operatorname{deg} p_{u}=: \operatorname{deg}_{K}(u) \quad$ (the degree of $u$ over $\left.K.\right)$ Indeed, $K[u]=K(u)$ has a $K$-basis $\left\{1, u, u^{2}, \cdots, u^{n-1}\right\}$ for $n=$ $\operatorname{deg} p_{u}$.
2. if $u \in F$ is transcendental over $K$, then
(a) $p_{u}=0$,
(b) $K[u] \simeq K[x]$ and $K(u) \simeq K(x)$, both have infinite dim over $K$.

Ex.

1. $\mathbf{R} \geq \mathbf{Q}, u=\sqrt{3}+\sqrt[3]{2} \in \mathbf{R}$ is algebraic over $\mathbf{Q}$. Then

$$
\begin{aligned}
u-\sqrt{3}=\sqrt[3]{2} & \Longrightarrow(u-\sqrt{3})^{3}=2 \\
& \Longrightarrow u^{3}+9 u-8=3 \sqrt{3}\left(u^{2}+1\right) \\
& \Longrightarrow\left(u^{3}+9 u-8\right)^{2}=27\left(u^{2}+1\right)^{2} \\
& \Longrightarrow u^{6}-9 u^{4}-16 u^{3}+27 u^{2}-144 u+37=0
\end{aligned}
$$

Then $p(x)=x^{6}-9 x^{4}-16 x^{3}+27 x^{2}-144 x+37$ is the irred polyn of $u=\sqrt{2}+\sqrt[3]{2}$ in $\mathbf{Q}$. Any $f \in \mathbf{Q}[x]$ satisfies $f(u)=0$ iff $p \mid f$. $\mathbf{Q}[u]=\mathbf{Q}(u),[\mathbf{Q}(u): \mathbf{Q}]=6$, and $\left\{1, u, \cdots, u^{5}\right\}$ is a basis of $\mathbf{Q}(u)$ in Q.
2. $\mathbf{R} \geq \mathbf{Q}, \pi \in \mathbf{R}$ is transcendental over $\mathbf{Q}$. Then $\mathbf{Q}[\pi] \simeq \mathbf{Q}[x]$ and $\mathbf{Q}(\pi) \simeq \mathbf{Q}(x)$, both have infinite dim.

### 4.1.2 Field Extensions

Def.

- $F$ is a finite extension of $K$ if $[F: K]<\infty$,
- $F$ is an infinite extension of $K$ if $[F: K]$ is infinite.

Thm 4.2. (proved) If $F \geq E \geq K$, then

$$
[F: K]=[F: E][E: K]
$$

Moreover, $[F: K]$ is finite iff $[F: E]$ and $[E: K]$ are finite.

It implies the following theorem:
Thm 4.3. $F \geq K, u \in F$. The foll are equiv:

1. $u$ is algebraic over $K$,
2. $K(u)$ is a finite extension of $K$,
3. every $v \in K(u)$ is algebraic over $K$, and $\operatorname{deg}_{K}(v) \mid \operatorname{deg}_{K}(u)$.

Def. $F \geq K$ and $X \subseteq F$. Let $K[X]$ (resp. $K(X)$ ) denote the subring (resp. the subfield) of $F$ generated by $K \cup X$.

Def. $F \geq K$ is a

- simple extension of $K$ if $F=K(u)$ for some $u \in F$;
- finitely generated extension of $K$ if $F=K\left(u_{1}, \cdots, u_{n}\right)$ for some $u_{1}, \cdots, u_{n} \in F$.

Ex. Every fin ext is a fin gen ext. The converse is false. e.g. $K(x)$ is a fin gen ext of $K$ but not a fin ext of $K$.

Def. $F \geq K$ is an algebraic extension if every element of $F$ is algebraic over $K$.

Thm 4.4. $F \geq K$ is a finite extension iff $F=K\left[u_{1}, \cdots, u_{n}\right]$ where each $u_{i}$ is algebraic over $K$. In particular, finite extensions are algebraic extensions.

Thm 4.5. $F \geq E \geq K$. Then $F$ is alg ext of $K$ iff $F$ is alg ext of $E$ and $E$ is alg ext of $K$.

Ex. $\mathbf{Q}(\sqrt{2})$ is algebraic extension over $\mathbf{Q}$, and $\mathbf{Q}(\sqrt{2}, \sqrt[5]{3})$ is an algebraic extension over $\mathbf{Q}(\sqrt{2})$. Then $\mathbf{Q}(\sqrt{2}, \sqrt[5]{3})$ is an algebraic extension over $\mathbf{Q}$. For example, both $\sqrt{2}-\sqrt[5]{3}$ and $\sqrt{2} \sqrt[5]{3}$ are algebraic numbers over $\mathbf{Q}$.

Thm 4.6. $F \geq K$. The set of all elements of $F$ that are algebraic over $K$ forms an intermediate field $\widehat{K}$ between $F$ and $K(F \geq \widehat{K} \geq K)$, called the algebraic closure of $K$ in $F$. Moreover, every element of $F-\widehat{K}$ is transcendental over $\widehat{K}$.

## Remark.

1. Given a field $K$ and an irreducible monic polynomial $p(x) \in K[x]$, we can always construct an algebraic extension $F \geq K$ such that the irred polyn of certain $u \in F$ in $K$ is $p(x)$ :
(a) The quotient ring $F:=K[x] /(p(x))$ is a field since $p(x)$ is irreducible.
(b) Let $\iota: K \rightarrow K[x]$ be the canonical inclusion, and $\pi: K[x] \rightarrow$ $K[x] /(p(x))$ the canonical projection. Then $\pi \iota(K) \simeq K$ and $F \geq$ $\pi \iota(K)$.
(c) The element $u:=\pi(x) \in F$ has irred polyn $p(x)$ in $\pi \iota(K) \simeq K$.
2. Any field $K$ can be extended to an algebraic closure field $\bar{K}$ that contains the roots of all irreducible polynomials of $K[x]$, using Zorn's Lemma and the above remark. Any two algebraic closures of $K$ are K-isomorphic (Hungerford, Thm V.3.6).

### 4.2 Galois Theory

We will focus on Galois theory for finite extensions (i.e., fin gen alg exts).

### 4.2.1 $K$-automorphism

Thm 4.7. $F \geq K$ and $u, v \in F$. Then $\phi_{u, v}: K(u) \rightarrow K(v)$ def by $\left.\phi_{u, v}\right|_{K}=$ $\left.i d\right|_{K}$ and $\phi_{u, v}(u)=v$ is a field isomorphism iff one the followings holds:

1. Both $u$ and $v$ are algebraic and $\operatorname{irr}(u, K)=\operatorname{irr}(v, K)$. $u$ and $v$ are said to be conjugate over $K$.
2. Both $u$ and $v$ are transcendental over $K$.

Def. Let $E \geq K$ and $F \geq K$. A map $\sigma: E \rightarrow F$ is a $K$-isomorphism if $\sigma$ is both a field isomorphism and a $K$-mod isomorphism. If $E=F$, then $\sigma$ is a $K$-automorphism. All $K$-automorphisms of $F$ form a group $G(F / K)=A u t_{K} F$, called the Galois group of $F$ over $K$.

## Remark.

1. $\sigma: E \rightarrow F$ is a $K$-isomorphism iff $\sigma$ is a field isomorphism that acts as identity map on $K$.
2. Let $B:=\left\{\begin{array}{ll}\mathbf{Q}, & \text { if char } F=0, \\ \mathbf{Z}_{p}, & \text { if char } F=p,\end{array}\right.$ be the base field of $F$. Then a chain of
fields

$$
F \geq F_{1} \geq F_{2} \geq \cdots \geq B
$$

induces a chain of automorphism groups

$$
\{1\}=G(F / F) \leq G\left(F / F_{1}\right) \leq G\left(F / F_{2}\right) \leq \cdots \leq G(F / B)=\operatorname{Aut}(F)
$$

Thm 4.8. Let $F \geq K$ be an algebraic extension, and $\sigma \in G(F / K)$. Then $\operatorname{irr}(u, K)=\operatorname{irr}(\sigma(u), K)$ for every $u \in F$.

Proof. A special case of Thm 4.7.

Remark. This important theorem can be used to determined all elements of $G(F / K)$ when $F=K\left(u_{1}, \cdots, u_{n}\right)$, in particular when $[F: K]<\infty$.

Ex. Consider $K=\mathbf{Q}$ and $F=\mathbf{Q}(\sqrt{2}, \sqrt{3})$. Clearly $\sqrt{3} \notin \mathbf{Q}(\sqrt{2})$ and so $[\mathbf{Q}(\sqrt{2}, \sqrt{3}): \mathbf{Q}]=4$. Then

$$
\mathbf{Q}(\sqrt{2}, \sqrt{3})=1 \mathbf{Q}+\sqrt{2} \mathbf{Q}+\sqrt{3} \mathbf{Q}+\sqrt{6} \mathbf{Q}
$$

Then $G(F / K)$ consists of 4 elements: (classified by their actions on generators $\sqrt{2}$ and $\sqrt{3}$ )

| $G(F / K)$ | 1 | $\sigma$ | $\tau$ | $\sigma \tau=\tau \sigma$ |
| :---: | :---: | :---: | :---: | :---: |
| image of $\sqrt{2}$ | $\sqrt{2}$ | $\sqrt{2}$ | $-\sqrt{2}$ | $-\sqrt{2}$ |
| image of $\sqrt{3}$ | $\sqrt{3}$ | $-\sqrt{3}$ | $\sqrt{3}$ | $-\sqrt{3}$ |

For example, $\sigma(a+b \sqrt{2}+c \sqrt{3}+d \sqrt{6})=a+b \sqrt{2}-c \sqrt{3}-d \sqrt{6}$.
Remark. $G(F / K)$ stabilizes the algebraic closure of $K$ in $F$.
Ex. Let $F=\mathbf{Q}(\sqrt{2}, \sqrt{3}, x) \geq \mathbf{Q}=K$, where $x$ is transcendental over $\mathbf{Q}$. The algebraic closure of $K$ in $F$ is $\widehat{K}=\mathbf{Q}(\sqrt{2}, \sqrt{3})$. Suppose $\sigma \in G(F / K)$. Then $\sigma(\mathbf{Q}(\sqrt{2}, \sqrt{3}))=\mathbf{Q}(\sqrt{2}, \sqrt{3})$. So $\sigma$ sends $\sqrt{2}$ to $\pm \sqrt{2}$, sends $\sqrt{3}$ to $\pm \sqrt{3}$, and sends $x$ to $\frac{a x+b}{c x+d}$ for $a, b, c, d \in \mathbf{Q}(\sqrt{2}, \sqrt{3})$ and $a d-b c \neq 0$ (since from $u=\sigma(x)$ we should get a rational function expression of $x$ ). The group $\left(\mathbf{Z}_{2} \times \mathbf{Z}_{2}\right) \ltimes G(F / K) \simeq P G L(2, \widehat{K})$.

### 4.2.2 Splitting Field

Def. A polyn $f \in F[x]$ is split over $F$ (or to split in $F[x]$ ) if $f$ can be written as a product of degree one polyns in $F[x]$.

Ex. $F=\mathbf{Q}(\sqrt{2}, \sqrt[3]{3})$. Then $x^{2}-2$ is split over $F$, but $x^{2}-3$ is not split over $F$.

Def. Suppose $\bar{K} \geq F \geq K$. Then

1. Let $\left\{f_{i} \mid i \in I\right\}$ be a set of polyns in $K[x]$. $F$ is the splitting field over $K$ of $\left\{f_{i} \mid i \in I\right\}$ if $F$ is generated over $K$ by the roots of all $f_{i}$.
2. $F$ is a splitting field over $K$ if $F$ is the splitting field of some set of polynomials in $K[x]$.

Ex. Let $\alpha_{1}, \cdots, \alpha_{n}$ be the roots of $f \in K[x]$ in $\bar{K}$. The splitting field over $K$ of $f$ is $F:=K\left(\alpha_{1}, \cdots, \alpha_{n}\right)$. Note that $[F: K] \geq \operatorname{deg} f(x)$.

Ex. $\bar{K}$ is a splitting field over $K$ of $K[x]$. Every $f \in K[x]$ is split over $\bar{K}$.

Ex. $E:=\mathbf{Q}(\sqrt{2}, \sqrt{3})$ splitting over $\mathbf{Q}$ of $\left\{x^{2}-2, x^{2}-3\right\}$. The polynomials $x^{2}-2, x^{2}-3, x^{4}-5 x^{2}+6$, are split over $E$.

Ex. What is the splitting field $F$ over $\mathbf{Q}$ of $x^{3}-2$ ? What are the elements of $G(F / Q)$ ?

Thm 4.9. Any two splitting fields of $S \subseteq K[x]$ over $K$ are $K$-isomorphic.
(c.f. Any two algebraic closures of $K$ are $K$-isomorphic.)

Thm 4.10. $F \geq K,[F: K]<\infty$. Let $\sigma: K \rightarrow K_{1}$ be a field isomorphism, and $\overline{K_{1}}$ an algebraic closure of $K_{1}$. The number of extensions of $\sigma$ to a field isomorphism $\tau$ of $F$ onto a subfield of $\overline{K_{1}}$ is finite, and is completely determined by $F$ and $K$ (so the number is not relative to $K_{1}, \overline{K_{1}}$, and $\sigma$.)

Proof. It suffices to prove for simple extension $F=K(u)$ and then apply induction. Suppose

$$
\operatorname{irr}(u, K)=p(x)=c_{0}+c_{1} x+\cdots+c_{n} x^{n} \in K[x] .
$$

Any extension of $\sigma$ to $\tau: F \rightarrow F_{1}$ with $F_{1} \leq \overline{K_{1}}$ is uniquely determined by $\tau(u)$, which is a root of

$$
\operatorname{irr}\left(\tau(u), K_{1}\right)=p_{\sigma}(x)=\sigma\left(c_{0}\right)+\sigma\left(c_{1}\right) x+\cdots+\sigma\left(c_{n}\right) x^{n} \in K_{1}[x] .
$$

Therefore, the number of extensions of $\sigma$ to an isomorphism of $F$ onto a subfield of $\overline{K_{1}}$ equals to the number of distinct roots of $p_{\sigma}(x)$, or the number of distinct roots of $p(x)$, which is completely determined by $F$ and $K$.

Def. Let $\bar{K} \geq F \geq K$ with $[F: K]<\infty$. The number of $K$-isomorphisms of $F$ onto a subfield of $\bar{K}$ is the index of $F$ over $K$, denoted by $\{F: K\}$.

## Remark.

1. $\{F: K\}$ is called the separable degree $[F: K]_{s}$ of $F$ over $K$ in [Hungerford, Def. V.6.10].
2. $|G(F / K)| \leq\{F: K\}$. In fact, $|G(F / K)|$ divides $\{F: K\}$.
3. $\{F: K\} \leq[F: K]$. In fact, $\{F: K\}$ divides $[F: K]$.

Thm 4.11. If $F \geq L \geq K$ and $[F: K]<\infty$, then

$$
\{F: K\}=\{F: L\}\{L: K\}
$$

Proof. There are $\{L: K\}$ many $K$-isomorphisms of $L$ onto a subfield of $\bar{K}$. By Theorem 4.10, each such $K$-isomorphism has $\{F: L\}$ many extensions to a $K$-isomorphisms of $F$ onto a subfield of $\bar{K}$.

## Remark.

1. Compare: If $F \geq L \geq K$, then $[F: K]=[F: L][L: K]$.
2. By the Theorem, if $F=K\left(\alpha_{1}, \cdots, \alpha_{r}\right)$ is a finite extension of $K$, let $F_{i}:=K\left(\alpha_{1}, \cdots, \alpha_{i}\right)$ so that $F_{i}=F_{i-1}\left(\alpha_{i}\right)$. Then

$$
\begin{aligned}
\{F: K\} & =\left\{F: F_{r-1}\right\}\left\{F_{r-1}: F_{r-2}\right\} \cdots\left\{F_{1}: K\right\} \\
& =\left\{F_{r-1}\left(\alpha_{r}\right): F_{r-1}\right\} \cdots\left\{K\left(\alpha_{1}\right): K\right\}
\end{aligned}
$$

where

$$
\left\{F_{i-1}\left(\alpha_{i}\right): F_{i-1}\right\}=\text { the number of distinct roots in } \operatorname{irr}\left(\alpha_{i}, F_{i-1}\right) .
$$

3. When $\alpha$ is algebraic over $K$, the index $\{K(\alpha): K\}$ equals the number of distinct roots of $\operatorname{irr}(\alpha, K)$. So $\{K(\alpha): K\} \leq[K(\alpha): K]$ and thus $\{F: K\} \leq[F: K]$ in general.

Ex. $F=\mathbf{Q}(\sqrt{2}, \sqrt[3]{3}) \geq \mathbf{Q}=K$. Compute the order $|G(F / K)|$, the index $\{F: K\}$, and the degree $[F: K]$.

Thm 4.12. $F \geq K$ with $[F: K]<\infty$. $F$ is a splitting field over $K$ iff every $K$-isomorphism of $F$ onto a subfield of $\bar{K}$ is a $K$-automorphism of $F$ (i.e., in $G(F / K)$ ), iff $|G(F / K)|=\{F: K\}$.

Cor 4.13. $F \geq K$ splitting. Then every irred polyn in $K[x]$ having a zero in $F$ splits in $F[x]$.

### 4.2.3 Separable Extension

Def.

1. A polyn $f \in K[x]$ is separable if in some splitting field of $f$ over $K$ every root of $f$ is a simple root.
2. $F \geq K$. $u \in F$ is called separable over $K$ if $\operatorname{irr}(u, K)$ is separable.
3. $F \geq K$ is called a separable extension of $K$ if every element of $F$ is separable over $K$.

Thm 4.14. If $p(x) \in K[x]$ is an irred polyn, then every root of $p(x)$ has the same multiplicity.

Proof. Suppose $\alpha$ and $\beta$ are two roots of $p(x)$ with multiplicities $m_{\alpha}$ and $m_{\beta}$ respectively, so that $(x-\alpha)^{m_{\alpha}}$ and $(x-\beta)^{m_{\beta}}$ are factors of $p(x)$. The $K$-isomorphism $\phi_{\alpha, \beta}: K(\alpha) \rightarrow K(\beta)$ that sends $\alpha$ to $\beta$ can be extended (by Zorn's Lemma) to a $\underset{\sim}{K}$-automorphism $\bar{\phi}: \bar{K} \rightarrow \bar{K}$, and be further extended to a ring automorphism $\underset{\sim}{\boldsymbol{\phi}}: \bar{K}[x] \rightarrow \bar{K}[x]$. One has $\widetilde{\phi}(p(x))=p(x)$ since $\widetilde{\phi}$ fixes every element of $K$. Then $\widetilde{\phi}\left((x-\alpha)^{m_{\alpha}}\right)=(x-\beta)^{m_{\beta}}$ and so $m_{\alpha}=m_{\beta}$.

Remark. $p(x) \in K[x]$ monic irreducible. Then $p(x)=\left[\prod_{i}\left(x-\alpha_{i}\right)\right]^{m}$, where $m$ is the multiplicity of a root of $p(x)$, and $\alpha_{i}$ are distinct.

1. The multiplicity $m$ divides $\operatorname{deg} p(x)$.
2. $\left\{K\left(\alpha_{i}\right): K\right\}=\frac{1}{m} \operatorname{deg} p(x)$ divides $\left[K\left(\alpha_{i}\right): K\right]=\operatorname{deg} p(x)$.
3. If char $K=0$, then $m \equiv 1$ and $\{F: K\}=[F: K]$ for any $F \geq K$. So any extension is a separable extension.
4. If char $K=p$, then $\frac{\left[K\left(\alpha_{i}\right): K\right]}{\left\{K\left(\alpha_{i}\right): K\right\}}=m=p^{r}$ for some $r \geq 0$.
5. and 4. can be proved by derivative technique.

Thm 4.15. A finite extension $F \geq K$ is a separable extension of $K$ iff $\{F: K\}=[F: K]$.
$F \geq K$ fin ext. Then $|G(F / K)||\{F: K\}|[F: K]:$

- $F$ is splitting over $K$ iff $|G(F / K)|=\{F: K\}$,
- $F$ is separable over $K$ iff $\{F: K\}=[F: K]$.

Thm 4.16. $F \geq L \geq K,[F: K]<\infty$. Then $F$ is separable over $K$ iff $F$ is separable over $L$ and $L$ is separable over $K$.

Ex. Let $K=\mathbf{Q}$ and $F=\mathbf{Q}(\sqrt{2}, \sqrt{3})$. Then $\{\mathbf{Q}(\sqrt{2}, \sqrt{3}): \mathbf{Q}\}=4=$ $[\mathbf{Q}(\sqrt{2}, \sqrt{3}): \mathbf{Q}]$. So $\mathbf{Q}(\sqrt{2}, \sqrt{3})$ is a separable extension over $\mathbf{Q}$.

Thm 4.17 (Primitive Element Theorem). A finite separable extension $F \geq$ $K$ is always a simple extension, i.e. $F=K(u)$ for some $u \in F$.

Ex. $\mathbf{Q}(\sqrt{2}, \sqrt{3})=\mathbf{Q}(\sqrt{2}+\sqrt{3})$ is a simple extension over $\mathbf{Q}$.

Proof of Thm 4.17. If $|K|<\infty$, then $F$ and $K$ are finite fields. Then $F^{*}=$ $\langle u\rangle$ for some $u \in F^{*}$ (to be shown later). Hence $F=K(u)$.

Suppose $K$ is an infinite field. By induction, we may assume that $F=$ $K(v, w)$ for some $v, w \in F$. Let $p=\operatorname{irr}(v, K)$ and $q=\operatorname{irr}(w, K)$. Let $v_{1}=v, v_{2}, \cdots, v_{m}$ and $w_{1}=w, w_{2}, \cdots, w_{n}$ be the roots of $p$ and $q$ in $F$. Then $v_{i}$ 's are distinct since $F$ is separable. Similarly, $w_{j}$ 's are distinct. As $K$ is infinite, there is $a \in K$ such that $a \neq \frac{v_{i}-v}{w-w_{j}}$ for all $i$ and all $j \neq 1$. Let $u:=v+a w$ and $E:=K(u)$. Then $F \geq E \geq K$. We show that $w \in E$. Obviously, $\operatorname{irr}(w, E) \mid \operatorname{irr}(w, K)=q$. Define $f:=p(u-a x) \in E[x]$. Then $f(w)=p(v)=0$ and so $\operatorname{irr}(w, E) \mid f$. However, $f\left(w_{j}\right) \neq 0$ for $j \neq 1$. Therefore, $\operatorname{gcd}(q, f)=x-w$ and $\operatorname{irr}(w, E)=x-w$. So $w \in E$. Then $v=u-a w \in E$ so that $F=E=K(u)$ is a simple extension.

So inseparable extensions exist in some characteristic $p$ infinite fields.
Def. $F \geq K . u \in F$ is purely inseparable over $K$ if $\operatorname{irr}(u, K)=(x-u)^{m}$ ( $m$ must be a power of $p$ ). $F$ is a purely inseparable extension of $K$ if every element of $F$ is purely inseparable over $K$.

Prop 4.18. If $F \geq L \geq K$, then $F$ is purely insep over $K$ iff $F$ is purely insep over $L$ and $L$ is purely insep over $K$.

Thm 4.19. Let $F \geq K,[F: K]<\infty$, and char $K=p$. Then $\alpha \in F$ is purely insep iff $\alpha^{p^{r}} \in K$ for some $r \in \mathbf{N}$.

Ex. Let $K:=\mathbf{Z}_{p}(y)$ ( $p$ prime, $y$ transcendental over $\mathbf{Z}_{p}$ ). The polyn $x^{p}-y$ is inseparable irreducible over $K$. If $u \in \bar{K}$ is a root of $x^{p}-y$, then $u$ is purely insep over $K$.

Remark. $F \geq K$. The set of all elements of $F$ purely insep over $K$ forms a field $T$, the purely inseparable closure of $K$ in $F$. Then $F \geq T \geq K$, $F$ is separable over $T$, and $T$ is purely inseparable over $K$.

Similarly, there exists $L$, the separable closure of $K$ in $F$, such that $F \geq L \geq K, F$ is purely inseparable over $L$, and $L$ is separable over $K$.

### 4.2.4 Galois Theory

Def. $F \geq K$. For a subgroup $H \leq G(F / K)$, the set

$$
F_{H}:=\{u \in F \mid \sigma(u)=u \text { for every } \sigma \in H\}
$$

is an intermediate field between $F$ and $K$, called the fixed field of $H$ in $F$.

Lem 4.20. Let $F \geq K$. Then

1. a field $L \leq F \quad \Longrightarrow \quad L \leq F_{G(F / L)}$;
2. a subgroup $H \leq G(F / K) \quad \Longrightarrow \quad H \leq G\left(F / F_{H}\right)$.
(exercise)
Def. A finite extension $F \geq K$ is a finite normal extension of $K$ if $|G(F / K)|=\{F: K\}=[F: K]$, i.e., $F$ is a separable splitting field of $K$.

Let $F \geq K$ be a finite separable extension. Then $F=K(u)$ for some $u \in F$. The splitting field $L$ over $K$ of $\operatorname{irr}(u, K)$ satisfies that $L \geq F \geq K$, where $L \geq K$ is a normal extension.

Lem 4.21. $\bar{K} \geq F \geq L \geq K$. If $F$ is a finite normal extension of $K$, then $F$ is a finite normal extension of $L$. The group $G(F / L) \leq G(F / K)$. Moreover, two $K$-automorphisms $\sigma, \tau \in G(F / K)$ induce the same $K$-isomorphism of $L$ onto a subfield of $\bar{K}$ iff $\sigma$ and $\tau$ are in the same left coset of $G(F / L)$ in $G(F / K)$.

Proof. If $F$ is the splitting field of a set of polynomials of $K[x]$ over $K$, then $F$ is the splitting field of the same set of polynomials of $L[x]$ over $L$. So $F$ is splitting over $L$. Moreover, " $F$ is separable over $K$ " implies that " $F$ is separable over $L "$. Thus $F$ is a finite normal extension over $L$.

Two automorphisms $\sigma, \tau \in G(F / K)$ satisfy that $\left.\sigma\right|_{L}=\left.\tau\right|_{L}$ iff $\left(\sigma^{-1} \circ\right.$ $\tau)\left.\right|_{L}=\left.1\right|_{L}$, iff $\sigma^{-1} \circ \tau \in G(F / L)$, iff $\tau \in \sigma \cdot G(F / L)$, that is, $\sigma$ and $\tau$ are in the same left coset of $G(F / L)$.

Thm 4.22 (Fundamental Theorem of Galois Theory). Let $F$ be a finite normal extension of $K$ (i.e. $|G(F / K)|=\{F: K\}=[F: K]$ ). Let $L$ denote an intermediate field $(F \geq L \geq K)$. Then $L \leftrightarrow G(F / L)$ is a bijection of the set of all intermediate fields between $F$ and $K$ onto the set of all subgroups of $G(F / K)$. Moreover,

1. $L=F_{G(F / L)}$ for every intermediate field $L$ with $F \geq L \geq K$.
2. $H=G\left(F / F_{H}\right)$ for every subgroup $H \leq G(F / K)$.
3. $L$ is a normal extension of $K$ if and only if $G(F / L)$ is a normal subgroup of $G(F / K)$. In such situation,

$$
G(L / K) \simeq G(F / K) / G(F / L)
$$

4. The subgroup diagram of $G(F / K)$ is the inverted diagram of the intermediate field diagram of $F$ over $K$.

Galois theory implies that: To understand the field extensions in $F \geq K$, it suffices to understand the group structure of $G(F / K)$.

Proof. (Sketch)

1. Every automorphism in $G(F / L)$ leaves $L$ fixed. So $L \subseteq F_{G(F / L)}$. Note that $F$ is normal over $L$. Given $\alpha \in F-L$, there is another root $\beta \in F-L$ of the polynomial $\operatorname{irr}(\alpha, L)$. By Thm 4.7, There is an automorphism in $G(F / L)$ that sends $\alpha$ to $\beta$. So every $\alpha \in F-L$ is not fixed by $G(F / L)$. Hence $F_{G(F / L)} \subseteq L$. So $L=F_{G(F / L)}$.
2. Let $H \leq G(F / K)$. Every element of $H$ leaves $F_{H}$ fixed. So $H \leq$ $G\left(F / F_{H}\right)$. It remains to prove that $|H| \geq\left|G\left(F / F_{H}\right)\right|\left(=\left[F: F_{H}\right]\right)$ so that $H=G\left(F / F_{H}\right)$. Since $F$ is a finite normal (=separable+splitting) extension over $F_{H}$, we can write $F=F_{H}(\alpha)$ for some $\alpha \in F-F_{H}$. Suppose $H:=\left\{\sigma_{1}, \cdots, \sigma_{|H|}\right\}$. Denote

$$
f(x):=\prod_{i=1}^{|H|}\left(x-\sigma_{i}(\alpha)\right) \in F[x]
$$

Every $\sigma_{k} \in H \leq G(F / K)$ induces a ring automorphism of $F[x]$, with

$$
\sigma_{k}(f(x))=\prod_{i=1}^{|H|}\left(x-\sigma_{k} \sigma_{i}(\alpha)\right)=\prod_{i=1}^{|H|}\left(x-\sigma_{i}(\alpha)\right)=f(x)
$$

So the coefficients of $f(x)$ are in $F_{H}$ and $f(x) \in F_{H}[x]$. The group $H$ contains identity automorphism. So there is some $\sigma_{i}(\alpha)=\alpha$. So $f(\alpha)=0$. Then $\operatorname{irr}\left(\alpha, F_{H}\right) \mid f(x)$. So
$\left|G\left(F / F_{H}\right)\right|=\left[F: F_{H}\right]=\left[F_{H}(\alpha): F_{H}\right]=\operatorname{deg}\left(\alpha, F_{H}\right) \leq \operatorname{deg} f(x)=|H|$.
Therefore $H=G\left(F / F_{H}\right)$.
3. $L$ is a normal extension over $K$
iff $L$ is splitting (and separable) over $K$;
iff $\sigma(\alpha) \in L$ for any $\alpha \in L$;
(notice that $L=F_{G(F / L)}$ ) iff $\tau \sigma(\alpha)=\sigma(\alpha)$ for every $\tau \in G(F / L)$;
iff $\sigma^{-1} \tau \sigma(\alpha)=\alpha$;
iff $\sigma^{-1} \tau \sigma \in G(F / L)$ for every $\tau \in G(F / L)$ and $\sigma \in G(F / K)$; iff $G(F / L)$ is a normal subgroup of $G(F / K)$.
Suppose $L$ is a normal extension over $K$. We show that $G(L / K) \simeq$ $G(F / K) / G(F / L)$. Since $L$ is splitting over $K$, if $\sigma \in G(F / K)$ then $\left.\sigma\right|_{L} \in G(L / K)$. Define $\phi: G(F / K) \rightarrow G(L / K)$ by $\phi(\sigma):=\left.\sigma\right|_{L}$. Then $\phi$ is a group homomorphism. On one hand, every $\widetilde{\gamma} \in G(L / K)$ can be extended to an element $\gamma \in G(F / K)$, with $\phi(\gamma)=\left.\gamma\right|_{L}=\widetilde{\gamma}$. So $\phi$ is onto. On the other hand, $\operatorname{Ker}(\phi)=G(F / L)$. Therefore,

$$
G(L / K) \simeq G(F / K) / G(F / L)
$$

4. The statements 1 . and 2 . build up the bijection between the set of intermediate fields of $F$ over $K$ and the set of subgroups of $G(F / K)$ in desired order.

The following Lagrange's Theorem on Natural Irrationalities discloses further relations on Galois correspondence.

Thm 4.23. If $L$ and $M$ are intermediate fields between $F$ and $K$ such that $L$ is a finite normal extension of $K$, then the field $(L, M)$ is finite normal extension of $M$ and $G((L, M) / M) \simeq G(L / L \cap M)$. (show by graph)

Proof. The idea is to show that: if $L$ is the splitting field over $L \cap M$ of an irred polyn $f \in(L \cap M)[x]$, then $(L, M)$ is the splitting field over $M$ of $f$. This makes the correspondence.

Ex. (HW) Let $K:=\mathbf{Q}$ and $F:=\mathbf{Q}(\sqrt{2}, \sqrt{3})$. Then $G(F / K)$ consists of 4 elements $\{\iota, \sigma, \tau, \sigma \tau\} \simeq \mathbf{Z}_{2} \times \mathbf{Z}_{2}$.

$$
\begin{aligned}
\iota(a+b \sqrt{2}+c \sqrt{3}+d \sqrt{6}) & :=a+b \sqrt{2}+c \sqrt{3}+d \sqrt{6} \\
\sigma(a+b \sqrt{2}+c \sqrt{3}+d \sqrt{6}) & :=a+b \sqrt{2}-c \sqrt{3}-d \sqrt{6} \\
\tau(a+b \sqrt{2}+c \sqrt{3}+d \sqrt{6}) & :=a-b \sqrt{2}+c \sqrt{3}-d \sqrt{6} \\
\sigma \tau(a+b \sqrt{2}+c \sqrt{3}+d \sqrt{6}) & :=a-b \sqrt{2}-c \sqrt{3}+d \sqrt{6}
\end{aligned}
$$

The intermediate field diagram of $F$ over $K$ and the subgroup diagram of $G(F / K)$ are inverted to each other.

Ex. Let $F=\mathbf{Q}(\sqrt[3]{2}, \mathbf{i} \sqrt{3})$ be the splitting field of $\left(x^{3}-2\right)$ over $K=\mathbf{Q}$.

1. Describe the six elements of $G(F / K)$ by describing their actions on $\sqrt[3]{2}$ and $\mathbf{i} \sqrt{3}$. (done)
2. To what group we have seen before is $G(F / K)$ isomorphic? (done)
3. Give the diagrams for the subfields of $F$ and for the subgroups of $G(F / K)$.

### 4.3 Illustration of Galois Theory

### 4.3.1 Some Examples

Def. The Galois group of a polynomial $f \in K[x]$ over a field $K$, denoted by $G(f / K)$, is the group $G(F / K)$ where $F$ is a splitting field over $K$ of $f$.

When $K=\mathbf{Q}$, the preceding examples show

1. the Galois group of $\left(x^{2}-2\right)\left(x^{2}-3\right) \in \mathbf{Q}[x]$ is $\mathbf{Z}_{2} \times \mathbf{Z}_{2}$, and
2. the Galois group of $x^{3}-2 \in \mathbf{Q}[x]$ is $S_{3}=D_{3}$.

Here $S_{n}$ denotes the group of permutations of $n$ letters, and $D_{n}$ denotes the symmetric group of a regular $n$-gon.

Ex. The Galois group of $x^{3}-1 \in \mathbf{Q}[x]$ is $\mathbf{Z}_{2}$, which is totally different from the Galois group of $x^{3}-2 \in \mathbf{Q}[x]$.

Ex. Find the Galois groups of the following polynomials in $\mathbf{Q}[x]$ :

1. $x^{4}+1$. $\left(\mathbf{Z}_{2} \times \mathbf{Z}_{2}\right)$
2. $x^{4}-1$. $\left(\mathbf{Z}_{2}\right)$
3. $x^{4}-2$. ( $D_{4}$. See p. 275 of [Hungerford, V.4])

The Galois group $G$ of an irreducible separable polynomial $f(x) \in K[x]$ of degree $n=2,3,4$ has been classified [see Hungerford, V.4].

1. $n=2$, then $G$ must be $S_{2} \simeq \mathbf{Z}_{2}$.
2. $n=3$, then $G$ could be $S_{3}$ or $A_{3} \simeq \mathbf{Z}_{3}$.
3. $n=4$, then $G$ could be $S_{4}, A_{4}, D_{4}, \mathbf{Z}_{4}$, or $\mathbf{Z}_{2} \times \mathbf{Z}_{2}$.

Let us discuss the Galois group of irreducible $f(x) \in \mathbf{Q}[x]$ of degree 3 .
Def. char $K \neq 2 ; f \in K[x]$ a polyn with distinct roots $u_{1}, \cdots, u_{n} . \quad F=$ $K\left(u_{1}, \cdots, u_{n}\right)$ the splitting field over $K$ of $f$. Denote

$$
\Delta=\prod_{i<j}\left(u_{i}-u_{j}\right) \in F ;
$$

define the discriminant of $f$ as $D=\Delta^{2}$.

Prop 4.24. Let $K, f, F$ and $\Delta$ be as in preceding definition.

1. For each $\sigma \in G(F / K) \leq S_{n}, \sigma$ is an even [resp. odd] permutation iff $\sigma(\Delta)=\Delta[\operatorname{resp} . \sigma(\Delta)=-\Delta]$.
2. The discriminant $\Delta^{2} \in K$.

Cor 4.25. $F \geq K(\Delta) \geq K$. Consider $G=G(F / K) \leq S_{n}$. In the Galois correspondence, the subfield $K(\Delta)$ corresponds to the subgroup $G \cap A_{n}$. In particular, $G$ consists of even permutations iff $\Delta \in K$.

Cor 4.26. Given a degree 3 irred separable polyn $f(x)=x^{3}+b x^{2}+c x+d \in$ $K[x]$, let

$$
g(x)=f(x-b / 3)=x^{3}+p x+q
$$

Then the discriminant of $f(x)$ is $\Delta^{2}=-4 p^{3}-27 q^{2} \in K$.

1. If $-4 p^{3}-27 q^{2}$ is a square in $K$, then $G(f / K)=A_{3} \simeq \mathbf{Z}_{3}$;
2. If $-4 p^{3}-27 q^{2}$ is not a square in $K$, then $G(f / K)=S_{3}$.

Ex. Consider the foll irred polyns in $\mathbf{Q}[x]$ :

1. $f(x)=x^{3}-2$. Then $\Delta^{2}=-27 \times 2^{2}$ is not a square in $\mathbf{Q}$. So $G(f / \mathbf{Q})=S_{3}$ (as we have proved).
2. $f(x)=x^{3}+3 x^{2}-x-1$. Then $g(x)=f(x-3 / 3)=x^{3}-4 x+2$ is irreducible. The discriminant of $f(x)$ is $-4(-4)^{3}-27(2)^{2}=148$, which is not a square in $\mathbf{Q}$. Thus $G(f / \mathbf{Q})=S_{3}$.
3. $f(x)=x^{3}-3 x+1$ is irreducible. The discriminant is $-4(-3)^{3}-$ $27(1)^{2}=81$, which is a square in $\mathbf{Q}$. So $G(f / \mathbf{Q})=A_{3} \simeq \mathbf{Z}_{3}$.

In general, it is difficult to compute the Galois group of an irreducible polynomial of degree $n \geq 5$. There is a special result:

Thm 4.27. $p$ is prime, $f(x) \in \mathbf{Q}[x]$ an irred polyn of deg $p$ with exactly two nonreal roots in $\mathbf{C}$, then $G(f / \mathbf{Q})=S_{p}$.

### 4.3.2 Finite Groups as Galois Groups

Thm 4.28. Let $G$ be the Galois group of an irreducible separable polynomial $f(x) \in K[x]$ of degree $n$. Then $G \leq S_{n}$ and $n||G|| n!$.

Next we show that every finite group is the Galois group of a finite normal extension.

Let $y_{1}, \cdots, y_{n}$ be indeterminates. The field $F:=\mathbf{Q}\left(y_{1}, \cdots, y_{n}\right)$ consists of all rational functions of $y_{1}, \cdots, y_{n}$. Every permutation $\sigma \in S_{n}$ induces a map $\bar{\sigma} \in G(F / \mathbf{Q})$ by

$$
\bar{\sigma}\left(\frac{f\left(y_{1}, \cdots, y_{n}\right)}{g\left(y_{1}, \cdots, y_{n}\right)}\right):=\frac{f\left(y_{\sigma(1)}, \cdots, y_{\sigma(n)}\right)}{g\left(y_{\sigma(1)}, \cdots, y_{\sigma(n)}\right)} .
$$

Denote $\bar{S}_{n}:=\left\{\bar{\sigma} \mid \sigma \in S_{n}\right\} \leq G(F / \mathbf{Q})$. The subfield of $F$ fixed by $\bar{S}_{n}$ is $K=\mathbf{Q}\left(s_{1}, \cdots, s_{n}\right)$, where $s_{1}, \cdots, s_{n}$ are the following symmetric functions of $y_{1}, \cdots, y_{n}$ over $\mathbf{Q}$ :

$$
\begin{aligned}
s_{1}:= & y_{1}+y_{2}+\cdots+y_{n} \\
s_{2}:= & y_{1} y_{2}+y_{1} y_{3}+\cdots+y_{n-1} y_{n} \\
& \cdots \cdots \\
s_{n}:= & y_{1} y_{2} \cdots y_{n}
\end{aligned}
$$

Now $F=K\left(y_{1}, \cdots, y_{n}\right)$, and

$$
\begin{aligned}
f(x) & :=\left(x-y_{1}\right)\left(x-y_{2}\right) \cdots\left(x-y_{n}\right) \\
& =x^{n}-s_{1} x^{n-1}+s_{2} x^{n-2}+\cdots+(-1)^{n} s_{n} \in K[x]
\end{aligned}
$$

So $F=\mathbf{Q}\left(y_{1}, \cdots, y_{n}\right)$ is the splitting field of $f(x)$ over $K=\mathbf{Q}\left(s_{1}, \cdots, s_{n}\right)$, where $y_{1}, \cdots, y_{n}$ are the roots of $f(x)$. Every element of $G(F / K)$ permutes the $n$ roots of $f(x)$. This shows that:

1. $G(F / K)=\bar{S}_{n} \simeq S_{n}$ and $|G(F / K)|=n!$.
2. (Every finite group is the Galois group of a finite normal extension) By Cayley's Theorem, every finite group $H$ is isomorphic to a subgroup of certain $S_{n}$. By Galois theory, there is an intermediate field $F_{0}$ such that $\mathbf{Q} \geq F \geq F_{0} \geq K$, and $H \simeq G\left(F / F_{0}\right)$.
3. It is an open problem that which finite group is the Galois group of a finite normal extension over a given field (e.g. Q).

### 4.4 Cyclotomic Extensions

Def. The splitting field $F$ of $x^{n}-1$ over $K$ is the cyclotomic extension of $K$ of order $n$.

Def. An element $u \in \bar{K}$ is a primitive $n$-th root of unity if $u^{n}=1$ and $u^{k} \neq 1$ for any positive integer $k<n$.

The cyclotomic extension of order $n$ is related to the Euler function $\varphi(n)$, where $\varphi(n)$ is the number of integers $i$ such that $1 \leq i \leq n$ and $\operatorname{gcd}(i, n)=1$. If $n=p_{1}^{m_{1}} \cdots p_{k}^{m_{k}}=\prod_{i=1}^{k} p_{i}^{m_{i}}$ is the prime factorization of $n$ (where $p_{i}$ are distinct primes), then

$$
\varphi(n)=\prod_{i=1}^{k}\left[p_{i}^{m_{i}-1}\left(p_{i}-1\right)\right]=n \prod_{i=1}^{k}\left(1-1 / p_{i}\right)
$$

When $d \mid n, \varphi(d)$ equals to the number of integers $i$ such that $1 \leq i \leq n$ and $\operatorname{gcd}(i, n)=n / d$. Therefore, $\sum_{d \mid n} \varphi(d)=n$.

### 4.4.1 Cyclotomic extensions over Q

Let $\overline{\mathbf{Q}} \subset \mathbf{C}$. Consider the splitting field of $x^{n}-1$ over $\mathbf{Q}$. There exists a primitive $n$-th root of unity $\zeta \in \mathbf{C}$. All the other primitive $n$-th roots of unity are $\zeta^{i}$ where $1 \leq i \leq n$ and $\operatorname{gcd}(i, n)=1$. So there are $\varphi(n)$ elements conjugate to $\zeta$ over $\mathbf{Q}$. Denote

$$
g_{n}(x)=\prod_{\substack{1 \leq i \leq n \\ \operatorname{gcd}(i, n)=1}}\left(x-\zeta^{i}\right)
$$

Then $g_{n}(x)=\operatorname{irr}(\zeta, \mathbf{Q}) \in \mathbf{Q}[x]$ has degree $\varphi(n) . g_{n}(x)$ is called the $n$-th cyclotomic polynomial over $\mathbf{Q}$.

Thm 4.29. Let $F=\mathbf{Q}(\zeta)$ be a cyclotomic extension of order $n$ of the field $\mathbf{Q}$, and $g_{n}(x)$ the $n$-th cyclotomic polynomial over $\mathbf{Q}$. Then

1. $g_{n}(x) \in \mathbf{Z}[x]$ and $g_{n}(x)$ is irreducible in $\mathbf{Z}[x]$ and $\mathbf{Q}[x]$. Moreover,

$$
x^{n}-1=\prod_{d \mid n} g_{d}(x)
$$

2. $[F: \mathbf{Q}]=\varphi(n)$, where $\varphi$ is the Euler function.
3. The Galois group $G(F / \mathbf{Q})$ of $x^{n}-1$ is isomorphic to the multiplicative group of units in the ring $\mathbf{Z}_{n}$.

Ex. If $p$ is a prime, then the Galois group of $x^{p}-1 \in \mathbf{Q}[x]$ is isomorphic to the cyclic group $\mathbf{Z}_{p-1}$.

Ex. Consider the cyclotomic extension $F_{n}$ of degree $n$ over $\mathbf{Q}$ :

1. $n=9=3^{2}$. Then $\varphi(9)=3 \cdot 2=6$. The multiplicative group in $\mathbf{Z}_{9}$ is $A=\{1,2,4,5,7,8\}$. Notice that 2 generates $A$. So $G\left(F_{9} / \mathbf{Q}\right) \simeq A \simeq$ $\mathrm{Z}_{6}$.
2. $n=12=2^{2} \cdot 3$. Then $\varphi(12)=2 \cdot 2=4$. The multiplicative group in $\mathbf{Z}_{12}$ is $A=\{1,5,7,11\} \simeq \mathbf{Z}_{2} \oplus \mathbf{Z}_{2}$. So $G\left(F_{12} / \mathbf{Q}\right) \simeq A \simeq \mathbf{Z}_{2} \oplus \mathbf{Z}_{2}$.
3. Likewise, $G\left(F_{8} / \mathbf{Q}\right) \simeq \mathbf{Z}_{2} \oplus \mathbf{Z}_{2}$ and $G\left(F_{14} / \mathbf{Q}\right) \simeq \mathbf{Z}_{6}$.

### 4.4.2 Cyclotomic Extensions over $K$

If char $K=p \neq 0$ and $n=m p^{t}$ with $\operatorname{gcd}(p, m)=1$, then $x^{n}-1=\left(x^{m}-1\right)^{p^{t}}$, so that a cyclotomic extension of order $n$ coincides with one of order $m$.

Now we consider the cyclotomic extensions where char $K=0$ or char $K$ does not divide $n$. Let $\zeta$ denote a primitive $n$-th root of unity over $K$. Then all primitive $n$-th root of unity over $K$ are $\zeta^{i}$ for $1 \leq i \leq n$ and $\operatorname{gcd}(i, n)=1$. However, some $\zeta^{i}$ may not be conjugate to $\zeta$ over $K$ anymore. We have

$$
\operatorname{irr}(\zeta, K) \mid g_{n}(x)=\prod_{\substack{1 \leq i \leq n \\ \operatorname{gcd}(i, n)=1}}\left(x-\zeta^{i}\right)
$$

where $g_{n}(x)$ is called the $n$-th cyclotomic polynomial over $K$. Moreover, the following theorem says that $\operatorname{deg}(\zeta, K) \mid \operatorname{deg} g_{n}(x)=\varphi(n)$.

Thm 4.30. Let $K$ be a field such that char $K$ does not divide $n$, and $F$ a cyclotomic extension of $K$ of order $n$.

1. $F=K(\zeta)$, where $\zeta \in F$ is a primitive $n$-th root of unity.
2. $G(F / K)$ is isomorphic to a subgroup of order $d$ of the multiplicative group of units of $\mathbf{Z}_{n}$. In particular, $[F: K]=|G(F / K)|=d$ divides $\varphi(n)$.
3. $x^{n}-1=\prod_{d \mid n} g_{d}(x)$. Moreover, $\operatorname{deg} g_{n}(x)=\varphi(n)$, and the coefficients of $g_{n}(x)$ are integers (in $\mathbf{Z}$ or $\mathbf{Z}_{p}$, depending on char $K$ ).

Ex. If $\zeta$ is a primitive 5th root of unity in $\mathbf{C}$, then

1. $\mathbf{Q}(\zeta)$ is a cyclotomic extension of $\mathbf{Q}$ of order 5 , with $G(\mathbf{Q}(\zeta) / \mathbf{Q}) \simeq \mathbf{Z}_{4}$.
2. $\mathbf{R}(\zeta)$ is a cyclotomic extension of $\mathbf{R}$ of order 5 , with $G(\mathbf{R}(\zeta) / \mathbf{R}) \simeq \mathbf{Z}_{2}$. $\zeta$ satisfies that $\zeta+1 / \zeta=2 \operatorname{Re}(\zeta)$. So $\operatorname{irr}(\zeta, \mathbf{R})=x^{2}-2 \operatorname{Re}(\zeta) x+1$.

### 4.5 Galois Theory on Finite Fields

### 4.5.1 Structure of Finite Fields

Examples of finite fields include $\mathbf{Z}_{p}$ for primes $p$. We will see that every finite field $F$ has a prime characteristic $p$, and $F \simeq \mathbf{Z}_{p}(\alpha)$ where $\alpha \in \bar{Z}_{p}$ is a primitive root of $x^{p^{n}-1}-1$ in $\mathbf{Z}_{p}[x]$.

The characteristic of a field $F$ is either 0 or a prime $p$.

1. If char $F=0$, then $F$ is an extension of $\mathbf{Q}$.
2. If char $F=p$ for a prime $p$, then $F$ is an extension of $\mathbf{Z}_{p}$. A finite field $F$ is simply a finite extension of $\mathbf{Z}_{p}$.

Thm 4.31. Let $E$ be a finite extension of $F$ with $[E: F]=m$, where $F$ is a finite field of $q$ elements. Then $E$ has $q^{m}$ elements. In particular, the finite field $E$ contains exactly $p^{n}$ elements for $p=\operatorname{char} E$ and $n=\left[E: \mathbf{Z}_{p}\right]$.

Thm 4.32. For every prime power $p^{n}$, there is a unique (up to isomorphism) finite field $G F\left(p^{n}\right)$ which contains exactly $p^{n}$ elements. If $\overline{\mathbf{Z}_{p}} \geq G F\left(p^{n}\right) \geq$ $\mathbf{Z}_{p}$, the elements of $G F\left(p^{n}\right)$ are precisely the roots of $x^{p^{n}}-x \in \mathbf{Z}_{p}[x]$ in $\overline{\mathbf{Z}_{p}}$.

- The multiplicative group $\left\langle F^{*}, \cdot\right\rangle$ of nonzero elements of a finite field $F$ is cyclic.
- A finite extension $E$ of a finite field $F$ is a simple extension of $F$. Because if $|E|=p^{n}$ (i.e. $E$ is a finite extension of $F:=\mathbf{Z}_{p}$ ), let $\alpha \in \bar{Z}_{p}$ be a primitive $\left(p^{n}-1\right)$-th root of unity, then $E=\mathbf{Z}_{p}(\alpha)=F(\alpha)$.
- For $\alpha \in \overline{\mathbf{Z}}_{p}$, the degree $\operatorname{deg}\left(\alpha, \mathbf{Z}_{p}\right)=n$ iff $\mathbf{Z}_{p}(\alpha)=\operatorname{GF}\left(p^{n}\right)$, iff $\alpha$ is a primitive ( $p^{n}-1$ )-root of unity in $\overline{\mathbf{Z}}_{p}$.

Ex. That are $\varphi\left(p^{n}-1\right)$ many primitive $\left(p^{n}-1\right)$-roots of unity in $G F\left(p^{n}\right)$. So the number of degree $n$ irreducible polynomials in $\mathbf{Z}_{p}[x]$ is equal to $\frac{\varphi\left(p^{n}-1\right)}{n}$. Moreover, $x\left(x^{p^{n}-1}-1\right)=x^{p^{n}}-x \in \mathbf{Z}_{p}[x]$ is the product of all degree $m$ irreducible polynomials for $m \mid n$.

- If $\operatorname{GF}\left(p^{n}\right) \geq \operatorname{GF}\left(p^{m}\right) \geq \mathbf{Z}_{p}$, then $m \mid n$. So it is easy to draw the intermediate field diagram of $\operatorname{GF}\left(p^{n}\right)$. Moreover, every $\operatorname{GF}\left(p^{n}\right)$ is a normal extension over $\mathbf{Z}_{p}$ and $\operatorname{GF}\left(p^{m}\right)$ for $m \mid n$.


### 4.5.2 Galois Groups of Finite Fields

Thm 4.33. If $F$ is a field of characteristic $p$ and $r$ is a positive integer, then $\sigma_{r}: F \rightarrow F$ given by $\sigma_{r}(u)=u^{p^{r}}$ is a $\mathbf{Z}_{p}$-monomorphism of fields.

It is clear that $\sigma_{r} \sigma_{s}=\sigma_{r+s}$.

## Cor 4.34.

1. $G\left(G F\left(p^{n}\right) / \mathbf{Z}_{p}\right)=\left\{1, \sigma_{1}, \sigma_{2}, \cdots, \sigma_{n-1}\right\} \simeq \mathbf{Z}_{n}$.
2. When $m \mid n, G\left(G F\left(p^{n}\right) / G F\left(p^{m}\right)\right)=\left\{1, \sigma_{m}, \sigma_{2 m}, \cdots, \sigma_{\left(\frac{n}{m}-1\right) m}\right\} \simeq$ $\mathbf{Z}_{n / m}$.
3. $G\left(\overline{Z_{p}} / \mathbf{Z}_{p}\right) \nsucceq\left\{\cdots, \sigma_{-2}, \sigma_{-1}, 1, \sigma_{1}, \sigma_{2}, \cdots\right\} \simeq \mathbf{Z}$.

Ex. $x^{3}-3 x+1 \in \mathbf{Z}_{5}[x]$ is irreducible. The Galois group of $x^{3}-3 x+1$ over $\mathbf{Z}_{5}$ is $\left\{1, \sigma_{1}, \sigma_{2}\right\} \simeq \mathbf{Z}_{3}$.

Ex. Describe the Galois correspondence between the intermediate fields of $G F\left(p^{12}\right)$ over $\mathbf{Z}_{p}$ and the subgroups of $G\left(G F\left(p^{12}\right) / \mathbf{Z}_{p}\right)$.

- If $\alpha \in \overline{\mathbf{Z}}_{p}$ has $\operatorname{deg}\left(\alpha, \mathbf{Z}_{p}\right)=\left[\mathbf{Z}_{p}(\alpha): \mathbf{Z}_{p}\right]=n$, then all the $\mathbf{Z}_{p}$-conjugates of $\alpha$ in $\overline{\mathbf{Z}}_{p}$ are

$$
\left\{1(\alpha), \sigma_{1}(\alpha), \sigma_{2}(\alpha), \cdots, \sigma_{n-1}(\alpha)\right\}=\left\{\alpha, \alpha^{p^{1}}, \alpha^{p^{2}}, \cdots, \alpha^{p^{n-1}}\right\}
$$

The irreducible polynomial of $\alpha$ over $\mathbf{Z}_{p}$ is

$$
\operatorname{irr}\left(\alpha, \mathbf{Z}_{p}\right)=\prod_{k=0}^{n-1}\left(x-\alpha^{p^{k}}\right)
$$

Similarly, when $m \mid n$, the irreducible polynomial of $\alpha$ over $\operatorname{GF}\left(p^{m}\right)$ is

$$
\operatorname{irr}\left(\alpha, \operatorname{GF}\left(p^{m}\right)\right)=\prod_{k=0}^{\frac{n}{m}-1}\left(x-\alpha^{p^{k m}}\right)
$$

### 4.6 Radical Extensions

### 4.6.1 Solvable Groups

Def. A finite group $G$ is solvable if there exists a subgroup sequence

$$
\begin{equation*}
\{1\}=G_{0} \leq G_{1} \leq G_{2} \cdots \leq G_{n}=G \tag{4.1}
\end{equation*}
$$

such that $G_{i} \triangleleft G_{i+1}$ and $G_{i+1} / G_{i}$ is an abelian group for $i=0, \cdots, n-1$.
Remark. If $H$ is a finite abelian group, then there exists a subgroup sequence

$$
\{1\}=H_{0} \leq H_{1} \leq \cdots \leq H_{t}
$$

such that $H_{i+1} / H_{i}$ is a cyclic group of prime order. So after making a refinement on the equence (4.1), we may assume that $G_{i} \triangleleft G_{i+1}$ and $G_{i+1} / G_{i}$ is an (abelian) cyclic group of prime order.

We give another definition of solvable groups using derived subgroups. The commutator subgroup $G^{\prime}$ of $G$ is the subgroup of $G$ generated by the set $\left\{a b a^{-1} b^{-1} \mid a, b \in G\right\}$.
Lem 4.35. $G^{\prime} \triangleleft G$, and $G^{\prime}$ is the minimal normal subgroup of $G$ such that $G / G^{\prime}$ is an abelian group.

Let

$$
G^{(0)}=G, \quad G^{(1)}=G^{\prime}, \quad \cdots, \quad G^{(i+1)}=\left(G^{(i)}\right)^{\prime}, \quad \cdots
$$

Then $G=G^{(0)} \geq G^{(1)} \geq G^{(2)} \geq \cdots$ and $G^{(i)} \triangleright G^{(i+1)}$ for $i=0,1,2, \cdots$. The group $G^{(i)}$ is called the $i$-th derived subgroup of $G$.
Lem 4.36. A finite group $G$ is solvable iff $G^{(n)}=\{1\}$ for some $n$.
Ex.

1. $D_{4}$ is solvable. Every finite group of order $p^{n}$ for a prime $p$ is solvable.
2. $A_{4}$ is solvable.
3. $A_{5}$ is insolvable. Indeed, $A_{5}$ is the smallest insolvable group.

Thm 4.37. If $G$ is a finite solvable group, then every subgroup and every quotient group of $G$ are solvable.

Equivalently, if $G$ contains an insolvable subgroup or quotient group, then $G$ is also insolvable.

A remarkable result by W. Feit and J. Thompson claims that every finite group of odd order is solvable.

### 4.6.2 Radical Extensions

Def. An extension field $F$ of $K$ is a radical extension of $K$ if $F=$ $K\left(u_{1}, \cdots, u_{n}\right)$, some powers of $u_{1}$ lies in $K$ and for each $i \geq 2$, some power of $u_{i}$ lies in $K\left(u_{1}, \cdots, u_{i-1}\right)$.

In other words, $F=K\left(u_{1}, \cdots, u_{n}\right)$ is a radical extension of $K$ if each of $u_{i}$ can be expressed by finite step operations of $+,-, \cdot, /$, and $\sqrt[n]{ }$ on certain elements of $K$.

Def. Let $K$ be a field and $f \in K[x]$. The equation $f(x)=0$ is solvable by radicals if there exists a radical extension $F$ of $K$ such that the splitting field $E$ of $f$ over $K$ satisfies that $K \subset E \subset F$.

Thm 4.38. If $F$ is a radical extension field of $K$ and $E$ is an intermediate field, then $G(E / K)$ is a solvable group.

Here $E$ is not required to be splitting or seperable over $K$.
Thm 4.39. If $f(x) \in K[x]$ is separable over $K$, and $E$ is the splitting (normal) field of $f(x)$ over $K$, then $f(x)=0$ is solvable by radicals if and only if $G(E / K)$ is a solvable group.

Ex. When char $K=0$, or $p:=$ char $K$ does not divide $n$ ! where $n:=$ $\operatorname{deg} f(x)$, the polynomial $f(x)$ is separable. So we can apply the theorem.

Ex. $A_{5}$ is insolvable. So $S_{5}$ is insolvable. There exists a degree 5 polynomial (a quintic) $f(x) \in K[x]$ that has Galois group isomorphic to $S_{5}$. Then some roots of $f(x)=0$ are insolvable by radicals.

For example, the Galois group of $f(x)=x^{5}-4 x+1 \in \mathbf{Q}[x]$ is $S_{5}$, which is insolvable. So $x^{5}-4 x+1=0$ is insolvable by radicals over $\mathbf{Q}$.

Thus it is impossible to find a general radical formula to solve the roots of a generic polynomial of degree $n \geq 5$.

Ex. There are some famous geometric construction problems using a straightedge and a compass. A number $\alpha$ is constructible if $\alpha$ can be obtained by using straightedge and compass (initially with unit width) finitely many times.

It is easy to see that: if $\alpha$ and $\beta \neq 0$ are constructible, then so are $\alpha \pm \beta, \alpha \cdot \beta$, and $\alpha / \beta$. So the set of all constructible numbers form a field. The curves drawn by straightedge and compass are of degrees 1 and 2. If a field $K$ consists of constructible numbers, and $\operatorname{deg}(\alpha, K)=2$, then $\alpha$
is constructible. In fact, every constructible number can be obtained by a sequence of field extensions

$$
Q=F_{0} \subset F_{1} \subset F_{2} \subset \cdots, \quad\left[F_{i+1}: F_{i}\right]=2
$$

So $\alpha$ is constructible iff $\alpha$ is algebraic over $\mathbf{Q}$ and $\operatorname{deg}(\alpha, \mathbf{Q})=2^{m}$. Therefore, using straightedge and compass,

1. trisecting a generic angle is impossible;
2. doubling the volume of a cube is impossible;
3. (Gauss) a regular $n$-gon is constructible iff $\cos \frac{2 \pi}{n}$ is constructible, iff a primitive n-root of unity, say $\zeta$, is constructible, iff $\operatorname{irr}(\zeta, \mathbf{Q})=\varphi(n)=$ $2^{m}$, iff $n$ is a product of a power of 2 and some distinct odd primes of the form $p=2^{t}+1$. However, if $t$ has an odd factor $s>1$, then $2^{t / s}+1$ divides $2^{t}+1$. So $t=2^{k}$ and thus $p=2^{2^{k}}+1$ (called a Fermat prime). Overall, a regular $n$-gon is constructible iff $n=2^{\ell} p_{1} p_{2} \cdots p_{q}$, where $p_{i}$ are distinct Fermat primes. The following regular n-gons are constructible using straightedge and compass:

$$
n=3,4,5,6,8,10,12,15,16,17,20, \cdots, 120, \cdots, 256, \cdots
$$

However, the regular 9-gon is inconstructible.

