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4.1 Field Extensions

4.1.1 K[u] and K(u)

Def. A field F is an extension field of a field K if F ≥ K.

Obviously, F ≥ K =⇒ 1F = 1K .

Def. When F ≥ K, let [F : K] := dimK F denote the dim of F over K.

Def. Let K be a field.

K[x] := the polynomial ring of K,

K(x) :=

{
f

g
| f, g ∈ K[x], g 6= 0

}
= the rational function field of K = the quotient field of K[x].

If F ≥ K and u ∈ F , denote

K[u] := the subring of F generated by K and u

= {f(u) | f ∈ K[x]},
K(u) := the subfield of F generated by K and u

= {f(u)/g(u) | f, g ∈ K[x], g(u) 6= 0}.

Def. Suppose F ≥ K and u ∈ F .

• u is called algebraic over K if g(u) = 0 for some nonzero polyn
g ∈ K[x];

• otherwise, u is called transcendental over K.

Every u ∈ F induces a ring homom

φu : K[x]→ F, φu(f) := f(u).

Since K[x] is a PID,

Kerφu = {f ∈ K[x] | f(u) = 0} = (pu)

for a monic polyn pu ∈ K[x].

Thm 4.1. Suppose F ≥ K.

1. if u ∈ F is algebraic over K, then
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(a) pu(x) is irreducible in K[x], called the irreducible polynomial
of u over K, denoted by irr(u,K) = pu. For f ∈ K[x], f(u) = 0
iff pu | f ,

(b) The ring K[u] = K(u) ' K[x]/(pu) is a field, and

[K[u] : K] = [K(u) : K] = deg pu =: degK(u) (the degree of u over K.)

Indeed, K[u] = K(u) has a K-basis {1, u, u2, · · · , un−1} for n =
deg pu.

2. if u ∈ F is transcendental over K, then

(a) pu = 0,

(b) K[u] ' K[x] and K(u) ' K(x), both have infinite dim over K.

Ex.

1. R ≥ Q, u =
√

3 + 3
√

2 ∈ R is algebraic over Q. Then

u−
√

3 =
3
√

2 =⇒ (u−
√

3)3 = 2

=⇒ u3 + 9u− 8 = 3
√

3(u2 + 1)

=⇒ (u3 + 9u− 8)2 = 27(u2 + 1)2

=⇒ u6 − 9u4 − 16u3 + 27u2 − 144u+ 37 = 0.

Then p(x) = x6 − 9x4 − 16x3 + 27x2 − 144x + 37 is the irred polyn
of u =

√
2 + 3
√

2 in Q. Any f ∈ Q[x] satisfies f(u) = 0 iff p | f .
Q[u] = Q(u), [Q(u) : Q] = 6, and {1, u, · · · , u5} is a basis of Q(u) in
Q.

2. R ≥ Q, π ∈ R is transcendental over Q. Then Q[π] ' Q[x] and
Q(π) ' Q(x), both have infinite dim.

4.1.2 Field Extensions

Def.

• F is a finite extension of K if [F : K] <∞,

• F is an infinite extension of K if [F : K] is infinite.

Thm 4.2. (proved) If F ≥ E ≥ K, then

[F : K] = [F : E][E : K].

Moreover, [F : K] is finite iff [F : E] and [E : K] are finite.
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It implies the following theorem:

Thm 4.3. F ≥ K, u ∈ F . The foll are equiv:

1. u is algebraic over K,

2. K(u) is a finite extension of K,

3. every v ∈ K(u) is algebraic over K, and degK(v) | degK(u).

Def. F ≥ K and X ⊆ F . Let K[X] (resp. K(X)) denote the subring (resp.
the subfield) of F generated by K ∪X.

Def. F ≥ K is a

• simple extension of K if F = K(u) for some u ∈ F ;

• finitely generated extension of K if F = K(u1, · · · , un) for some
u1, · · · , un ∈ F .

Ex. Every fin ext is a fin gen ext. The converse is false. e.g. K(x) is a fin
gen ext of K but not a fin ext of K.

Def. F ≥ K is an algebraic extension if every element of F is algebraic
over K.

Thm 4.4. F ≥ K is a finite extension iff F = K[u1, · · · , un] where each ui
is algebraic over K. In particular, finite extensions are algebraic extensions.

Thm 4.5. F ≥ E ≥ K. Then F is alg ext of K iff F is alg ext of E and E
is alg ext of K.

Ex. Q(
√

2) is algebraic extension over Q, and Q(
√

2, 5
√

3) is an algebraic
extension over Q(

√
2). Then Q(

√
2, 5
√

3) is an algebraic extension over Q.
For example, both

√
2− 5
√

3 and
√

2 5
√

3 are algebraic numbers over Q.

Thm 4.6. F ≥ K. The set of all elements of F that are algebraic over
K forms an intermediate field K̂ between F and K (F ≥ K̂ ≥ K), called
the algebraic closure of K in F . Moreover, every element of F − K̂ is
transcendental over K̂.

Remark.

1. Given a field K and an irreducible monic polynomial p(x) ∈ K[x], we
can always construct an algebraic extension F ≥ K such that the irred
polyn of certain u ∈ F in K is p(x):
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(a) The quotient ring F := K[x]/(p(x)) is a field since p(x) is irre-
ducible.

(b) Let ι : K → K[x] be the canonical inclusion, and π : K[x] →
K[x]/(p(x)) the canonical projection. Then πι(K) ' K and F ≥
πι(K).

(c) The element u := π(x) ∈ F has irred polyn p(x) in πι(K) ' K.

2. Any field K can be extended to an algebraic closure field K that
contains the roots of all irreducible polynomials of K[x], using Zorn’s
Lemma and the above remark. Any two algebraic closures of K are
K-isomorphic (Hungerford, Thm V.3.6).
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4.2 Galois Theory

We will focus on Galois theory for finite extensions (i.e., fin gen alg exts).

4.2.1 K-automorphism

Thm 4.7. F ≥ K and u, v ∈ F . Then φu,v : K(u)→ K(v) def by φu,v|K =
id|K and φu,v(u) = v is a field isomorphism iff one the followings holds:

1. Both u and v are algebraic and irr(u,K) = irr(v,K). u and v are said
to be conjugate over K.

2. Both u and v are transcendental over K.

Def. Let E ≥ K and F ≥ K. A map σ : E → F is a K-isomorphism
if σ is both a field isomorphism and a K-mod isomorphism. If E = F ,
then σ is a K-automorphism. All K-automorphisms of F form a group
G(F/K) = AutKF , called the Galois group of F over K.

Remark.

1. σ : E → F is a K-isomorphism iff σ is a field isomorphism that acts
as identity map on K.

2. Let B :=

{
Q, if charF = 0,

Zp, if charF = p,
be the base field of F . Then a chain of

fields

F ≥ F1 ≥ F2 ≥ · · · ≥ B

induces a chain of automorphism groups

{1} = G(F/F ) ≤ G(F/F1) ≤ G(F/F2) ≤ · · · ≤ G(F/B) = Aut (F ).

Thm 4.8. Let F ≥ K be an algebraic extension, and σ ∈ G(F/K). Then
irr(u,K) = irr(σ(u),K) for every u ∈ F .

Proof. A special case of Thm 4.7.

Remark. This important theorem can be used to determined all elements
of G(F/K) when F = K(u1, · · · , un), in particular when [F : K] <∞.
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Ex. Consider K = Q and F = Q(
√

2,
√

3). Clearly
√

3 /∈ Q(
√

2) and so
[Q(
√

2,
√

3) : Q] = 4. Then

Q(
√

2,
√

3) = 1Q +
√

2Q +
√

3Q +
√

6Q.

Then G(F/K) consists of 4 elements: (classified by their actions on gener-
ators

√
2 and

√
3)

G(F/K) 1 σ τ στ = τσ

image of
√

2
√

2
√

2 −
√

2 −
√

2

image of
√

3
√

3 −
√

3
√

3 −
√

3

For example, σ(a+ b
√

2 + c
√

3 + d
√

6) = a+ b
√

2− c
√

3− d
√

6.

Remark. G(F/K) stabilizes the algebraic closure of K in F .

Ex. Let F = Q(
√

2,
√

3, x) ≥ Q = K, where x is transcendental over Q.
The algebraic closure of K in F is K̂ = Q(

√
2,
√

3). Suppose σ ∈ G(F/K).
Then σ(Q(

√
2,
√

3)) = Q(
√

2,
√

3). So σ sends
√

2 to ±
√

2, sends
√

3 to

±
√

3, and sends x to
ax+ b

cx+ d
for a, b, c, d ∈ Q(

√
2,
√

3) and ad − bc 6= 0

(since from u = σ(x) we should get a rational function expression of x).
The group (Z2 × Z2)nG(F/K) ' PGL(2, K̂).

4.2.2 Splitting Field

Def. A polyn f ∈ F [x] is split over F (or to split in F [x]) if f can be
written as a product of degree one polyns in F [x].

Ex. F = Q(
√

2, 3
√

3). Then x2 − 2 is split over F , but x2 − 3 is not split
over F .

Def. Suppose K ≥ F ≥ K. Then

1. Let {fi | i ∈ I} be a set of polyns in K[x]. F is the splitting field
over K of {fi | i ∈ I} if F is generated over K by the roots of all fi.

2. F is a splitting field over K if F is the splitting field of some set of
polynomials in K[x].

Ex. Let α1, · · · , αn be the roots of f ∈ K[x] in K. The splitting field over
K of f is F := K(α1, · · · , αn). Note that [F : K] ≥ deg f(x).

Ex. K is a splitting field over K of K[x]. Every f ∈ K[x] is split over K.
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Ex. E := Q(
√

2,
√

3) splitting over Q of {x2 − 2, x2 − 3}. The polynomials
x2 − 2, x2 − 3, x4 − 5x2 + 6, are split over E.

Ex. What is the splitting field F over Q of x3 − 2? What are the elements
of G(F/Q)?

Thm 4.9. Any two splitting fields of S ⊆ K[x] over K are K-isomorphic.

(c.f. Any two algebraic closures of K are K-isomorphic.)

Thm 4.10. F ≥ K, [F : K] <∞. Let σ : K → K1 be a field isomorphism,
and K1 an algebraic closure of K1. The number of extensions of σ to a
field isomorphism τ of F onto a subfield of K1 is finite, and is completely
determined by F and K (so the number is not relative to K1, K1, and σ.)

Proof. It suffices to prove for simple extension F = K(u) and then apply
induction. Suppose

irr(u,K) = p(x) = c0 + c1x+ · · ·+ cnx
n ∈ K[x].

Any extension of σ to τ : F → F1 with F1 ≤ K1 is uniquely determined by
τ(u), which is a root of

irr(τ(u),K1) = pσ(x) = σ(c0) + σ(c1)x+ · · ·+ σ(cn)xn ∈ K1[x].

Therefore, the number of extensions of σ to an isomorphism of F onto a
subfield of K1 equals to the number of distinct roots of pσ(x), or the number
of distinct roots of p(x), which is completely determined by F and K.

Def. Let K ≥ F ≥ K with [F : K] < ∞. The number of K-isomorphisms
of F onto a subfield of K is the index of F over K, denoted by {F : K}.

Remark.

1. {F : K} is called the separable degree [F : K]s of F over K in [Hunger-
ford, Def. V.6.10].

2. |G(F/K)| ≤ {F : K}. In fact, |G(F/K)| divides {F : K}.

3. {F : K} ≤ [F : K]. In fact, {F : K} divides [F : K].

Thm 4.11. If F ≥ L ≥ K and [F : K] <∞, then

{F : K} = {F : L}{L : K}
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Proof. There are {L : K} many K-isomorphisms of L onto a subfield of K.
By Theorem 4.10, each such K-isomorphism has {F : L} many extensions
to a K-isomorphisms of F onto a subfield of K.

Remark.

1. Compare: If F ≥ L ≥ K, then [F : K] = [F : L][L : K].

2. By the Theorem, if F = K(α1, · · · , αr) is a finite extension of K, let
Fi := K(α1, · · · , αi) so that Fi = Fi−1(αi). Then

{F : K} = {F : Fr−1}{Fr−1 : Fr−2} · · · {F1 : K}
= {Fr−1(αr) : Fr−1} · · · {K(α1) : K}

where

{Fi−1(αi) : Fi−1} = the number of distinct roots in irr(αi, Fi−1).

3. When α is algebraic over K, the index {K(α) : K} equals the number
of distinct roots of irr(α,K). So {K(α) : K} ≤ [K(α) : K] and thus
{F : K} ≤ [F : K] in general.

Ex. F = Q(
√

2, 3
√

3) ≥ Q = K. Compute the order |G(F/K)|, the index
{F : K}, and the degree [F : K].

Thm 4.12. F ≥ K with [F : K] <∞. F is a splitting field over K iff every
K-isomorphism of F onto a subfield of K is a K-automorphism of F (i.e.,
in G(F/K)), iff |G(F/K)| = {F : K}.

Cor 4.13. F ≥ K splitting. Then every irred polyn in K[x] having a zero
in F splits in F [x].

4.2.3 Separable Extension

Def.

1. A polyn f ∈ K[x] is separable if in some splitting field of f over K
every root of f is a simple root.

2. F ≥ K. u ∈ F is called separable over K if irr(u,K) is separable.

3. F ≥ K is called a separable extension of K if every element of F
is separable over K.
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Thm 4.14. If p(x) ∈ K[x] is an irred polyn, then every root of p(x) has the
same multiplicity.

Proof. Suppose α and β are two roots of p(x) with multiplicities mα and mβ re-
spectively, so that (x−α)mα and (x−β)mβ are factors of p(x). The K-isomorphism
φα,β : K(α) → K(β) that sends α to β can be extended (by Zorn’s Lemma) to a
K-automorphism φ : K → K, and be further extended to a ring automorphism
φ̃ : K[x] → K[x]. One has φ̃(p(x)) = p(x) since φ̃ fixes every element of K. Then

φ̃((x− α)mα) = (x− β)mβ and so mα = mβ .

Remark. p(x) ∈ K[x] monic irreducible. Then p(x) = [
∏
i(x− αi)]

m ,
where m is the multiplicity of a root of p(x), and αi are distinct.

1. The multiplicity m divides deg p(x).

2. {K(αi) : K} = 1
m deg p(x) divides [K(αi) : K] = deg p(x).

3. If charK = 0, then m ≡ 1 and {F : K} = [F : K] for any F ≥ K. So
any extension is a separable extension.

4. If charK = p, then
[K(αi) : K]

{K(αi) : K}
= m = pr for some r ≥ 0.

3. and 4. can be proved by derivative technique.

Thm 4.15. A finite extension F ≥ K is a separable extension of K iff
{F : K} = [F : K].

F ≥ K fin ext. Then |G(F/K)| | {F : K} | [F : K]:

• F is splitting over K iff |G(F/K)| = {F : K},

• F is separable over K iff {F : K} = [F : K].

Thm 4.16. F ≥ L ≥ K, [F : K] < ∞. Then F is separable over K iff F
is separable over L and L is separable over K.

Ex. Let K = Q and F = Q(
√

2,
√

3). Then {Q(
√

2,
√

3) : Q} = 4 =
[Q(
√

2,
√

3) : Q]. So Q(
√

2,
√

3) is a separable extension over Q.

Thm 4.17 (Primitive Element Theorem). A finite separable extension F ≥
K is always a simple extension, i.e. F = K(u) for some u ∈ F .

Ex. Q(
√

2,
√

3) = Q(
√

2 +
√

3) is a simple extension over Q.
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Proof of Thm 4.17. If |K| <∞, then F and K are finite fields. Then F ∗ =
〈u〉 for some u ∈ F ∗ (to be shown later). Hence F = K(u).

Suppose K is an infinite field. By induction, we may assume that F =
K(v, w) for some v, w ∈ F . Let p = irr(v,K) and q = irr(w,K). Let
v1 = v, v2, · · · , vm and w1 = w,w2, · · · , wn be the roots of p and q in F .
Then vi’s are distinct since F is separable. Similarly, wj ’s are distinct. As

K is infinite, there is a ∈ K such that a 6= vi − v
w − wj

for all i and all j 6= 1.

Let u := v + aw and E := K(u). Then F ≥ E ≥ K. We show that w ∈ E.
Obviously, irr(w,E) | irr(w,K) = q. Define f := p(u − ax) ∈ E[x]. Then
f(w) = p(v) = 0 and so irr(w,E) | f . However, f(wj) 6= 0 for j 6= 1.
Therefore, gcd(q, f) = x − w and irr(w,E) = x − w. So w ∈ E. Then
v = u− aw ∈ E so that F = E = K(u) is a simple extension.

So inseparable extensions exist in some characteristic p infinite fields.

Def. F ≥ K. u ∈ F is purely inseparable over K if irr(u,K) = (x−u)m

(m must be a power of p). F is a purely inseparable extension of K if
every element of F is purely inseparable over K.

Prop 4.18. If F ≥ L ≥ K, then F is purely insep over K iff F is purely
insep over L and L is purely insep over K.

Thm 4.19. Let F ≥ K, [F : K] < ∞, and charK = p. Then α ∈ F is
purely insep iff αp

r ∈ K for some r ∈ N.

Ex. Let K := Zp(y) (p prime, y transcendental over Zp). The polyn xp − y
is inseparable irreducible over K. If u ∈ K is a root of xp − y, then u is
purely insep over K.

Remark. F ≥ K. The set of all elements of F purely insep over K forms
a field T , the purely inseparable closure of K in F . Then F ≥ T ≥ K,
F is separable over T , and T is purely inseparable over K.

Similarly, there exists L, the separable closure of K in F , such that
F ≥ L ≥ K, F is purely inseparable over L, and L is separable over K.

4.2.4 Galois Theory

Def. F ≥ K. For a subgroup H ≤ G(F/K), the set

FH := {u ∈ F | σ(u) = u for every σ ∈ H}

is an intermediate field between F and K, called the fixed field of H in F .
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Lem 4.20. Let F ≥ K. Then

1. a field L ≤ F =⇒ L ≤ FG(F/L);

2. a subgroup H ≤ G(F/K) =⇒ H ≤ G(F/FH).

(exercise)

Def. A finite extension F ≥ K is a finite normal extension of K if
|G(F/K)| = {F : K} = [F : K], i.e., F is a separable splitting field of K.

Let F ≥ K be a finite separable extension. Then F = K(u) for some
u ∈ F . The splitting field L over K of irr(u,K) satisfies that L ≥ F ≥ K,
where L ≥ K is a normal extension.

Lem 4.21. K ≥ F ≥ L ≥ K. If F is a finite normal extension of K, then F
is a finite normal extension of L. The group G(F/L) ≤ G(F/K). Moreover,
two K-automorphisms σ, τ ∈ G(F/K) induce the same K-isomorphism of
L onto a subfield of K iff σ and τ are in the same left coset of G(F/L) in
G(F/K).

Proof. If F is the splitting field of a set of polynomials of K[x] over K, then
F is the splitting field of the same set of polynomials of L[x] over L. So F
is splitting over L. Moreover, “F is separable over K” implies that “F is
separable over L”. Thus F is a finite normal extension over L.

Two automorphisms σ, τ ∈ G(F/K) satisfy that σ|L = τ |L iff (σ−1 ◦
τ)|L = 1|L, iff σ−1 ◦ τ ∈ G(F/L), iff τ ∈ σ ·G(F/L), that is, σ and τ are in
the same left coset of G(F/L).

Thm 4.22 (Fundamental Theorem of Galois Theory). Let F be a finite
normal extension of K (i.e. |G(F/K)| = {F : K} = [F : K]). Let L denote
an intermediate field (F ≥ L ≥ K). Then L ↔ G(F/L) is a bijection
of the set of all intermediate fields between F and K onto the set of all
subgroups of G(F/K). Moreover,

1. L = FG(F/L) for every intermediate field L with F ≥ L ≥ K.

2. H = G(F/FH) for every subgroup H ≤ G(F/K).

3. L is a normal extension of K if and only if G(F/L) is a normal sub-
group of G(F/K). In such situation,

G(L/K) ' G(F/K)/G(F/L)
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4. The subgroup diagram of G(F/K) is the inverted diagram of the in-
termediate field diagram of F over K.

Galois theory implies that: To understand the field extensions in F ≥ K,
it suffices to understand the group structure of G(F/K).

Proof. (Sketch)

1. Every automorphism in G(F/L) leaves L fixed. So L ⊆ FG(F/L). Note
that F is normal over L. Given α ∈ F − L, there is another root
β ∈ F − L of the polynomial irr(α,L). By Thm 4.7, There is an
automorphism in G(F/L) that sends α to β. So every α ∈ F − L is
not fixed by G(F/L). Hence FG(F/L) ⊆ L. So L = FG(F/L).

2. Let H ≤ G(F/K). Every element of H leaves FH fixed. So H ≤
G(F/FH). It remains to prove that |H| ≥ |G(F/FH)| (= [F : FH ]) so
that H = G(F/FH). Since F is a finite normal (=separable+splitting)
extension over FH , we can write F = FH(α) for some α ∈ F − FH .
Suppose H := {σ1, · · · , σ|H|}. Denote

f(x) :=

|H|∏
i=1

(x− σi(α)) ∈ F [x].

Every σk ∈ H ≤ G(F/K) induces a ring automorphism of F [x], with

σk(f(x)) =

|H|∏
i=1

(x− σkσi(α)) =

|H|∏
i=1

(x− σi(α)) = f(x).

So the coefficients of f(x) are in FH and f(x) ∈ FH [x]. The group
H contains identity automorphism. So there is some σi(α) = α. So
f(α) = 0. Then irr(α, FH) | f(x). So

|G(F/FH)| = [F : FH ] = [FH(α) : FH ] = deg(α, FH) ≤ deg f(x) = |H|.

Therefore H = G(F/FH).

3. L is a normal extension over K
iff L is splitting (and separable) over K;
iff σ(α) ∈ L for any α ∈ L;
(notice that L = FG(F/L)) iff τσ(α) = σ(α) for every τ ∈ G(F/L);
iff σ−1τσ(α) = α;
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iff σ−1τσ ∈ G(F/L) for every τ ∈ G(F/L) and σ ∈ G(F/K);
iff G(F/L) is a normal subgroup of G(F/K).

Suppose L is a normal extension over K. We show that G(L/K) '
G(F/K)/G(F/L). Since L is splitting over K, if σ ∈ G(F/K) then
σ|L ∈ G(L/K). Define φ : G(F/K)→ G(L/K) by φ(σ) := σ|L. Then
φ is a group homomorphism. On one hand, every γ̃ ∈ G(L/K) can be
extended to an element γ ∈ G(F/K), with φ(γ) = γ|L = γ̃. So φ is
onto. On the other hand, Ker (φ) = G(F/L). Therefore,

G(L/K) ' G(F/K)/G(F/L).

4. The statements 1. and 2. build up the bijection between the set of
intermediate fields of F over K and the set of subgroups of G(F/K)
in desired order.

The following Lagrange’s Theorem on Natural Irrationalities discloses
further relations on Galois correspondence.

Thm 4.23. If L and M are intermediate fields between F and K such that
L is a finite normal extension of K, then the field (L,M) is finite normal
extension of M and G((L,M)/M) ' G(L/L ∩M). (show by graph)

Proof. The idea is to show that: if L is the splitting field over L ∩M of an
irred polyn f ∈ (L ∩M)[x], then (L,M) is the splitting field over M of f .
This makes the correspondence.

Ex. (HW) Let K := Q and F := Q(
√

2,
√

3). Then G(F/K) consists of 4 elements
{ι, σ, τ, στ} ' Z2 × Z2:

ι(a+ b
√

2 + c
√

3 + d
√

6) := a+ b
√

2 + c
√

3 + d
√

6

σ(a+ b
√

2 + c
√

3 + d
√

6) := a+ b
√

2− c
√

3− d
√

6

τ(a+ b
√

2 + c
√

3 + d
√

6) := a− b
√

2 + c
√

3− d
√

6

στ(a+ b
√

2 + c
√

3 + d
√

6) := a− b
√

2− c
√

3 + d
√

6

The intermediate field diagram of F over K and the subgroup diagram of G(F/K)
are inverted to each other.

Ex. Let F = Q( 3
√

2, i
√

3) be the splitting field of (x3 − 2) over K = Q.

1. Describe the six elements of G(F/K) by describing their actions on
3
√

2 and i
√

3. (done)
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2. To what group we have seen before is G(F/K) isomorphic? (done)

3. Give the diagrams for the subfields of F and for the subgroups of
G(F/K).
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4.3 Illustration of Galois Theory

4.3.1 Some Examples

Def. The Galois group of a polynomial f ∈ K[x] over a field K,
denoted by G(f/K), is the group G(F/K) where F is a splitting field over
K of f .

When K = Q, the preceding examples show

1. the Galois group of (x2 − 2)(x2 − 3) ∈ Q[x] is Z2 × Z2, and

2. the Galois group of x3 − 2 ∈ Q[x] is S3 = D3.

Here Sn denotes the group of permutations of n letters, and Dn denotes the
symmetric group of a regular n-gon.

Ex. The Galois group of x3− 1 ∈ Q[x] is Z2, which is totally different from
the Galois group of x3 − 2 ∈ Q[x].

Ex. Find the Galois groups of the following polynomials in Q[x]:

1. x4 + 1. (Z2 × Z2)

2. x4 − 1. (Z2)

3. x4 − 2. (D4. See p.275 of [Hungerford, V.4])

The Galois group G of an irreducible separable polynomial f(x) ∈ K[x]
of degree n = 2, 3, 4 has been classified [see Hungerford, V.4].

1. n = 2, then G must be S2 ' Z2.

2. n = 3, then G could be S3 or A3 ' Z3.

3. n = 4, then G could be S4, A4, D4, Z4, or Z2 × Z2.

Let us discuss the Galois group of irreducible f(x) ∈ Q[x] of degree 3.

Def. charK 6= 2; f ∈ K[x] a polyn with distinct roots u1, · · · , un. F =
K(u1, · · · , un) the splitting field over K of f . Denote

∆ =
∏
i<j

(ui − uj) ∈ F ;

define the discriminant of f as D = ∆2.
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Prop 4.24. Let K, f , F and ∆ be as in preceding definition.

1. For each σ ∈ G(F/K) ≤ Sn, σ is an even [resp. odd] permutation iff
σ(∆) = ∆ [resp. σ(∆) = −∆].

2. The discriminant ∆2 ∈ K.

Cor 4.25. F ≥ K(∆) ≥ K. Consider G = G(F/K) ≤ Sn. In the Galois
correspondence, the subfield K(∆) corresponds to the subgroup G ∩ An. In
particular, G consists of even permutations iff ∆ ∈ K.

Cor 4.26. Given a degree 3 irred separable polyn f(x) = x3 +bx2 +cx+d ∈
K[x], let

g(x) = f(x− b/3) = x3 + px+ q.

Then the discriminant of f(x) is ∆2 = −4p3 − 27q2 ∈ K.

1. If −4p3 − 27q2 is a square in K, then G(f/K) = A3 ' Z3;

2. If −4p3 − 27q2 is not a square in K, then G(f/K) = S3.

Ex. Consider the foll irred polyns in Q[x]:

1. f(x) = x3 − 2. Then ∆2 = −27 × 22 is not a square in Q. So
G(f/Q) = S3 (as we have proved).

2. f(x) = x3 + 3x2 − x − 1. Then g(x) = f(x − 3/3) = x3 − 4x + 2
is irreducible. The discriminant of f(x) is −4(−4)3 − 27(2)2 = 148,
which is not a square in Q. Thus G(f/Q) = S3.

3. f(x) = x3 − 3x + 1 is irreducible. The discriminant is −4(−3)3 −
27(1)2 = 81, which is a square in Q. So G(f/Q) = A3 ' Z3.

In general, it is difficult to compute the Galois group of an irreducible
polynomial of degree n ≥ 5. There is a special result:

Thm 4.27. p is prime, f(x) ∈ Q[x] an irred polyn of deg p with exactly two
nonreal roots in C, then G(f/Q) = Sp.

4.3.2 Finite Groups as Galois Groups

Thm 4.28. Let G be the Galois group of an irreducible separable polynomial
f(x) ∈ K[x] of degree n. Then G ≤ Sn and n | |G| | n!.



80 CHAPTER 4. FIELDS AND GALOIS THEORY

Next we show that every finite group is the Galois group of a finite
normal extension.

Let y1, · · · , yn be indeterminates. The field F := Q(y1, · · · , yn) consists
of all rational functions of y1, · · · , yn. Every permutation σ ∈ Sn induces a
map σ ∈ G(F/Q) by

σ

(
f(y1, · · · , yn)

g(y1, · · · , yn)

)
:=

f(yσ(1), · · · , yσ(n))
g(yσ(1), · · · , yσ(n))

.

Denote Sn := {σ | σ ∈ Sn} ≤ G(F/Q). The subfield of F fixed by Sn is
K = Q(s1, · · · , sn), where s1, · · · , sn are the following symmetric functions
of y1, · · · , yn over Q:

s1 := y1 + y2 + · · ·+ yn,

s2 := y1y2 + y1y3 + · · ·+ yn−1yn,

· · · · · ·
sn := y1y2 · · · yn

Now F = K(y1, · · · , yn), and

f(x) := (x− y1)(x− y2) · · · (x− yn)

= xn − s1xn−1 + s2x
n−2 + · · ·+ (−1)nsn ∈ K[x]

So F = Q(y1, · · · , yn) is the splitting field of f(x) over K = Q(s1, · · · , sn),
where y1, · · · , yn are the roots of f(x). Every element of G(F/K) permutes
the n roots of f(x). This shows that:

1. G(F/K) = Sn ' Sn and |G(F/K)| = n!.

2. (Every finite group is the Galois group of a finite normal
extension) By Cayley’s Theorem, every finite group H is isomorphic
to a subgroup of certain Sn. By Galois theory, there is an intermediate
field F0 such that Q ≥ F ≥ F0 ≥ K, and H ' G(F/F0).

3. It is an open problem that which finite group is the Galois group of a
finite normal extension over a given field (e.g. Q).
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4.4 Cyclotomic Extensions

Def. The splitting field F of xn − 1 over K is the cyclotomic extension
of K of order n.

Def. An element u ∈ K is a primitive n-th root of unity if un = 1 and
uk 6= 1 for any positive integer k < n.

The cyclotomic extension of order n is related to the Euler function
ϕ(n), where ϕ(n) is the number of integers i such that 1 ≤ i ≤ n and
gcd(i, n) = 1. If n = pm1

1 · · · p
mk
k =

∏k
i=1 p

mi
i is the prime factorization of n

(where pi are distinct primes), then

ϕ(n) =
k∏
i=1

[pmi−1
i (pi − 1)] = n

k∏
i=1

(1− 1/pi)

When d | n, ϕ(d) equals to the number of integers i such that 1 ≤ i ≤ n and
gcd(i, n) = n/d. Therefore,

∑
d|n ϕ(d) = n.

4.4.1 Cyclotomic extensions over Q

Let Q ⊂ C. Consider the splitting field of xn − 1 over Q. There exists a
primitive n-th root of unity ζ ∈ C. All the other primitive n-th roots of
unity are ζi where 1 ≤ i ≤ n and gcd(i, n) = 1. So there are ϕ(n) elements
conjugate to ζ over Q. Denote

gn(x) =
∏

1≤i≤n
gcd(i,n)=1

(x− ζi).

Then gn(x) = irr(ζ,Q) ∈ Q[x] has degree ϕ(n). gn(x) is called the n-th
cyclotomic polynomial over Q.

Thm 4.29. Let F = Q(ζ) be a cyclotomic extension of order n of the field
Q, and gn(x) the n-th cyclotomic polynomial over Q. Then

1. gn(x) ∈ Z[x] and gn(x) is irreducible in Z[x] and Q[x]. Moreover,

xn − 1 =
∏
d|n

gd(x).

2. [F : Q] = ϕ(n), where ϕ is the Euler function.
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3. The Galois group G(F/Q) of xn−1 is isomorphic to the multiplicative
group of units in the ring Zn.

Ex. If p is a prime, then the Galois group of xp − 1 ∈ Q[x] is isomorphic
to the cyclic group Zp−1.

Ex. Consider the cyclotomic extension Fn of degree n over Q:

1. n = 9 = 32. Then ϕ(9) = 3 · 2 = 6. The multiplicative group in Z9 is
A = {1, 2, 4, 5, 7, 8}. Notice that 2 generates A. So G(F9/Q) ' A '
Z6.

2. n = 12 = 22 · 3. Then ϕ(12) = 2 · 2 = 4. The multiplicative group in
Z12 is A = {1, 5, 7, 11} ' Z2 ⊕ Z2. So G(F12/Q) ' A ' Z2 ⊕ Z2.

3. Likewise, G(F8/Q) ' Z2 ⊕ Z2 and G(F14/Q) ' Z6.

4.4.2 Cyclotomic Extensions over K

If charK = p 6= 0 and n = mpt with gcd(p,m) = 1, then xn−1 = (xm−1)p
t
,

so that a cyclotomic extension of order n coincides with one of order m.
Now we consider the cyclotomic extensions where charK = 0 or charK

does not divide n. Let ζ denote a primitive n-th root of unity over K. Then
all primitive n-th root of unity over K are ζi for 1 ≤ i ≤ n and gcd(i, n) = 1.
However, some ζi may not be conjugate to ζ over K anymore. We have

irr(ζ,K) | gn(x) =
∏

1≤i≤n
gcd(i,n)=1

(x− ζi),

where gn(x) is called the n-th cyclotomic polynomial over K. Moreover,
the following theorem says that deg(ζ,K) | deg gn(x) = ϕ(n).

Thm 4.30. Let K be a field such that charK does not divide n, and F a
cyclotomic extension of K of order n.

1. F = K(ζ), where ζ ∈ F is a primitive n-th root of unity.

2. G(F/K) is isomorphic to a subgroup of order d of the multiplicative
group of units of Zn. In particular, [F : K] = |G(F/K)| = d divides
ϕ(n).

3. xn− 1 =
∏
d|n gd(x). Moreover, deg gn(x) = ϕ(n), and the coefficients

of gn(x) are integers (in Z or Zp, depending on charK).



4.4. CYCLOTOMIC EXTENSIONS 83

Ex. If ζ is a primitive 5th root of unity in C, then

1. Q(ζ) is a cyclotomic extension of Q of order 5, with G(Q(ζ)/Q) ' Z4.

2. R(ζ) is a cyclotomic extension of R of order 5, with G(R(ζ)/R) ' Z2.
ζ satisfies that ζ + 1/ζ = 2Re(ζ). So irr(ζ,R) = x2 − 2Re(ζ) x+ 1.



84 CHAPTER 4. FIELDS AND GALOIS THEORY

4.5 Galois Theory on Finite Fields

4.5.1 Structure of Finite Fields

Examples of finite fields include Zp for primes p. We will see that every
finite field F has a prime characteristic p, and F ' Zp(α) where α ∈ Zp is
a primitive root of xp

n−1 − 1 in Zp[x].

The characteristic of a field F is either 0 or a prime p.

1. If charF = 0, then F is an extension of Q.

2. If charF = p for a prime p, then F is an extension of Zp. A finite field
F is simply a finite extension of Zp.

Thm 4.31. Let E be a finite extension of F with [E : F ] = m, where F is a
finite field of q elements. Then E has qm elements. In particular, the finite
field E contains exactly pn elements for p = charE and n = [E : Zp].

Thm 4.32. For every prime power pn, there is a unique (up to isomorphism)
finite field GF(pn) which contains exactly pn elements. If Zp ≥ GF(pn) ≥
Zp, the elements of GF(pn) are precisely the roots of xp

n − x ∈ Zp[x] in Zp.

• The multiplicative group 〈F ∗, ·〉 of nonzero elements of a finite field F is
cyclic.

• A finite extension E of a finite field F is a simple extension of F .
Because if |E| = pn (i.e. E is a finite extension of F := Zp), let α ∈ Zp be
a primitive (pn − 1)-th root of unity, then E = Zp(α) = F (α).

• For α ∈ Zp, the degree deg(α,Zp) = n iff Zp(α) = GF(pn), iff α is a
primitive (pn − 1)-root of unity in Zp.

Ex. That are ϕ(pn−1) many primitive (pn−1)-roots of unity in GF(pn). So

the number of degree n irreducible polynomials in Zp[x] is equal to ϕ(pn−1)
n .

Moreover, x(xp
n−1 − 1) = xp

n − x ∈ Zp[x] is the product of all degree m
irreducible polynomials for m | n.

• If GF(pn) ≥ GF(pm) ≥ Zp, then m | n. So it is easy to draw the
intermediate field diagram of GF(pn). Moreover, every GF(pn) is a normal
extension over Zp and GF(pm) for m | n.
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4.5.2 Galois Groups of Finite Fields

Thm 4.33. If F is a field of characteristic p and r is a positive integer,
then σr : F → F given by σr(u) = up

r
is a Zp-monomorphism of fields.

It is clear that σrσs = σr+s.

Cor 4.34.

1. G(GF(pn)/Zp) = {1, σ1, σ2, · · · , σn−1} ' Zn.

2. When m | n, G(GF(pn)/GF(pm)) = {1, σm, σ2m, · · · , σ( n
m
−1)m} '

Zn/m.

3. G(Zp/Zp)  {· · · , σ−2, σ−1, 1, σ1, σ2, · · · } ' Z.

Ex. x3− 3x+ 1 ∈ Z5[x] is irreducible. The Galois group of x3− 3x+ 1 over
Z5 is {1, σ1, σ2} ' Z3.

Ex. Describe the Galois correspondence between the intermediate fields of
GF(p12) over Zp and the subgroups of G(GF(p12)/Zp).

• If α ∈ Zp has deg(α,Zp) = [Zp(α) : Zp] = n, then all the Zp-conjugates
of α in Zp are

{1(α), σ1(α), σ2(α), · · · , σn−1(α)} = {α, αp1 , αp2 , · · · , αpn−1}.

The irreducible polynomial of α over Zp is

irr(α,Zp) =

n−1∏
k=0

(
x− αpk

)
Similarly, when m | n, the irreducible polynomial of α over GF(pm) is

irr(α,GF(pm)) =

n
m
−1∏

k=0

(
x− αpkm

)
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4.6 Radical Extensions

4.6.1 Solvable Groups

Def. A finite group G is solvable if there exists a subgroup sequence

{1} = G0 ≤ G1 ≤ G2 · · · ≤ Gn = G (4.1)

such that Gi CGi+1 and Gi+1/Gi is an abelian group for i = 0, · · · , n− 1.

Remark. If H is a finite abelian group, then there exists a subgroup sequence

{1} = H0 ≤ H1 ≤ · · · ≤ Ht

such that Hi+1/Hi is a cyclic group of prime order. So after making a
refinement on the equence (4.1), we may assume that GiCGi+1 and Gi+1/Gi
is an (abelian) cyclic group of prime order.

We give another definition of solvable groups using derived subgroups.
The commutator subgroup G′ of G is the subgroup of G generated by
the set {aba−1b−1 | a, b ∈ G}.

Lem 4.35. G′ CG, and G′ is the minimal normal subgroup of G such that
G/G′ is an abelian group.

Let

G(0) = G, G(1) = G′, · · · , G(i+1) = (G(i))′, · · ·

Then G = G(0) ≥ G(1) ≥ G(2) ≥ · · · and G(i) B G(i+1) for i = 0, 1, 2, · · · .
The group G(i) is called the i-th derived subgroup of G.

Lem 4.36. A finite group G is solvable iff G(n) = {1} for some n.

Ex.

1. D4 is solvable. Every finite group of order pn for a prime p is solvable.

2. A4 is solvable.

3. A5 is insolvable. Indeed, A5 is the smallest insolvable group.

Thm 4.37. If G is a finite solvable group, then every subgroup and every
quotient group of G are solvable.

Equivalently, if G contains an insolvable subgroup or quotient group,
then G is also insolvable.

A remarkable result by W. Feit and J. Thompson claims that every finite
group of odd order is solvable.
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4.6.2 Radical Extensions

Def. An extension field F of K is a radical extension of K if F =
K(u1, · · · , un), some powers of u1 lies in K and for each i ≥ 2, some power
of ui lies in K(u1, · · · , ui−1).

In other words, F = K(u1, · · · , un) is a radical extension of K if each of
ui can be expressed by finite step operations of +,−, ·, /, and n

√
on certain

elements of K.

Def. Let K be a field and f ∈ K[x]. The equation f(x) = 0 is solvable by
radicals if there exists a radical extension F of K such that the splitting
field E of f over K satisfies that K ⊂ E ⊂ F .

Thm 4.38. If F is a radical extension field of K and E is an intermediate
field, then G(E/K) is a solvable group.

Here E is not required to be splitting or seperable over K.

Thm 4.39. If f(x) ∈ K[x] is separable over K, and E is the splitting
(normal) field of f(x) over K, then f(x) = 0 is solvable by radicals if and
only if G(E/K) is a solvable group.

Ex. When charK = 0, or p := charK does not divide n! where n :=
deg f(x), the polynomial f(x) is separable. So we can apply the theorem.

Ex. A5 is insolvable. So S5 is insolvable. There exists a degree 5 polynomial
(a quintic) f(x) ∈ K[x] that has Galois group isomorphic to S5. Then some
roots of f(x) = 0 are insolvable by radicals.

For example, the Galois group of f(x) = x5− 4x+ 1 ∈ Q[x] is S5, which
is insolvable. So x5 − 4x+ 1 = 0 is insolvable by radicals over Q.

Thus it is impossible to find a general radical formula to solve the roots
of a generic polynomial of degree n ≥ 5.

Ex. There are some famous geometric construction problems using a straight-
edge and a compass. A number α is constructible if α can be obtained
by using straightedge and compass (initially with unit width) finitely many
times.

It is easy to see that: if α and β 6= 0 are constructible, then so are
α± β, α · β, and α/β. So the set of all constructible numbers form a field.
The curves drawn by straightedge and compass are of degrees 1 and 2. If
a field K consists of constructible numbers, and deg(α,K) = 2, then α
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is constructible. In fact, every constructible number can be obtained by a
sequence of field extensions

Q = F0 ⊂ F1 ⊂ F2 ⊂ · · · , [Fi+1 : Fi] = 2.

So α is constructible iff α is algebraic over Q and deg(α,Q) = 2m. There-
fore, using straightedge and compass,

1. trisecting a generic angle is impossible;

2. doubling the volume of a cube is impossible;

3. (Gauss) a regular n-gon is constructible iff cos 2π
n is constructible, iff a

primitive n-root of unity, say ζ, is constructible, iff irr(ζ,Q) = ϕ(n) =
2m, iff n is a product of a power of 2 and some distinct odd primes
of the form p = 2t + 1. However, if t has an odd factor s > 1, then
2t/s+1 divides 2t+1. So t = 2k and thus p = 22

k
+1 (called a Fermat

prime). Overall, a regular n-gon is constructible iff n = 2`p1p2 · · · pq,
where pi are distinct Fermat primes. The following regular n-gons are
constructible using straightedge and compass:

n = 3, 4, 5, 6, 8, 10, 12, 15, 16, 17, 20, · · · , 120, · · · , 256, · · ·

However, the regular 9-gon is inconstructible.


