Chapter 2
Semisimple Lie Algebras

2.1 Killing form

2.1.1 Criterion for Semisimplicity

The Killing form of a Lie algebra L is a bilinear form $\kappa : L \times L \to F$ defined by:

$$\kappa(x, y) = \text{Tr} (\text{ad}x \text{ad}y) \quad \text{for } x, y \in L.$$

The Killing form is

1. symmetric: $\kappa(x, y) = \kappa(y, x)$, and
2. associative: in the sense that $\kappa([x, y], z) = \kappa(x, [y, z])$ (since $\text{Tr} ([\text{ad}x, \text{ad}y] \text{ad}z) = \text{Tr} (\text{ad}x \text{ad}y \text{ad}z)$.)

The radical of Killing form (or any symmetric bilinear form of L) is $S = \{x \in L \mid \kappa(x, y) = 0 \text{ for all } y \in L\}$. Given a basis $\{x_1, \cdots, x_n\}$ of L, the dimension of radical is

$$\dim S = n - \text{rank} \left[\kappa(x_i, x_j) \right]_{n \times n}.$$

We call κ nondegenerate if $\dim S = 0$, i.e., the matrix $[\kappa(x_i, x_j)]_{n \times n}$ is nondegenerate.

3. the radical S of κ is an ideal: by associativity of κ, if $x \in S$ and $y, z \in L$, then

$$\kappa([x, y], z) = \kappa(x, [y, z]) = 0 \implies [x, y] \in S.$$

Ex. Compute the matrix form of the Killing form κ of $\mathfrak{sl}(2, F)$ w.r.t. the basis $\{h, e, f\}$:

$$h = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \quad e = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \quad f = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}.$$

Lem 2.1. Suppose a Lie algebra L has the Killing form κ, and I is an ideal of L. Then:

1. the Killing form of I is $\kappa_I = \kappa|_{I \times I}$;

2. the orthogonal subspace I^\perp of I w.r.t. κ is also an ideal of L:

$$I^\perp := \{x \in L \mid \kappa(x, y) = 0 \text{ for any } y \in I\}.$$

(Note that in general $I \cap I^\perp \neq 0$.)
Proof. For \(x, y \in I \), \(\text{ad} \ x \) (resp. \(\text{ad} \ y \)) maps \(L \) to \(I \). Therefore,

\[
\kappa(x, y) = \text{Tr}(\text{ad} \ x \text{ad} \ y) = \text{Tr}(\text{ad} x|_I \text{ad} y|_I) = \kappa|_I(x, y).
\]

For any \(x \in I^\perp \), \(y \in L \), and \(z \in I \),

\[
\kappa([x, y], z) = \kappa(x, [y, z]) = 0.
\]

Therefore, \(I^\perp \) is also an ideal of \(L \).

Corollary 1.29 implies that: (exercise)

A Lie algebra \(L \) is solvable iff the radical of its Killing form contains \([L, L]\).

Now we develop a criterion for \(L \) to be semisimple, i.e., the maximal solvable ideal \(\text{Rad} \ L = 0 \).

Thm 2.2. A Lie algebra \(L \) is semisimple iff its Killing form is nondegenerate.

Proof. If \(L \) is semisimple, then \(\text{Rad} \ L = 0 \). Let \(S \) be the radical of \(\kappa \). Then \(\text{Tr}(\text{ad} \ x \text{ad} y) = 0 \) for any \(x \in S \) and \(y \in L \) (esp. for \(y \in [S, S] \)). By Corollary 1.29 \(S \) is solvable. Therefore, \(S = 0 \).

Conversely, suppose on the contrary, \(S = 0 \) but \(\text{Rad} \ L \neq 0 \). Then the last nonzero term \(I \) in the derived series of \(\text{Rad} \ L \) is a nonzero abelian ideal of \(L \) (exercise). For any \(x \in I \) and \(y \in L \), \(\text{ad} \ x \text{ad} y \) sends \(L \to L \to I \). So the image of \((\text{ad} \ x \text{ad} y)^2\) is in \([I, I]\). Therefore, \((\text{ad} \ x \text{ad} y)^2 = 0\), which implies that \(\text{ad} \ x \text{ad} y \) is nilpotent and \(\kappa(x, y) = \text{Tr}(\text{ad} \ x \text{ad} y) = 0 \). This shows that \(I \subseteq S = 0 \), a contradiction. Hence \(\text{Rad} \ L = 0 \).

Remark. The proof also shows that \(S \subseteq \text{Rad} \ L \). However, the converse need not hold.

Next we explore some applications of the Killing form.

2.1.2 Simple Ideals of Semisimple Lie Algebra

A Lie algebra \(L \) is a direct sum of ideals \(L_1, \ldots, L_t \) if \(L = L_1 \oplus \cdots \oplus L_t \) as vector spaces. Obviously, \([L_i, L_j] = 0\) for \(i \neq j \).

Thm 2.3. Let \(L \) be semisimple with Killing form \(\kappa \). Then

1. \(L \) is a direct sum of some simple ideals: \(L = L_1 \oplus \cdots \oplus L_t \).

2. The Killing form of \(L_i \) is exactly \(\kappa_i = \kappa|_{L_i \times L_i} \). There is an orthogonal direct sum \(\kappa = \kappa_1 \oplus \cdots \oplus \kappa_t \).

3. Every simple ideal of \(L \) coincides with one of the \(L_i \).

4. Every ideal \(I \) of \(L \) is a direct sum of some \(L_i \)'s, which is semisimple. There is a direct sum of ideals \(L = I \oplus I^\perp \) w.r.t. the Killing form.

5. Every homomorphic image of \(L \) is semisimple and isomorphic to a direct sum of some \(L_i \)'s.

6. \(L = [L, L] \).
2.1. KILLING FORM

Proof. Let I be any ideal of L. Then I^\perp and $I \cap I^\perp$ are also ideals of L. By Cartan’s Criterion, $I \cap I^\perp$ is solvable. Hence $I \cap I^\perp = 0$ and $L = I \oplus I^\perp$ by dimension counting. Moreover, any ideal J of I is also an ideal of L, and hence an orthogonal direct sum component of L w.r.t. κ. Therefore, L can be decomposed into an orthogonal direct sum of indecomposable nonabelian ideals, aka. simple ideals:

$$L = L_1 \oplus \cdots \oplus L_t, \quad L_i \perp L_j \text{ w.r.t. } \kappa \text{ for } i \neq j.$$

Claims 1 and 2 are proved.

If I is any ideal of L, then $I = [I, L] = [I, L_1] \oplus \cdots \oplus [I, L_t]$. Each $[I, L_i] \subseteq I \cap L_i$ is either 0 or L_i. It immediately implies Claims 3, 4, and 5.

Finally,

$$[L, L] = \bigoplus_i \bigoplus_j [L_i, L_j] = \bigoplus_i [L_i, L_i] = \bigoplus_i L_i = L.$$

Remark. The study of semisimple Lie algebras can be done by exploring the simple Lie algebras.

2.1.3 Derivations

We have shown that ad L is an ideal of Der L. When L is semisimple, it turns out that every derivation of L is inner.

Thm 2.4. If L is semisimple, then $\text{ad} \, L = \text{Der} \, L$.

Proof. $A := \text{ad} \, L$ is an ideal of $D := \text{Der} \, L$. So the Killing form κ_A is the restriction of κ_D to $A \times A$. Since L is semisimple, $Z(L) = 0$ and $A \simeq L/Z(L) \simeq L$. Therefore, κ_A is nondegenerate. There is a direct sum of ideals $D = A \oplus A^\perp$ (w.r.t. the Killing form κ_D). For any $\delta \in A^\perp$ and $x \in L$,

$$0 = [\delta, \text{ad} \, x] = \text{ad} \, (\delta x) \implies \delta x = 0 \text{ for any } x \in L.$$

Therefore, $\delta = 0$, $A^\perp = 0$, and $D = A$. \qed

Remark. When L is semisimple, the Lie algebra of Aut L is Der $L = \text{ad} \, L$. If G is a (real or complex) connected Lie group whose Lie algebra L is semisimple, then the Lie algebra of Aut(G) is exactly Der $L = \text{ad} \, L$.

2.1.4 Abstract Jordan Decomposition

Lemma 1.27 shows that Der L contains the semisimple part and the nilpotent part of all its elements. When L is semisimple, Der $L = \text{ad} \, L$. We can write every ad $x \in \text{ad} \, L$ uniquely as

$$\text{ad} \, x = \text{ad} \, x_s + \text{ad} \, x_n,$$

where $x_s, x_n \in L$, ad x_s is semisimple, ad x_n is nilpotent, and ad x_s and ad x_n commute. Then $x = x_s + x_n$ and $[x_s, x_n] = 0$. This is called the abstract Jordan decomposition of x in L, and x_s (resp. x_n) is called the semisimple part (resp. nilpotent part) of x.

The abstract Jordan decomposition is preserved by direct sums (exercise), Lie algebra homomorphisms, and representations (to be proved in the next section).