2.3 Representation of $\mathfrak{sl}(2, F)$

The representations of $\mathfrak{sl}(2, F)$ play an important role in the study of semisimple Lie algebras. In this section, we consider the finite dimensional representations of $L := \mathfrak{sl}(2, F)$, whose standard basis consists of

$$h := \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \quad x := \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \quad y := \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix},$$

such that

$$[h, x] = 2x, \quad [h, y] = -2y, \quad [x, y] = h.$$

Let V be an arbitrary L-module. Since h is semisimple in L, the preservation of Jordan decomposition implies that h acts diagonally on V. So V is a direct sum of eigenspaces $V_\lambda := \{ v \in V \mid h.v = \lambda v \}$.

We let $V_\lambda = 0$ if λ is not an eigenvalue of the h-action on V. Whenever $V_\lambda \neq 0$, we call λ a weight of h in V and V_λ a weight space.

Lem 2.13. If $v \in V_\lambda$, then $x.v \in V_{\lambda+2}$ and $y.v \in V_{\lambda-2}$.

Proof. $h.(x.v) = [h, x].v + x.(h.v) = 2x.v + \lambda x.v = (\lambda + 2)x.v$. Similarly for y. \qed

Since $\dim V < \infty$ and $V = \bigoplus_{\lambda \in F} V_\lambda$, there exists $\lambda \in F$ such that $V_\lambda \neq 0$ but $V_{\lambda+2} = 0$; this weight λ is called a highest weight, and any nonzero vector $v \in V_\lambda$ is called a maximal vector of weight λ, where $v \neq 0$ but $x.v = 0$. We will see that a highest weight is a nonnegative integer.

Every L-module is a direct sum of irreducible submodules. The following theorem completely classifies all irreducible L-modules.

Thm 2.14. Let $\phi : L \to \mathfrak{sl}(V)$ be an irreducible representation of $L = \mathfrak{sl}(2, F)$, and $\dim V = m + 1 < \infty$. Then there exists a basis $\mathcal{B} = \{v_0, v_1, \ldots, v_m\}$ of V, such that $\phi(h), \phi(x)$ and $\phi(y)$ have the following matrix forms relative to the basis \mathcal{B}:

$$\phi(h) \overset{\mathcal{B}}{\approx} \begin{bmatrix} m & m-2 & \cdots & -(m-2) \\ & & \ddots & \\ & & & -m \end{bmatrix}, \quad \phi(x) \overset{\mathcal{B}}{\approx} \begin{bmatrix} 0 & m & \cdots \\ & 0 & \ddots \\ & & \ddots \\ & & & 2 \\ & & & 0 \end{bmatrix}, \quad \phi(y) \overset{\mathcal{B}}{\approx} \begin{bmatrix} 0 & 1 & \cdots \\ & 2 & \ddots \\ & & \ddots \\ & & & 0 \end{bmatrix}.$$

In particular,

1. For $m \in \mathbb{N}$, (up to isomorphism) there exists exactly one irreducible L-module of dimension $m + 1$, denoted by $V(m)$.

2. $V(m)$ is a direct sum of weight spaces relative to h: $V = \bigoplus_{i=0}^{m} V_{m-2i}$ (the irreducibility of $V(m)$ is done in homework). $V(m)$ has the highest weight m, and $V(m)$ has a unique (up to nonzero scalar multiplies) maximal vector in V_m.
Proof. Let λ be a highest weight and choose a maximal vector $v_0 \in V_{\lambda} - \{0\}$. Set $v_{-1} = 0$ and $v_i = (1/i!)y^i.v_0$ for $i \geq 0$. Lemma 2.13 implies that
\[h.v_i = (\lambda - 2i)v_i. \quad (2.1) \]
The definition of v_i implies that
\[y.v_i = (i + 1)v_{i+1}. \quad (2.2) \]
We use induction on i to prove that
\[x.v_i = (\lambda - i + 1)v_{i-1} \quad \text{for} \quad i \geq 0. \quad (2.3) \]
The case $i = 0$ is obviously true. For $i > 0$,
\[
ix_i = x.y.v_{i-1} = [x, y].v_{i-1} + y.x.v_{i-1} \overset{\text{I.H.}}{=} h.v_{i-1} + (\lambda - i + 2)y.v_{i-2} = (\lambda - 2i + 2)v_{i-1} + (\lambda - i + 2)(i - 1)v_{i-1} = i(\lambda - i + 1)v_{i-1}.
\]
Divide both sides by i to complete the induction process.

The equality $h.v_i = (\lambda - 2i)v_i$ shows that $v_i \in V_{\lambda - 2i}$. Hence the nonzero v_i are linearly independent. By $\dim V < \infty$, there exists $n \in \mathbb{N}$ such that $v_n \neq 0$ but $v_{n+1} = 0$. Then v_0, v_1, \ldots, v_n are linearly independent, and they span a nonzero L-submodule of V, which must be V itself due to irreducibility of V. So $n = m$. By (2.3), $0 = x.v_{m+1} = (\lambda - m)v_m$, so that $\lambda = m$. Overall (2.1), (2.2), and (2.3) lead to the desired matrix forms of $\phi(h)$, $\phi(x)$, and $\phi(y)$ w.r.t. the basis $\{v_0, v_1, \ldots, v_m\}$. \hfill\(\square\)

The structure of any finite dimensional L-module can be determined by its weight spaces as follow:

Cor 2.15. Let $L = \mathfrak{sl}(2, F)$, and V a finite dimensional L-module.

1. The eigenvalues of h on V are all integers, and each occur along its negative with equal number of times.

2. Suppose V is decomposed into a direct sum of irreducible submodules: $V \simeq \sum_{m \in \mathbb{N}} a_m V(m)$.

Then the total number of irreducible summands is
\[
\sum_{m \in \mathbb{N}} a_m = \dim V_0 + \dim V_1;
\]
for $m \in \mathbb{N}$, the number of copies of $V(m)$ in V is
\[a_m = \dim V_m - \dim V_{m+2}. \]

Proof. (exercise) \hfill\(\square\)

In brief, given a finite dimension representation $\phi : L \rightarrow \mathfrak{gl}(V)$, the h-action on V uniquely determines the weight spaces V_λ, their dimensions $\dim V_\lambda$, and the multiplicities a_m of irreducible summands $V(m)$, in the representation ϕ.

Ex. 1. In the natural representation $\phi_1 : L \rightarrow \mathfrak{gl}(F^2)$, the standard basis $B_1 := \{e_1, e_2\}$ of F^2 consists of eigenvectors of $\phi_1(h)$, and the matrix form $\phi_1(h) \approx \text{diag}(1, -1)$. Therefore, the L-module $F^2 \simeq V(1)$.

2. In the adjoint representation \(\text{ad} : L \to gl(L) \), the basis \(B_2 := \{ x, h, y \} \) of \(L \) consists of eigenvectors of \(\text{ad} h \), and the matrix form \(\text{ad} h \approx \text{diag}(2, 0, -2) \). Therefore, the \(L \)-module \(L \simeq V(2) \).

3. Consider the tensor representation \(\phi_1 \otimes \text{ad} : L \to gl(F^2 \otimes L) \). Then \(F^2 \otimes L \) has a basis consisting of eigenvectors of \((\phi_1 \otimes \text{ad})(h) \):

\[
B_1 \times B_2 = \{ e_1 \otimes x, e_1 \otimes h, e_1 \otimes y, e_2 \otimes x, e_2 \otimes h, e_2 \otimes y \},
\]

and the matrix form of the \(h \)-action w.r.t. this basis is

\[
(\phi_1 \otimes \text{ad})(h) \overset{B_1 \times B_2}{\approx} \text{diag}(3, 1, -1, 1, -1, -3).
\]

Then

\[
(\dim V_0, \dim V_1, \dim V_2, \dim V_3, \dim V_4, \dim V_5, \cdots) = (0, 2, 0, 1, 0, 0, \cdots).
\]

We get \(a_1 = 1 \), \(a_3 = 1 \), and the other \(a_k = 0 \). Hence the \(L \)-module \(F^2 \otimes L = V(1) \oplus V(3) \).