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Let g be a complex or real n×n matrix. Define
the following n-tuples (also viewed as diagonal
matrices):

• ~s := (s1, · · · , sn) ∈ (R+)n singular values
of g in descending order (s1 ≥ s2 ≥ · · · ≥
sn > 0).

• ~λ := (λ1, · · · , λn) ∈ (C×)n eigenvalues of
g, with |λ1| ≥ |λ2| ≥ · · · ≥ |λn| > 0. Denote
|~λ| := (|λ1|, · · · , |λn|) ∈ (R+)n.

• ~a := (a1, · · · , an) = diag(R) ∈ (R+)n the
diagonal part of the upper triangular ma-
trix R obtained by the QR decomposition
g = QR. Call ~a the a-component of g.

• ~d := diag(g) the diagonal part of the
matrix g.

Q: What are the relations of these scalars?



Answer 1: (~s, |~λ|) and (~s,~a) obey multiplica-

tive majorization relationships:

1. (H. Weyl [We], A. Horn [Ho], and C. Thompson [Th]) ~s and
~λ are the singular values and the eigenvalues of a matrix
respectively if and only if ~s multiplicatively majorizes |~λ|:

s1s2 · · · sk ≥ |λ1λ2 · · ·λk|, k = 1, · · · , n− 1,

s1s2 · · · sn = |λ1λ2 · · ·λn|.

2. (B. Kostant [Ko]) ~s and ~a are the singular values and the
a-component of a matrix respectively iff ~s multiplicatively
majorizes ~a, that is, after rearranging the components of ~a
in descending order: a′1 ≥ a′2 ≥ · · · ≥ a′n > 0,

s1s2 · · · sk ≥ a′1a
′
2 · · · a′k, k = 1, · · · , n− 1,

s1s2 · · · sn = a′1a
′
2 · · · a′n.

3. Indeed, Kostant extended the multiplicative majorization
relationships of the pairs (~s, |~λ|) and (~s,~a) in terms of
Kostant’s partial order on connected real semisimple Lie
groups.

[Ko] Bertram Kostant, On convexity, the Weyl group and
the Iwasawa decomposition, Ann. scient. Éc. Norm. Sup.
(4e), 6 (1973) 413-455.

Remark. The other pairwise and triplewise relationships within the
n-tuples ~s, ~λ, ~a, and diag(U) (obtained from the Gelfand-
Naimark decomposition g = LωU of g), are also known (H.
Huang, T. Y. Tam [HT]).



Answer 2: (~s, ~d) obeys additive majoriza-
tion relationship:

4. (I. Schur [Sch], A. Horn [Ho1]) ~s = ~λ and ~d are the singular
values and the diagonal of a Hermitian matrix iff ~s additively
majorizes ~d, that is, after rearranging the entries of ~d in
descending order: d1 ≥ d2 ≥ · · · ≥ dn,

s1 + · · ·+ sk ≥ d1 + · · ·+ dk, k = 1, · · · , n− 1,
s1 + · · ·+ sn = d1 + · · ·+ dn.

5. (R.C.Thompson [Th1], F.Y.Sing [Si]) Let ~s ∈ (R+)n and
~d ∈ Cn. Then there exists a complex n × n matrix with
singular values ~s and diagonal entries ~d iff

k∑
i=1

si ≥
k∑
i=1

|di|, k = 1, · · · , n

n−1∑
i=1

si − sn ≥
n−1∑
i=1

|di| − |dn|,

after rearranging the entries of ~s and ~d in descending order
w.r.t. modulus.

6. (Thompson) Let ~s ∈ (R+)n and ~d ∈ Rn. Then there exists a
real n×n matrix with positive determinant that has singular
values ~s and diagonal ~d iff

k∑
i=1

si ≥
k∑
i=1

|di|, k = 1, · · · , n,

n−1∑
i=1

si − sn ≥
n−1∑
i=1

|di| − dn,

and in addition, if the number of negative terms among ~d is
odd,

n−1∑
i=1

si − sn ≥
n∑
i=1

|di|.



7. (T. Y. Tam, [T]) Thompson’s results on the relations of ~s

and ~d are special cases of [Ko, Thm 8.2] in terms of Kostants
partial order on real semsimple Lie algebras. It is easy to see
that Schur-Horn’s result is also a special case of [Ko, Thm
8.2].

? The above majorization inequalities within

several important n-tuples of a matrix are

linked to Kostant’s partial order on connected

real semisimple Lie groups or Lie algebras.



A Lie group is a real or complex differential

manifold with a group structure, where the

multiplication and inverse operations are an-

alytic.

The tangent space of a Lie group G at 1

constitutes a Lie algebra g with a bilinear

bracket operation [, ]. g is called the Lie

algebra of G.

A connected real Lie group G is semisimple if

its Lie algebra g is semisimple, that is,

g = g1 ⊕ · · · ⊕ gk

where each gi is a simple ideals of g.



Many matrix groups are real semisimple Lie

groups:

Ex. For F = C or R, the groups

SLn(F) = {x ∈ Fn×n | detx = 1}
is connected real semisimple. Its Lie algebra is

sln(F) = {X ∈ Fn×n | trX = 0}.
The bracket operation on the Lie algebra of a matrix
group always has the form:

[X,Y ] = XY − Y X.

Ex. Some other examples of real connected semisimple

Lie groups: (denote J2n :=
[

0 In
−In 0

]
, Ip,q :=

[
Ip 0
0 −Iq

]
.)

SUn = {x ∈ SLn(C) | x∗x = In},
SOn(C) = {x ∈ SLn(C) | xTx = In},
Sp2n(C) = {x ∈ SL2n(C) | xTJ2nx = J2n},

SOn = {x ∈ SLn(R) | xTx = In},
Sp2n = {x ∈ SL2n(R) | xTJ2nx = J2n},
SUp,q = {x ∈ SLp+q(C) | x∗Ip,qx = Ip,q}.



Let G be a connected real semisimple Lie
group. Let g ∈ G. Similarly to matrix case,
there are ~s, |~λ|, and ~a for g in G obtained from
three decompositions:

• ~s is obtained from the global Cartan
decomposition of G:

G = K × P (a diffeomorphism onto).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
When G = SLn(C) or SLn(R), the global Cartan

decomposition of G is the usual matrix Cartan

decomposition: Every determinant 1 matrix g can

be written as g = kp, where k is unitary and

p = expH for a Hermitian matrix H.

• ~a is obtained from the Iwasawa decompo-
sition of G:

G = K ×A×N (a diffeomorphism onto).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
When G = SLn(C) or SLn(R), the Iwasawa de-

composition of G is the matrix QR decomposition:

Every determinant 1 matrix g can be written as

g = qr, where q is unitary and r is upper triangular;

write a := diag(r) and n := a−1r then g = qan.



• |~λ| is obtained from the complete multi-

plicative Jordan decomposition (CMJD):

g = e(g)h(g)u(g).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

When G = SLn(C), the CMJD of g ∈ G is given as
follow:

– If g is in a Jordan canonical form, then

e(g) = diag(g) |diag(g)|−1,

h(g) = |diag(g)|,
u(g) = h(g)−1e(g)−1g.

So e(g) is a diagonal matrix with modulus 1
entries, h(g) is a diagonal matrix with positive
real entries, u(g) is a unit upper triangular
matrix, and e(g), h(g) and u(g) commute.
Note that h(g) gives the eigenvalue moduli |~λ|
of g.

– In general, g = yJy−1 where y ∈ G and J is a
Jordan canonical form of g. Then

e(g) = y e(J) y−1,

h(g) = y h(J) y−1,

u(g) = y u(J) y−1.

Obviously, e(g), h(g) and u(g) commute, and
h(g) gives the eigenvalue moduli |~λ| of g.



To define Kostant’s partial order on G, we need the
following notations ([Kn]) and the definition of the
CMJD ([Ko]).

g : the Lie algebra of G;

θ : a Cartan involution of g, θ2 = 1 ∈ Aut (g);

k : +1 eigenspace of θ, a Lie subalgebra of g;

p : −1 eigenspace of θ, a subspace of g;

g = k⊕ p : the Cartan decomposition of g;

a (⊆ p) : a maximal abelian subspace of p;

g = a⊕
⊕
γ∈Σ

gγ : restricted root space decomposition of g;

Σ =Σ+ ∪ (−Σ+);

Σ+ : the set of all positive restricted roots;

a+ (⊆ a) : the fundamental Weyl chamber in a;

n =
⊕
γ∈Σ+

gγ : a maximal nilpotent subalgebra;

g = k⊕ a⊕ n : the Iwasawa decomposition of g.

The k, p, a, a+, n in Lie algebra g can be lifted to
their counterparts K, P , A, A+, N in Lie group G by
exponential map. So do the Cartan decomposition and
the Iwasawa decomposition of g.

Define the Weyl group of G by:

W := NK(a)/ZK(a),

where

NK(a) := {k ∈ K | Adk(a) ⊆ a},
ZK(a) := {k ∈ K | Adk(X) = X for all X ∈ a}.



The CMJD: (Kostant [Ko]) Let G be a
connected real semisimple Lie group. Every
g ∈ G has the unique complete multiplica-
tive Jordan decomposition (CMJD) g = ehu,
where e, h, u ∈ G satisfy that:

? e is elliptic: Ad(e) ∈ Aut (g) is diagonal-
izable over C with eigenvalues of modulus
1;

? h is hyperbolic: h = expX where X ∈ g

is real semisimple, i.e. ad(X) ∈ End (g) is
diagonalizable over R with real eigenval-
ues;

? u is unipotent: u = expX where X ∈
g is nilpotent, i.e. ad(X) ∈ End (g) is
nilpotent.

? e, h, and u mutually commute (thus they
also commute with g).

We write g = e(g)h(g)u(g).



Basic properties of CMJD:

1. The CMJDs are preserved by conjugations &
direct sums.

2. The CMJDs are preserved by group homomor-
phisms. Let φ : G → H be a homomorphism
of connected real semisimple Lie groups G and
H. If g = ehu is the CMJD of g in G, then
φ(g) = φ(e)φ(h)φ(u) is the CMJD of φ(g) in H.

In particular, the CMJD of g in a matrix group
G ⊆ SLn(C) is identical with the CMJD of g in
SLn(C).

3. In the CMJD g = ehu, the hyperbolic component
h is G-conjugate to a unique element

|~λ|(g) ∈ A+,

which is the counterpart of the eigenvalue moduli
|~λ| of a matrix.

4. If g = kp (k ∈ K, p ∈ P ) is the global Cartan
decomposition of g ∈ G, then

~s(g) := |~λ|(p) ∈ A+

is the counterpart of the singular values ~s of a
matrix.



Kostant’s partial order ([Ko]).

Let g be any element of connected real
semisimple Lie group G.

g ∈ G ⇒ CMJD : g = ehu

⇒ h is G-conjugate to |~λ|(g) ∈ A+

⇒ denote A(g) := exp
{

conv
[
W · log |~λ|(g)

]}
Roughly speaking, A(g) is the multiplicative

convex hull of the Weyl group orbit of |~λ|(g) ∈
A+.

The Kostant’s partial order in G is defined as:

g1 � g2 ⇐⇒ A(g1) ⊇ A(g2).



As mentioned early, Kostant’s partial order
determines the relations of ~s and |~λ| and ~s

and ~a, etc.

Theorem 1 (Kostant [Ko]). Given ~s, |~λ| ∈ A+,
there exists g ∈ G satisfying ~s(g) = ~s and
|~λ|(g) = |~λ| iff ~s � |~λ|.

Similarly, given ~s,~a ∈ A+, there exists g ∈ G
satisfying ~s(g) = ~s and ~a(g) = ~a iff ~s � ~a.

Theorem 2 (Kostant [Ko]). Let g1, g2 ∈ G.
Then g1 � g2 iff the spectral radii

|π(g1)| ≥ |π(g2)|
for all finite dimensional representation π of
G. (|π(g)| is the maximal eigenvalue modulus
of the matrix π(g)).

Together with the k-compound representa-
tions of special linear groups, Theorems 1
and 2 imply the multiplicative majorization
relationships of the pairs (~s, |~λ|) and (~s,~a) for
a matrix g ∈ SLn(C).



Now consider the set of hyperbolic elements:

{h ∈ G | h = expX, adX is real diagonalizable}

The hyperbolic elements in SLn(C) or SLn(R)

are those matrices diagonalizable with posi-

tive real eigenvalues.

Theorem 3 (Kostant [Ko]). Let h1, h2 ∈ G be

hyperbolic. If h1 � h2, then χπ(h1) ≥ χπ(h2)

for all finite dimensional representations π

of G, where χπ(h) = tr (π(h)) denotes the

character of π.

Kostant asked if the converse of Theorem 3

holds or not. It was answered affirmatively

recently (H. Huang and S. Kim [HK]). So

Theorem 3 can be improved as follow:



Theorem 4 (Huang & Kim [HK]). Let h1, h2

be hyperbolic elements in G. Then h1 � h2 iff

the character values χπ(h1) ≥ χπ(h2) for all

finite dimensional representations π of G.

If g = ehu is the CMJD of any g ∈ G, then

π(g) = π(e)π(h)π(u) is the CMJD of π(g) in

the matrix group π(G). Conjugating π(g) to

its Jordan canonical form, we see that the

eigenvalue moduli of π(g), denoted by λ1
π(g) ≥

· · · ≥ λnπ(g) > 0, are precisely the eigenvalues

of π(h). Denote

|χπ|(g) := λ1
π(g) + · · ·+ λnπ(g) = χπ(h).

Theorem 4 is equivalent to that:

Corollary 5 (Huang & Kim [HK]). Suppose

g1, g2 ∈ G. Then g1 � g2 iff |χπ|(g1) ≥ |χπ|(g2)

for all finite dimensional representations π of

G.



More nice relations between Kostant’s partial order
“�” on G and the multiplicative and additive majoriza-
tions of the eigenvalue moduli in finite dimensional
representations of G are given below:

Theorem 6 (Huang & Kim [HK]). Let G be a con-
nected real semisimple Lie group and g1, g2 ∈ G.

1. [Ko] If g1 � g2 in G, then for every finite
dimensional representation π : G → GLn(C), the
following inequalities hold for k = 1, · · · , n:

k∏
i=1

λiπ(g1) ≥
k∏
i=1

λiπ(g2),
k∑
i=1

λiπ(g1) ≥
k∑
i=1

λiπ(g2).

2. Fix k ∈ Z+. If for every finite dimensional
representation π : G→ GLn(C) with n ≥ k we have

k∑
i=1

λiπ(g1) ≥
k∑
i=1

λiπ(g2),

then g1 � g2 in G.

3. Fix k ∈ Z+. If for every finite dimensional
representation π : G→ GLn(C) with n ≥ k we have

k∏
i=1

λiπ(g1) ≥
k∏
i=1

λiπ(g2),

then g1 � g2 in G.



Ex. Let G := SLn(C) and g ∈ G. We

know that ~s multiplicatively majorizes |~λ| and

~a. Indeed, viewed as diagonal matrices, ~s �
|~λ| and ~s � ~a in G. So for any k ∈ Z+

and any finite dimensional representation π

of G, the sum or product of the largest k

eigenvalues of π(~s) is greater than or equal

to its counterparts of π(|~λ|) and π(~a).
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(1973) 413-455.

[Sch] I. Schur, Über eine Klasse von Mittelbildungen mit An-
wendungen auf der Determinantentheorie, Sitzungsberichte der
Berlinear Mathematischen Gesellschaft, 22 (1923) 9-20.

[Si] F. Y. Sing, Some results on matrices with prescribed digonal
elements and singular values, Canad. Math. Bulletin, 19 (1976)
89-92.

[T] T. Y. Tam, a Lie theoretical approach of Thompson’s
theorems of singular values-diagonal elements and some related
results, J. of London Math. Soc. (2), 60 (1999) 431-448.

[Th] Colin Thompson, Inequalities and partial orders on matrix
spaces, Indiana Univ. M. th. J., 27 (1971) 469-480.

[Th1] R. C. Thompson, Singular values, diagonal elements and
convexity, SIAM J. Appl. Math. 32 (1977) 39-63.

[We] Hermann Weyl, Inequalities between the two kinds of
eigenvalues of a linear transformation, Proc. Nat. Acad. Sci.
U. S. A. 35 (1949) 408–411.

http://www.auburn.edu/~huanghu/paper/Kostant-question-16.pdf
http://www.auburn.edu/~huanghu/paper/Kostant-question-16.pdf
http://www.auburn.edu/~huanghu/paper/Gelfand-Naimark12.pdf
http://www.auburn.edu/~huanghu/paper/Gelfand-Naimark12.pdf


Thank you!!!


