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Let g be a complex or real nxn matrix. Define
the following n-tuples (also viewed as diagonal
matrices):

° singular values
of g in descending order (
).
° eigenvalues of
g, with . Denote
° the

diagonal part of the upper triangular ma-
trix R obtained by the QR decomposition
g = QR. Call a the a-component of g.

° the diagonal part of the
matrix g.

Q: What are the relations of these scalars?



Answer 1: (3,|X|) and (3,a@) obey multiplica-
tive majorization relationships:

1. (H Weyl [We], A. Horn [Ho], and C. Thompson [Th]) § and

Remark.

X are the singular values and the eigenvalues of a matnx
respectively if and only if

5182 -+ Sg AAz--Xgl, k=1,---,n—1,
S$182 -+ Sp A1 A2 Apl.

Il v

(B. Kostant [Ko]) § and @ are the singular values and the
a-component of a matrix respectively iff

, that is, after rearranging the components of a
in descending order:

8182 - - Sk 2 0/1611/2...01;67 k:l’...,n_l’
8182 - 8p et a/:La/Q...a

. Indeed, Kostant extended the multiplicative majorization

relationships of the pairs (§,|X|) and (5,@) in terms of
on connected real semisimple Lie
groups.

[Ko] Bertram Kostant, On convexity, the Wey! group and
the Iwasawa decomposition, Ann. scient. Ec. Norm. Sup.
(4e), 6 (1973) 413-455.

The other Qairwise and triplewise relationships within the
n-tuples s, X\, @, and diag(U) (obtained from the Gelfand-
Naimark decomposition g = LwU of g), are also known (H.
Huang, T. Y. Tam [HT]).



Answer 2: (3,d) obeys additive majoriza-
tion relationship:

(I. Schur [Sch], A. Horn [Hol]) §= X and d are the singular
values and the diagonal of a Hermitian matrix iff V!
, that is, after rearranging the entries of d in
descending order: dy > do > -+ > dy,
sit+--+s, > di+---+dp, k=1,---,n-1,
sit-dsn = di+-+dn

(R.C. Thompson [Th1], F.Y.Sing [Si]) Let 8§ € (RT)" and

d ¢ C*. Then there exists a complex n x n matrix with
singular values s and diagonal entries d iff

k k
ji:éﬁ Ei 2{:|d”, k:==1,---,n
n—1 n—1
Zsz-—sn > Zldil— |dnl,

after rearranging the entries of s and d in descending order
w.r.t. modulus.

(Thompson) Let € (RT)" and d € R*. Then there exists a
real n X n matrix with positive determinant that has singular
values s and diagonal d iff

k k
Slsioz Sl k=1,n
n—1 n—1
Zsi — s > Z |di| — dn,

and in addition, if the number of negative terms among d is
odd,

n—1

n
Zsi—sn > E |d;i.
i=1

=1



7. (T.Y. Tam, [T]) Thompson's results on the relations of &

and d are special cases of [Ko, Thm 8.2] in terms of

on real semsimple Lie algebras. It is easy to see
that Schur-Horn's result is also a special case of [Ko, Thm
8.2].

* T he above majorization inequalities within
several important n-tuples of a matrix are
linked to Kostant's partial order on connected
real semisimple Lie groups or Lie algebras.



A iIs a real or complex differential
manifold with a group structure, where the
multiplication and inverse operations are an-
alytic.

The tangent space of a Lie group G at 1

constitutes a g with a bilinear
g is called
A connected real Lie group G is if

its Lie algebra g is semisimple, that is,

g=g1D - DY

where each g; is a simple ideals of g.



Many matrix groups are real semisimple Lie
groups:

Ex. For F = C or R, the groups
= {x €e F"*" | detx = 1}

IS connected real semisimple. Its Lie algebra is
={X e F"" | tr X = 0}.

The bracket operation on the Lie algebra of a matrix
group always has the form:

[X,Y] = XY - YX.

EXx. Some other examples of real connected semisimple
- . . |1, 0
Lie groups: (denote /o, =[5 &1, = [O _Iq}.)

{x € SL,(C) | "z = I,,},
{z € SL,(C) | 2’z = I,},
{x c SLQn(C) | QZTJQn:C = Jzn},
{x € SL,(R) | 'z = I,},
{x € SL2,(R) | 2l Jopx = Jon},
{z € SLp44(C) [ 2™ Ipgx = Ipg}-



Let G be a connected real semisimple Lie
group. Let g € GG. Similarly to matrix case,
there are 5, |X|, and @ for g in G obtained from
three decompositions:

e 5 is obtained from the global Cartan
decomposition of G

(a diffeomorphism onto).

When G = SL,(C) or SL,(R), the global Cartan
decomposition of G is the usual matrix Cartan
decomposition: Every determinant 1 matrix g can
be written as g = kp, where k is unitary and
p = exp H for a Hermitian matrix H.

e g IS obtained from the Iwasawa decompo-
sition of G-

(a diffeomorphism onto).

When G = SL,(C) or SL,(R), the Iwasawa de-
composition of G is the matrix QR decomposition:
Every determinant 1 matrix g can be written as
g = qr, where ¢g is unitary and r is upper triangular;
write a := diag(r) and n := a~!r then g = qan.



o |X| is obtained from the complete multi-
plicative Jordan decomposition (CMJD):

When G = SL,(C), the CMJD of g € G is given as
follow:

— If g is in a Jordan canonical form, then

e(g) = diag(g) |diag(g)|™*,
h(g) = |diag(g)l,
u(g) = h(g)te(g) g

So e(g) is a diagonal matrix with modulus 1
entries, h(g) is a diagonal matrix with positive
real entries, u(g) is a unit upper triangular
matrix, and e(g), h(g) and u(g) commute.
Note that h(g) gives the eigenvalue moduli |X|
of g.

— In general, g = yJy~ ! where y € G and J is a
Jordan canonical form of g. Then

e(g) = ye(D)y T,
h(g) = yh(J)y
u(g) = yu(l)y

Obviously, e(g), h(g) and u(g) commute, and
h(g) gives the eigenvalue moduli |\| of g.



To define Kostant's partial order on G, we need the
following notations ([Kn]) and the definition of the
CMJD ([Ko]).

. the Lie algebra of G,
: a Cartan involution of g, 02 =1 € Aut (g);
. +1 eigenspace of 0, a Lie subalgebra of g;
. —1 eigenspace of 6, a subspace of g;
. the Cartan decomposition of g;

(C p) : @ maximal abelian subspace of p;

. restricted root space decomposition of g;

=>TU(=x<1);
- the set of all positive restricted roots;
(C a) : the fundamental Weyl chamber in q;

- a2 maximal nilpotent subalgebra;

. the Iwasawa decomposition of g.

The & p, a, a™, n in Lie algebra g can be lifted to
their counterparts in Lie group G by
exponential map. So do the Cartan decomposition and
the Iwasawa decomposition of g.

Define the of GG by:

where

{k € K | Adk(a) C al,
{k € K| Adk(X) = X for all X € a}.



The CMJD: (Kostant [Ko]) Let G be a
connected real semisimple Lie group. Every
g € G has the unique

where e, h,u € G satisfy that:

*

*

Ad(e) € Aut (g) is diagonal-
izable over C with eigenvalues of modulus
1;

h = exp X where X € g
is real semisimple, i.e. ad(X) € End (g) is
diagonalizable over R with real eigenval-
ues;

- u = exp X where X €
g is nilpotent, i.e. ad(X) € End(g) is
nilpotent.

e, h, and u (thus they
also commute with g).

We write



Basic properties of CMJD:

1. The CMJDs are preserved by conjugations &
direct sums.

2. The CMJDs are preserved by group homomor-
phisms. Let ¢ : G — H be a homomorphism
of connected real semisimple Lie groups G and
H. If g = ehu is the CMJD of g in G, then

b(g) = d(e)dp(h)d(u) is the CMID of ¢(g) in H.

In particular, the CMJD of g in a matrix group
G C SL,(C) is identical with the CMJD of g in
SL,(C).

3. In the CMJD g = ehu, the hyperbolic component
h is GG-conjugate to a unique element

c Ay,

which is the counterpart of the eigenvalue moduli
|IA| of a matrix.

4. If ¢ = kp (k € K, p € P) is the global Cartan
decomposition of g € (G, then

= |X|(p) € Ay

is the counterpart of the singular values s of a
matrix.



Kostant’s partial order ([Ko]).

Let g be any element of connected real
semisimple Lie group G.

geG = CMJD: g=-ehu
— h is G-conjugate to |X|(g) € A4

= denote

Roughly speaking, A(g) is the multiplicative
convex hull of the Weyl group orbit of |X|(g) €
Al

The in (G is defined as:



As mentioned early, Kostant's partial order

determines the relations of § and |X| and 3
and a, etc.

Theorem 1 (Kostant [Ko]). Given s, \X| c Ay,

there exists g € G satisfying s(g) = § and
[A[(g) = [A] IfF 5= |A].

Similarly, given s,a € A4, there exists g € G
satisfying 5(g) = § and d(g) = a iff 5> a.

Theorem 2 (Kostant [Ko]). Let ¢g1,9> € G.
T hen

for all finite dimensional representation w of
G. (Ix(g)| is the maximal eigenvalue modulus
of the matrix w(g)).

Together with the k-compound representa-
tions of special linear groups, Theorems 1
and 2 imply the multiplicative majorization
relationships of the pairs (s, |XD and (s,a) for
a matrix g € SL,(C).



Now consider the set of hyperbolic elements:

The hyperbolic elements in SL,(C) or SL,(R)
are those matrices diagonalizable with posi-
tive real eigenvalues.

Theorem 3 (Kostant [Ko]). Let h1,hy € G be
hyperbolic.

for all finite dimensional representations
of G, where xr(h) = tr(w(h)) denotes the
character of «.

Kostant asked if the converse of Theorem 3
holds or not. It was answered affirmatively
recently (H. Huang and S. Kim [HK]). So
Theorem 3 can be improved as follow:



Theorem 4 (Huang & Kim [HK]). Let hq, ho
be hyperbolic elements in G. Then

for all
finite dimensional representations = of .

If g = ehu is the CMJD of any g € G, then
7(g) = w(e)nw(h)w(u) is the CMJID of n(g) in
the matrix group n(G). Conjugating w(g) to
its Jordan canonical form, we see that

. Denote

Theorem 4 is equivalent to that:

Corollary 5 (Huang & Kim [HK]). Suppose
gi1,9> € G. Then

for all finite dimensional representations w of
G.



More nice relations between Kostant's partial order
“>" on G and the multiplicative and additive majoriza-
tions of the eigenvalue moduli in finite dimensional
representations of G are given below:

Theorem 6 (Huang & Kim [HK]). Let G be a con-
nected real semisimple Lie group and gi1,g9> € G.

1. [Ko] If g1 = g¢» in G, then for every finite
dimensional representation = : G — GL,(C), the
following inequalities hold for k =1,--- ,n:

k k k k
[]NCan) > [ 20(92), D Ailgr) =D Ai(g2).
=1 1=1 =1 =1

2. Fix k € Z%*. If for every finite dimensional
representation = : G — GL,(C) with n > k we have

k k
D Ni(g1) =D Ai(g2),
i=1 i=1
then g1 >~ g» in G.

3. Fix k € Z%*. If for every finite dimensional
representation = : G — GL,(C) with n > k we have

k k
[ NoCan) > [ 2(92),
i=1 i=1

then g1 =~ g» in G.



Ex. Let G := SL,p(C) and g € G. We
know that s multiplicatively majorizes |X| and
a. Indeed, viewed as diagonal matrices, s >
X| and § = @ in G. So for any k € Z*t
and any finite dimensional representation =«
of G, the sum or product of the largest k
eigenvalues of w(s) is greater than or equal

to its counterparts of 7(|X|) and = (&).
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