On Kostant's Partial Order on Hyperbolic Elements

Huajun Huang, Auburn University joint with Sangjib Kim, University of Queensland

Let g be a complex or real $n \times n$ matrix. Define the following n-tuples (also viewed as diagonal matrices):

- $\vec{s}:=\left(s_{1}, \cdots, s_{n}\right) \in\left(\mathbb{R}^{+}\right)^{n}$ singular values of g in descending order $\left(s_{1} \geq s_{2} \geq \cdots \geq\right.$ $s_{n}>0$).
- $\vec{\lambda}:=\left(\lambda_{1}, \cdots, \lambda_{n}\right) \in\left(\mathbb{C}^{\times}\right)^{n}$ eigenvalues of g, with $\left|\lambda_{1}\right| \geq\left|\lambda_{2}\right| \geq \cdots \geq\left|\lambda_{n}\right|>0$. Denote $|\vec{\lambda}|:=\left(\left|\lambda_{1}\right|, \cdots,\left|\lambda_{n}\right|\right) \in\left(\mathbb{R}^{+}\right)^{n}$.
- $\vec{a}:=\left(a_{1}, \cdots, a_{n}\right)=\operatorname{diag}(R) \in\left(\mathbb{R}^{+}\right)^{n}$ the diagonal part of the upper triangular matrix R obtained by the $Q R$ decomposition $g=Q R$. Call \vec{a} the a-component of g.
- $\vec{d}:=\operatorname{diag}(g)$ the diagonal part of the matrix g.

Q: What are the relations of these scalars?

Answer 1: $(\vec{s},|\vec{\lambda}|)$ and (\vec{s}, \vec{a}) obey multiplicative majorization relationships:

1. (H. Weyl [We], A. Horn [Ho], and C. Thompson [Th]) \vec{s} and $\vec{\lambda}$ are the singular values and the eigenvalues of a matrix respectively if and only if \vec{s} multiplicatively majorizes $|\vec{\lambda}|$:

$$
\begin{aligned}
s_{1} s_{2} \cdots s_{k} & \geq\left|\lambda_{1} \lambda_{2} \cdots \lambda_{k}\right|, \quad k=1, \cdots, n-1, \\
s_{1} s_{2} \cdots s_{n} & =\left|\lambda_{1} \lambda_{2} \cdots \lambda_{n}\right| .
\end{aligned}
$$

2. (B. Kostant [Ko]) \vec{s} and \vec{a} are the singular values and the a-component of a matrix respectively iff \vec{s} multiplicatively majorizes \vec{a}, that is, after rearranging the components of \vec{a} in descending order: $a_{1}^{\prime} \geq a_{2}^{\prime} \geq \cdots \geq a_{n}^{\prime}>0$,

$$
\begin{aligned}
s_{1} s_{2} \cdots s_{k} & \geq a_{1}^{\prime} a_{2}^{\prime} \cdots a_{k}^{\prime}, \quad k=1, \cdots, n-1 \\
s_{1} s_{2} \cdots s_{n} & =a_{1}^{\prime} a_{2}^{\prime} \cdots a_{n}^{\prime}
\end{aligned}
$$

3. Indeed, Kostant extended the multiplicative majorization relationships of the pairs $(\vec{s},|\vec{\lambda}|)$ and (\vec{s}, \vec{a}) in terms of Kostant's partial order on connected real semisimple Lie groups.
[Ko] Bertram Kostant, On convexity, the Weyl group and the Iwasawa decomposition, Ann. scient. Éc. Norm. Sup. (4e), 6 (1973) 413-455.

Remark. The other pairwise and triplewise relationships within the n-tuples $\vec{s}, \vec{\lambda}, \vec{a}$, and $\operatorname{diag}(U)$ (obtained from the GelfandNaimark decomposition $g=L \omega U$ of g), are also known (H . Huang, T. Y. Tam [HT]).

Answer 2: (\vec{s}, \vec{d}) obeys additive majorization relationship:

4. (I. Schur [Sch], A. Horn [Ho1]) $\vec{s}=\vec{\lambda}$ and \vec{d} are the singular values and the diagonal of a Hermitian matrix iff \vec{s} additively majorizes \vec{d}, that is, after rearranging the entries of \vec{d} in descending order: $d_{1} \geq d_{2} \geq \cdots \geq d_{n}$,

$$
\begin{aligned}
& s_{1}+\cdots+s_{k} \geq d_{1}+\cdots+d_{k}, \quad k=1, \cdots, n-1, \\
& s_{1}+\cdots+s_{n}=d_{1}+\cdots+d_{n} .
\end{aligned}
$$

5. (R.C.Thompson [Th1], F.Y.Sing [Si]) Let $\vec{s} \in\left(\mathbb{R}^{+}\right)^{n}$ and $\vec{d} \in \mathbb{C}^{n}$. Then there exists a complex $n \times n$ matrix with singular values \vec{s} and diagonal entries \vec{d} iff

$$
\begin{aligned}
\sum_{i=1}^{k} s_{i} & \geq \sum_{i=1}^{k}\left|d_{i}\right|, \quad k=1, \cdots, n \\
\sum_{i=1}^{n-1} s_{i}-s_{n} & \geq \sum_{i=1}^{n-1}\left|d_{i}\right|-\left|d_{n}\right|,
\end{aligned}
$$

after rearranging the entries of \vec{s} and \vec{d} in descending order w.r.t. modulus.
6. (Thompson) Let $\vec{s} \in\left(\mathbb{R}^{+}\right)^{n}$ and $\vec{d} \in \mathbb{R}^{n}$. Then there exists a real $n \times n$ matrix with positive determinant that has singular values \vec{s} and diagonal \vec{d} iff

$$
\begin{aligned}
\sum_{i=1}^{k} s_{i} & \geq \sum_{i=1}^{k}\left|d_{i}\right|, \quad k=1, \cdots, n, \\
\sum_{i=1}^{n-1} s_{i}-s_{n} & \geq \sum_{i=1}^{n-1}\left|d_{i}\right|-d_{n},
\end{aligned}
$$

and in addition, if the number of negative terms among \vec{d} is odd,

$$
\sum_{i=1}^{n-1} s_{i}-s_{n} \geq \sum_{i=1}^{n}\left|d_{i}\right| .
$$

7. (T. Y. Tam, [T]) Thompson's results on the relations of \vec{s} and \vec{d} are special cases of [KO, Thm 8.2] in terms of Kostants partial order on real semsimple Lie algebras. It is easy to see that Schur-Horn's result is also a special case of [Ko, Thm 8.2].

* The above majorization inequalities within several important n-tuples of a matrix are linked to Kostant's partial order on connected real semisimple Lie groups or Lie algebras.

A Lie group is a real or complex differential manifold with a group structure, where the multiplication and inverse operations are analytic.

The tangent space of a Lie group G at 1 constitutes a Lie algebra \mathfrak{g} with a bilinear bracket operation [,]. \mathfrak{g} is called the Lie algebra of G.

A connected real Lie group G is semisimple if its Lie algebra \mathfrak{g} is semisimple, that is,

$$
\mathfrak{g}=\mathfrak{g}_{1} \oplus \cdots \oplus \mathfrak{g}_{k}
$$

where each \mathfrak{g}_{i} is a simple ideals of \mathfrak{g}.

Many matrix groups are real semisimple Lie groups:

Ex. For $\mathbb{F}=\mathbb{C}$ or \mathbb{R}, the groups

$$
\mathrm{SL}_{n}(\mathbb{F})=\left\{x \in \mathbb{F}^{n \times n} \mid \operatorname{det} x=1\right\}
$$

is connected real semisimple. Its Lie algebra is

$$
\mathfrak{s l}_{n}(\mathbb{F})=\left\{X \in \mathbb{F}^{n \times n} \mid \operatorname{tr} X=0\right\} .
$$

The bracket operation on the Lie algebra of a matrix group always has the form:

$$
[X, Y]=X Y-Y X
$$

Ex. Some other examples of real connected semisimple Lie groups: (denote $J_{2 n}:=\left[\begin{array}{cc}0 & I_{n} \\ -I_{n} & 0\end{array}\right], I_{p, q}:=\left[\begin{array}{cc}I_{p} & 0 \\ 0 & -I_{q}\end{array}\right]$.)

$$
\begin{aligned}
\mathrm{SU}_{n} & =\left\{x \in \mathrm{SL}_{n}(\mathbb{C}) \mid x^{*} x=I_{n}\right\}, \\
\mathrm{SO}_{n}(\mathbb{C}) & =\left\{x \in \mathrm{SL}_{n}(\mathbb{C}) \mid x^{T} x=I_{n}\right\}, \\
\mathrm{Sp}_{2 n}(\mathbb{C}) & =\left\{x \in \mathrm{SL}_{2 n}(\mathbb{C}) \mid x^{T} J_{2 n} x=J_{2 n}\right\}, \\
\mathrm{SO}_{n} & =\left\{x \in \mathrm{SL}_{n}(\mathbb{R}) \mid x^{T} x=I_{n}\right\}, \\
\mathrm{Sp}_{2 n} & =\left\{x \in \mathrm{SL}_{2 n}(\mathbb{R}) \mid x^{T} J_{2 n} x=J_{2 n}\right\}, \\
\mathrm{SU}_{p, q} & =\left\{x \in \mathrm{SL}_{p+q}(\mathbb{C}) \mid x^{*} I_{p, q} x=I_{p, q}\right\} .
\end{aligned}
$$

Let G be a connected real semisimple Lie group. Let $g \in G$. Similarly to matrix case, there are $\vec{s},|\vec{\lambda}|$, and \vec{a} for g in G obtained from three decompositions:

- \vec{s} is obtained from the global Cartan decomposition of G :

$$
G=K \times P \quad \text { (a diffeomorphism onto). }
$$

When $G=\mathrm{SL}_{n}(\mathbb{C})$ or $\mathrm{SL}_{n}(\mathbb{R})$, the global Cartan decomposition of G is the usual matrix Cartan decomposition: Every determinant 1 matrix g can be written as $g=k p$, where k is unitary and $p=\exp H$ for a Hermitian matrix H.

- \vec{a} is obtained from the Iwasawa decomposition of G :
$G=K \times A \times N$ (a diffeomorphism onto).

When $G=\mathrm{SL}_{n}(\mathbb{C})$ or $\mathrm{SL}_{n}(\mathbb{R})$, the Iwasawa decomposition of G is the matrix QR decomposition: Every determinant 1 matrix g can be written as $g=q r$, where q is unitary and r is upper triangular; write $a:=\operatorname{diag}(r)$ and $n:=a^{-1} r$ then $g=q a n$.

- $|\vec{\lambda}|$ is obtained from the complete multiplicative Jordan decomposition (CMJD):

$$
g=e(g) h(g) u(g) .
$$

When $G=\mathrm{SL}_{n}(\mathbb{C})$, the CMJD of $g \in G$ is given as follow:

- If g is in a Jordan canonical form, then

$$
\begin{aligned}
e(g) & =\operatorname{diag}(g)|\operatorname{diag}(g)|^{-1}, \\
h(g) & =|\operatorname{diag}(g)|, \\
u(g) & =h(g)^{-1} e(g)^{-1} g .
\end{aligned}
$$

So $e(g)$ is a diagonal matrix with modulus 1 entries, $h(g)$ is a diagonal matrix with positive real entries, $u(g)$ is a unit upper triangular matrix, and $e(g), h(g)$ and $u(g)$ commute. Note that $h(g)$ gives the eigenvalue moduli $|\vec{\lambda}|$ of g.

- In general, $g=y J y^{-1}$ where $y \in G$ and J is a Jordan canonical form of g. Then

$$
\begin{aligned}
& e(g)=y e(J) y^{-1}, \\
& h(g)=y h(J) y^{-1} \\
& u(g)=y u(J) y^{-1} .
\end{aligned}
$$

Obviously, $e(g), h(g)$ and $u(g)$ commute, and $h(g)$ gives the eigenvalue moduli $|\vec{\lambda}|$ of g.

To define Kostant's partial order on G, we need the following notations ([Kn]) and the definition of the CMJD ([Ko]).
\mathfrak{g} : the Lie algebra of G;
θ : a Cartan involution of $\mathfrak{g}, \theta^{2}=1 \in \operatorname{Aut}(\mathfrak{g})$;
$\mathfrak{k}:+1$ eigenspace of θ, a Lie subalgebra of \mathfrak{g};
$\mathfrak{p}:-1$ eigenspace of θ, a subspace of \mathfrak{g};

$\mathfrak{g}=\mathfrak{k} \oplus \mathfrak{p}$: the Cartan decomposition of \mathfrak{g};

$\mathfrak{a}(\subseteq \mathfrak{p})$: a maximal abelian subspace of \mathfrak{p};
$\mathfrak{g}=\mathfrak{a} \oplus \bigoplus \mathfrak{g}_{\gamma}$: restricted root space decomposition of \mathfrak{g};

$$
\Sigma=\Sigma^{+} \cup\left(-\Sigma^{+}\right)
$$

Σ^{+}: the set of all positive restricted roots;
$\mathfrak{a}^{+}(\subseteq \mathfrak{a})$: the fundamental Weyl chamber in \mathfrak{a};
$\mathfrak{n}=\bigoplus_{\gamma \in \Sigma^{+}} \mathfrak{g}_{\gamma}$: a maximal nilpotent subalgebra;

$\mathfrak{g}=\mathfrak{k} \oplus \mathfrak{a} \oplus \mathfrak{n}$: the Iwasawa decomposition of \mathfrak{g}.

The $\mathfrak{k}, \mathfrak{p}, \mathfrak{a}, \mathfrak{a}^{+}, \mathfrak{n}$ in Lie algebra \mathfrak{g} can be lifted to their counterparts K, P, A, A^{+}, N in Lie group G by exponential map. So do the Cartan decomposition and the Iwasawa decomposition of \mathfrak{g}.
Define the Weyl group of G by:

$$
W:=N_{K}(\mathfrak{a}) / Z_{K}(\mathfrak{a}),
$$

where

$$
\begin{aligned}
N_{K}(\mathfrak{a}) & :=\{k \in K \mid \operatorname{Ad} k(\mathfrak{a}) \subseteq \mathfrak{a}\}, \\
Z_{K}(\mathfrak{a}) & :=\{k \in K \mid \operatorname{Ad} k(X)=X \text { for all } X \in \mathfrak{a}\} .
\end{aligned}
$$

The CMJD: (Kostant [Ko]) Let G be a connected real semisimple Lie group. Every $g \in G$ has the unique complete multiplicative Jordan decomposition (CMJD) $g=e h u$, where $e, h, u \in G$ satisfy that:
$\star e$ is elliptic: $\operatorname{Ad}(e) \in \operatorname{Aut}(\mathfrak{g})$ is diagonalizable over \mathbb{C} with eigenvalues of modulus $1 ;$
$\star h$ is hyperbolic: $\quad h=\exp X$ where $X \in \mathfrak{g}$ is real semisimple, i.e. $\operatorname{ad}(X) \in$ End (\mathfrak{g}) is diagonalizable over \mathbb{R} with real eigenvalues;
$\star u$ is unipotent: $u=\exp X$ where $X \in$ \mathfrak{g} is nilpotent, i.e. $\operatorname{ad}(X) \in$ End (\mathfrak{g}) is nilpotent.
$\star e, h$, and u mutually commute (thus they also commute with g).

We write $g=e(g) h(g) u(g)$.

Basic properties of CMJD:

1. The CMJDs are preserved by conjugations \& direct sums.
2. The CMJDs are preserved by group homomorphisms. Let $\phi: G \rightarrow H$ be a homomorphism of connected real semisimple Lie groups G and H. If $g=e h u$ is the CMJD of g in G, then $\phi(g)=\phi(e) \phi(h) \phi(u)$ is the CMJD of $\phi(g)$ in H.
In particular, the CMJD of g in a matrix group $G \subseteq \mathrm{SL}_{n}(\mathbb{C})$ is identical with the CMJD of g in $\mathrm{SL}_{n}(\mathbb{C})$.
3. In the CMJD $g=e h u$, the hyperbolic component h is G-conjugate to a unique element

$$
|\vec{\lambda}|(g) \in A_{+},
$$

which is the counterpart of the eigenvalue moduli $|\vec{\lambda}|$ of a matrix.
4. If $g=k p(k \in K, p \in P)$ is the global Cartan decomposition of $g \in G$, then

$$
\vec{s}(g):=|\vec{\lambda}|(p) \in A_{+}
$$

is the counterpart of the singular values \vec{s} of a matrix.

Kostant's partial order ([Ko]).

Let g be any element of connected real semisimple Lie group G.

$$
\begin{aligned}
g \in G & \Rightarrow C M J D: g=e h u \\
& \Rightarrow h \text { is } G \text {-conjugate to }|\vec{\lambda}|(g) \in A_{+} \\
& \Rightarrow \text { denote } \mathcal{A}(g):=\exp \{\operatorname{conv}[W \cdot \log |\vec{\lambda}|(g)]\}
\end{aligned}
$$

Roughly speaking, $\mathcal{A}(g)$ is the multiplicative convex hull of the Weyl group orbit of $|\vec{\lambda}|(g) \in$ A_{+}.

The Kostant's partial order in G is defined as:

$$
g_{1} \succeq g_{2} \Longleftrightarrow \mathcal{A}\left(g_{1}\right) \supseteq \mathcal{A}\left(g_{2}\right) .
$$

As mentioned early, Kostant's partial order determines the relations of \vec{s} and $|\vec{\lambda}|$ and \vec{s} and \vec{a}, etc.

Theorem 1 (Kostant [Ko]). Given $\vec{s},|\vec{\lambda}| \in A_{+}$, there exists $g \in G$ satisfying $\vec{s}(g)=\vec{s}$ and $|\vec{\lambda}|(g)=|\vec{\lambda}|$ iff $\vec{s} \succeq|\vec{\lambda}|$.

Similarly, given $\vec{s}, \vec{a} \in A_{+}$, there exists $g \in G$ satisfying $\vec{s}(g)=\vec{s}$ and $\vec{a}(g)=\vec{a}$ iff $\vec{s} \succeq \vec{a}$.

Theorem 2 (Kostant [Ko]). Let $g_{1}, g_{2} \in G$. Then $g_{1} \succeq g_{2}$ iff the spectral radii

$$
\left|\pi\left(g_{1}\right)\right| \geq\left|\pi\left(g_{2}\right)\right|
$$

for all finite dimensional representation π of G. $(|\pi(g)|$ is the maximal eigenvalue modulus of the matrix $\pi(g)$).

Together with the k-compound representations of special linear groups, Theorems 1 and 2 imply the multiplicative majorization relationships of the pairs $(\vec{s},|\vec{\lambda}|)$ and (\vec{s}, \vec{a}) for a matrix $g \in \mathrm{SL}_{n}(\mathbb{C})$.

Now consider the set of hyperbolic elements:
$\{h \in G \mid h=\exp X, \operatorname{ad} X$ is real diagonalizable $\}$
The hyperbolic elements in $\mathrm{SL}_{n}(\mathbb{C})$ or $\mathrm{SL}_{n}(\mathbb{R})$ are those matrices diagonalizable with positive real eigenvalues.

Theorem 3 (Kostant [Ko]). Let $h_{1}, h_{2} \in G$ be hyperbolic. If $h_{1} \succeq h_{2}$, then $\chi_{\pi}\left(h_{1}\right) \geq \chi_{\pi}\left(h_{2}\right)$ for all finite dimensional representations π of G, where $\chi_{\pi}(h)=\operatorname{tr}(\pi(h))$ denotes the character of π.

Kostant asked if the converse of Theorem 3 holds or not. It was answered affirmatively recently (H. Huang and S. Kim [HK]). So Theorem 3 can be improved as follow:

Theorem 4 (Huang \& Kim [HK]). Let h_{1}, h_{2} be hyperbolic elements in G. Then $h_{1} \succeq h_{2}$ iff the character values $\chi_{\pi}\left(h_{1}\right) \geq \chi_{\pi}\left(h_{2}\right)$ for all finite dimensional representations π of G.

If $g=e h u$ is the CMJD of any $g \in G$, then $\pi(g)=\pi(e) \pi(h) \pi(u)$ is the CMJD of $\pi(g)$ in the matrix group $\pi(G)$. Conjugating $\pi(g)$ to its Jordan canonical form, we see that the eigenvalue moduli of $\pi(g)$, denoted by $\lambda_{\pi}^{1}(g) \geq$ $\cdots \geq \lambda_{\pi}^{n}(g)>0$, are precisely the eigenvalues of $\pi(h)$. Denote

$$
\left|\chi_{\pi}\right|(g):=\lambda_{\pi}^{1}(g)+\cdots+\lambda_{\pi}^{n}(g)=\chi_{\pi}(h)
$$

Theorem 4 is equivalent to that:

Corollary 5 (Huang \& Kim [HK]). Suppose $g_{1}, g_{2} \in G$. Then $g_{1} \succeq g_{2}$ iff $\left|\chi_{\pi}\right|\left(g_{1}\right) \geq\left|\chi_{\pi}\right|\left(g_{2}\right)$ for all finite dimensional representations π of G.

More nice relations between Kostant's partial order " \succeq " on G and the multiplicative and additive majorizations of the eigenvalue moduli in finite dimensional representations of G are given below:

Theorem 6 (Huang \& Kim [HK]). Let G be a connected real semisimple Lie group and $g_{1}, g_{2} \in G$.

1. [Ko] If $g_{1} \succeq g_{2}$ in G, then for every finite dimensional representation $\pi: G \rightarrow \mathrm{GL}_{n}(\mathbb{C})$, the following inequalities hold for $k=1, \cdots, n$:

$$
\prod_{i=1}^{k} \lambda_{\pi}^{i}\left(g_{1}\right) \geq \prod_{i=1}^{k} \lambda_{\pi}^{i}\left(g_{2}\right), \quad \sum_{i=1}^{k} \lambda_{\pi}^{i}\left(g_{1}\right) \geq \sum_{i=1}^{k} \lambda_{\pi}^{i}\left(g_{2}\right)
$$

2. Fix $k \in \mathbb{Z}^{+}$. If for every finite dimensional representation $\pi: G \rightarrow \mathrm{GL}_{n}(\mathbb{C})$ with $n \geq k$ we have

$$
\sum_{i=1}^{k} \lambda_{\pi}^{i}\left(g_{1}\right) \geq \sum_{i=1}^{k} \lambda_{\pi}^{i}\left(g_{2}\right)
$$

then $g_{1} \succeq g_{2}$ in G.
3. Fix $k \in \mathbb{Z}^{+}$. If for every finite dimensional representation $\pi: G \rightarrow \mathrm{GL}_{n}(\mathbb{C})$ with $n \geq k$ we have

$$
\prod_{i=1}^{k} \lambda_{\pi}^{i}\left(g_{1}\right) \geq \prod_{i=1}^{k} \lambda_{\pi}^{i}\left(g_{2}\right)
$$

then $g_{1} \succeq g_{2}$ in G.

Ex. Let $G:=\mathrm{SL}_{n}(\mathbb{C})$ and $g \in G$. We know that \vec{s} multiplicatively majorizes $|\vec{\lambda}|$ and \vec{a}. Indeed, viewed as diagonal matrices, $\vec{s} \succeq$ $|\vec{\lambda}|$ and $\vec{s} \succeq \vec{a}$ in G. So for any $k \in \mathbb{Z}^{+}$ and any finite dimensional representation π of G, the sum or product of the largest k eigenvalues of $\pi(\vec{s})$ is greater than or equal to its counterparts of $\pi(|\vec{\lambda}|)$ and $\pi(\vec{a})$.

References:

[HK] Huajun Huang and Sangjib Kim, On Kostant's partial order on hyperbolic elements, Linear and Multilinear Algebra, to appear.
[HT] Huajun Huang and Tin-Yau Tam, On the Gelfand-Naimark decomposition of a nonsingular matrix, Linear and Multilinear Algebra, 58 (2010) 27-43.
[Ho] Alfred Horn, On the eigenvalues of a matrix with prescribed singular values, Proceedings of the Amer. Math. Soc., 5 (1954) 4-7.
[Ho1] A. Horn, Doubly stochastic matrices and the diagonal of a rotation matrix, Amer. J. Math., 76 (1954) 620-630.
[Kn] Anthony W. Knapp, Lie Groups Beyond an Introduction, Birkhäuser, Boston, 1996.
[Ko] Bertram Kostant, On convexity, the Weyl group and the Iwasawa decomposition, Ann. scient. Éc. Norm. Sup. (4e), 6 (1973) 413-455.
[Sch] I. Schur, Über eine Klasse von Mittelbildungen mit Anwendungen auf der Determinantentheorie, Sitzungsberichte der Berlinear Mathematischen Gesellschaft, 22 (1923) 9-20.
[Si] F. Y. Sing, Some results on matrices with prescribed digonal elements and singular values, Canad. Math. Bulletin, 19 (1976) 89-92.
[T] T. Y. Tam, a Lie theoretical approach of Thompson's theorems of singular values-diagonal elements and some related results, J. of London Math. Soc. (2), 60 (1999) 431-448.
[Th] Colin Thompson, Inequalities and partial orders on matrix spaces, Indiana Univ. M. th. J., 27 (1971) 469-480.
[Th1] R. C. Thompson, Singular values, diagonal elements and convexity, SIAM J. Appl. Math. 32 (1977) 39-63.
[We] Hermann Weyl, Inequalities between the two kinds of eigenvalues of a linear transformation, Proc. Nat. Acad. Sci. U. S. A. 35 (1949) 408-411.

Thank you!!!

