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Abstract

This paper investigates the numerical estimation of blow-up phenomena of the space frac-
tional reaction-diffusion equation

∂tu+ (−∆)α/2u = f(u), x ∈ Ω, t > 0

with non-negative initial value and exterior Dirichlet boundary conditions. First, we consider
the full discretization of the fractional equation using the already existing novel and accurate
finite difference method for the fractional operator. Next, we implement an auxiliary function H
to detect the blow-up. This auxiliary function approach was used in [8] for the above equation
with Laplacian, α = 2. The numerical blow-up times are computed for the fractional reaction-
diffusion equation with the reaction term f(u) = u2 and f(u) = eu. Convergence results are
proven. Moreover, the numerical blow-up time computed for the fractional reaction-diffusion
equation with α → 2 is compared with the numerical blow-up time for the classical reaction-
diffusion equation with α = 2, and consistent results are obtained.

1 Introduction

Reaction-diffusion equations model quantities that experience local changes in concentration and
spread out in space. Applications range from chemical and biological processes [23, 22] to medicine,
genetics [16, 11], physics, chemistry, social science, finance [2, 3], and weather prediction. For
systems exhibiting anomalous diffusion [4, 28, 12], the diffusive spread is commonly modeled by a
non-local fractional Laplace operator −(−∆)α/2 with fractional exponent α ∈ (0, 2], giving rise to
the space-fractional partial differential equation

∂tu+ (−∆)α/2u = f(u), (1)

where f(u) is a non-negative reaction term. Depending on the spatial domain, the initial and
boundary conditions, as well as the form of the reaction term f , it is possible for the solution u of
Equation (1) to blow up at a finite time T <∞, i.e. for u to diverge to infinity as t→ T−.

Finite-time blow-up has long been studied theoretically [19] as the obverse of global existence.
Its presence indicates an explosive growth and points toward the limitation of the reaction equation
to model the underlying physical system at the blow-up time. Theoretical investigations have mostly
focused on the existence of finite blow-up times [19], estimates for their onset [24], and growth rates
of the solution nearby [1]. The critical exponents for blow-ups of the reaction-diffusion equation
with anomalous diffusion has been studied initially in Nagasawa and Sirao [25]

∂tu+ (−∆)α/2u = λup, x ∈ Rd, t > 0

u(x, 0) = u0(x)
(2)
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where α ∈ (0, 2] and λ is a nonnegative bounded function on Rd. The Equation (2) with classical
Laplace operator, α = 2 case, has been studied initially by Fujita [19]. He has shown that{

for any initial condition no global solution exists if p < 1 + 2/d
for small initial data global solutions exist if p > 1 + 2/d

The proof for the critical case p = 1 + 2/d which results in blow-up solutions can be found in [20],
[21] and [30]. Nagasawa and Sirao [25] established the Fujita’s result above for Equation (2) with
1 + 2/d replaced with 1 + α/d. They also worked on existence and blow-up criteria for general
infinitesimall operators of a linear nonnegative contraction semigroups on the space of bounded
measurable function on Rd. Blow-up rates for solution of Equation (2) was established by [18] in
the case λ ∈ {1,−1}, and [17] in the case λ = 1.

While closed-form expressions for blow-up times are available in a few simple cases [5], they
generally require numerical estimation. A fundamental challenge arising in computing reliable
approximations include the difficulty in resolving the solution near the blow-up. In [29], the authors
show that for a fixed temporal step size τ > 0, explicit time-stepping methods may result in spurious
approximations of the solution beyond the blow-up time, while the use of implicit methods may lead
to systems with no unique solutions. These observations suggest the use of adaptive time-stepping
schemes, the earliest of which was developed by Nakagawa et al in [26]. They used the reciprocal
of the absolute maximum of the approximate solution to adjust the step size.

In this work we adopt another approach, developed in [7, 8, 9, 10] for the classical Laplacian,
in which the numerical criterion for blow-up is based on a scaling argument. It allows for the use
of a non-adaptive forward Euler discretization and the resulting approximate blow-up time has
been proved to converge at the rate O(τ) as τ → 0 for a wide class of reaction functions f (see
Assumption 1).

The blow-up phenomena of the space-fractional reaction-diffusion equation remains partially
understood. (−∆)α/2 is the fractional Laplace operator which is the non-local generalization of
the classical Laplace operator. Hence, Equation (1) simplifies to the following standard reaction-
diffusion equation for α = 2 and d = 1

ut − uxx = f(u), x ∈ Ω ⊂ R, t > 0 (3)

whose theoretical properties as well as the discretization has been intensively studied previously.
In particular [8] provides a complete discretization scheme for studying problems such as (3) with
f(u) = up which is the generalization of the work presented in [26] where a finite difference scheme
was provided for the special case of equation (3) when p = 2. Moreover, it’s known that un-
der certain initial and boundary conditions solution blows-up in finite time (i.e solution becomes
unbounded in finite time).

We aim to generalize convergence and error estimate results in [8] for the fractional Laplace
operator and compute the numerical blow-up time for the fractional case. It’s is important to have
a numerical scheme that provides an accurate approximation of the blow-up time.

In this paper, we investigate the blow-up phenomena of FPDEs. In Section 2, some standard
ODE and PDE blow-up results are presented. The fully discretized scheme of Equation (8) is pro-
vided where the Fractional Laplace Operator is dicretized based on the trapezoidal rule introduced
in [14]. In Section 3, we perform convergence analysis and provide several error estimate results.
In Section 4, the adapted numerical algorithm with auxiliary function H is applied to the blow-
up problem given by (8). The blow-up times are estimated numerically for the proposed FPDE
and also for the FPDE with exponential reaction term. Comparison of blow-up time for FPDE
(α → 2) and PDE (α = 2) is provided in Section 5 and consistent blow-up times are obtained.
Some concluding remarks are given in Section 6.
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2 The Numerical Blow-Up Time

The numerical criterion developed in [8] for estimating the blow up time is best understood in the
context of the ODE initial value problem

ut = f(u), t > 0

u(0) = u0 > 0,
(4)

where f satisfies the following assumptions that guarantee the occurrence of finite time blow-up
[?].

Assumption 1. Assume the reaction function f : [0,∞)→ R is positive, increasing, and convex,
i.e. f(u), f ′(u), f ′′(u) > 0 for all u > 0. Moreover, assume that

T ∗ode =

∫ ∞
U0

1

f(s)
ds <∞. (5)

In the special case when Equation (4) is a Bernoulli equation, i.e. when f(u) = up (p > 1), the
transformation z = u−(p−1) yields a linear equation which reduces the blow-up condition for u(t)
to that of finding a a zero for z(t). Under a forward Euler discretization Un+1 = Un + τf(Un)
with time-step parameter τ , the blow up time T ∗ode can in turn be approximated by T̂ode(τ) = nττ ,
where nτ ∈ N is the time-step at which Un crosses the threshold

τH(Unτ−1) < 1, τH(Unτ ) ≥ 1, (6)

with H(u) = (p− 1)up−1. The positivity and convexity of f(u) guarantee that Un →∞ as n→∞
which, together with the fact that H(u)→∞ as u→∞, guarantees the existence of the integer nτ
satisfying (6). For more general forcing terms f(u) satisfying Assumption 1, the relative largeness
condition (6) can still be used to estimate the blow-up time, for any function H(u) satisfying the
following assumptions.

Assumption 2. Let H : [0,∞) → [0,∞) be any function such that H(u) > 0 for u > 0,
limu→∞H(u) =∞, and

lim
τ→0+

τ ln

(
f

(
H−1

(
1

τ

)))
= 0. (7)

Under Assumptions 1 and 2, the numerical error in approximating the blow up time T ∗ode can
be shown (see [8], Theorem 2.1) to satisfy

−
∫ ∞
H−1( 1

τ
)

1

f(s)
ds ≤ T̂ode(τ)− T ∗ode ≤ −

∫ ∞
H−1( 1

τ
)

1

f(s)
ds+ τ ln

(
f

(
H−1

(
1

τ

)))
,

and hence T̂ode(τ)− T ∗ode → 0 as τ → 0.
Next we consider modifications of Criterion (6) to estimate the blow up time for the fractional

reaction-diffusion equation

∂tu+ (−∆)α/2u = f(u), x ∈ Ω, t > 0

u(x, 0) = u0(x) ≥ 0, x ∈ Ω

u(x, t) = 0, x ∈ Ωc, t > 0,

(8)
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defined over the spatial domain Ω ⊂ R with exterior Ωc = R \ Ω. The operator (−∆)α/2 is the
one-dimensional fractional Laplacian with α ∈ (0, 2), defined via the Cauchy principal value as

(−∆)α/2u(x, t) = c1,αP.V.

∫
R

u(x, t)− u(y, t)

|x− y|1+α
dy, (9)

with normalizing constant

c1,α =
2α−1αΓ(α+1

2 )
√
πΓ(1− α

2 )
,

where Γ denotes the Gamma function. Intuitively, the homogeneous Dirichlet conditions on the
domain’s exterior and the anomalous diffusion modeled by the fractional Laplacian inhibit the
growth caused by the reaction term f . Nevertheless, finite-time blow-up is known to occur [] for
any f satisfying Assumption 1 and large enough initial condition.

Let Uni ≈ u(xi, tn) be the finite difference approximation of the solution u of (8) on a spatial
grid {xi}Ki=0 of width h > 0 and a temporal grid tn = τn, n ∈ N∪{0} with constant step size τ > 0.
Specifically, for a given discretized initial condition U0

i = u0(xi), the grid function Uni is updated
according to the forward Euler equation

Un+1
i − Uni

τ
+ (−∆)

α/2
h Uni = f(Uni ), (10)

where (−∆)
α/2
h , defined below, is an appropriate finite difference discretization of the operator

(−∆)α/2. Further, let H : [0,∞) → [0,∞) be a monotone increasing function that satisfies As-
sumption 2. We then define our numerical approximation T̂fpde(τ) of the blow-up time T ∗fpde(τ) > 0
to be the first time instant τn = nτ at which

τn−1H(‖Un−1‖∞) < 1, and τnH(‖Un‖∞) ≥ 1. (11)

This criterion was proposed in [8] for the classical reaction diffusion equation and was shown there
to lead to an approximate blow-up time that converges to the true blow-up time as τ, h→ 0.

In this work we use the weighted trapezoidal rule introduced in [14] to approximate the fractional
Laplacian on the bounded domain Ω = (−l, l), which, under a change of variables, can be written
as

(−∆)α/2u(x) = −c1,αP.V.

∫ ∞
0

u(x+ ξ)− 2u(x) + u(x− ξ)
ξ1+α

dξ. (12)

To this end, we subdivide (−l, l) into K sub-intervals of equal width h = L/K, where L = 2l. Let
{Ui}Ki=0 be a grid function defined at the grid points xi = −l + ih for i = 0, . . . ,K and let ξk = kh
for k = 0, ...,K denote the location of the offset variable ξ on the same grid. On every sub-interval
[ξk−1, ξk], we use a weighted trapezoidal rule to approximate the integral∫ ξk

ξk−1

u(x+ ξ)− 2u(x) + u(x− ξ)
ξ1+α

dξ ≈ 1

2

(
δk−1Uj + δkUj

)∫ ξk

ξk−1

ξ1−αdξ,

where δkUi =
Ui+k−2Ui+Ui−k

ξ2k
denotes the central difference operator. By accounting for the homo-

geneous external conditions and the limiting behavior as ξ → 0+, the integral operator (12) can be
discretized fully as

(−∆)
α/2
h Ui = −c1,α

2ν

(
2δ1Uiξ

ν
1 +

K∑
k=2

(
δk−1Ui + δkUi

)
(ξνk − ξνk−1)− Ui

ξαK

)
, (13)
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where ν = 2 − α. The components of the discrete operator’s matrix representation, also denoted

here by (−∆)
α/2
h , are given by

[
(−∆)

α/2
h

]
ij

=
c1,α

νhα



K−1∑
k=2

(k+1)ν−(k−1)ν

k2
+ Kν−(K−1)ν

K2 + (2ν + 1) + 2ν
αKα , j = i,

−1

2
(2ν + 1), j = i± 1,

−(|j − i|+ 1)ν − (|j − i| − 1)ν

2|j − i|2
, otherwise.

(14)

This discretization has second order accuracy and generalizes the classical central difference method
in the case when α → 2−. It was extended in [15] to two and three dimensional domains, but we
focus on the one-dimensional domain in this work.

3 Error Estimates and Convergence Analysis

In this section we prove stability and convergence of the finite difference scheme (10) before the blow-
up time is reached, show that the finite difference solution is strictly increasing under conditions
on f and u0, and finally prove that the estimate (11) converges to the true blow-up time when τ
and h tend to zero.

We first establish a suitable α-dependent Courant-Friedrichs-Lewy (CFL) condition on the
spatial and temporal discretization parameters, τ and h, that ensures stability of the forward Euler
scheme (10). To this end, we rewrite Equation (10) to obtain the explicit updating rule

Un+1
j = LUnj + f(Unj ), (15)

where, throughout the paper, we define L = (I − τ(−∆)
α/2
h ).

Lemma 1. For any K ∈ N, α ∈ (0, 2), and ν = 2− α,

K∑
k=2

(k + 1)ν − (k − 1)ν

k2
+
Kν − (K − 1)ν

K2
+

2ν

αKα
≤ 2ν

α
. (16)

Proof. We attain this bound by noting that the upper bound in (16) is equal to the integral
2
∫∞

1 x−2d(xν), and that the sum on its left represents an underestimating numerical quadrature
rule. Specifically, for any k ≥ 2,

(k + 1)ν − (k − 1)ν

k2
=

∫ k+1

k−1
k−2d(xν) ≈

∫ k+1

k−1
x−2d(xν)

represents a weighted midpoint rule, whose error is given by∫ k+1

k−1
(x−2 − k−2)d(xν) =

∫ k+1

k−1
ν(x−2 − k−2)xν−1dx.

If ν − 1 < 0, the mapping x 7→ xν−1 is decreasing. This, together with the convexity of x 7→ x−2,
then imply ∫ k+1

k−1
ν(x−2 − k−2)xν−1dx ≥ ν(k + 1)ν−1

∫ k+1

k−1
(x−2 − k−2)dx

≥ ν(k + 1)ν−1

∫ k+1

k−1
(−2k(x− k))dx = 0. (17)
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If ν−1 > 0, on the other hand, then it can readily be seen that the function x 7→ νxν−1(x−2−k−2)
is decreasing, convex and has a zero at x = k. Similarly, the last term represents a weighted
right-hand sum. If ν > 1, then since x 7→ x−2 is decreasing,∫ K

K−1
(x−2 −K−2)d(xν) ≥ 0,

whereas if ν < 1, the differential d(xν) = νxν−1dx is decreasing and hence∫ K

K−1
(x−2 −K−2)d(xν) =

∫ K

K−1
(x−2 −K−2)νxν−1dx

≥ νKν−1

∫ K

K−1
(x−2 −K−2)dx ≥ 0. (18)

Estimates (17) and (18) now imply

K∑
k=2

(k + 1)ν − (k − 1)ν

k2
+
Kν − (K − 1)ν

K2
+

2ν

Kα

≤
K∑
k=2

∫ k+1

k−1
x−2d(xν) +

∫ K

K−1
x−2d(xν) + 2

∫ ∞
K

x−2d(xν)

≤2

∫ ∞
1

x−2d(xν) =
2ν

α
.

Lemma 2. If, for any η ∈ (0, 1), the discretization parameters h and τ satisfy the CFL condition

τ

hα
≤
(
c1,α

ν

[
2ν

α
+ 2ν + 1

])−1

η, (19)

then the diagonal entries of the matrix L = I − τ(−∆)
α/2
h satisfy Lii ≥ 1− η for i = 1, . . . ,K. In

this case, its induced maximum norm satisfies ‖L‖∞ ≤ 1.

Proof. By virtue of the upper bound (16), we have

τ
[
(−∆)

α/2
h

]
ii
≤ τ

hα
c1,α

ν

[
2ν

α
+ 2ν + 1

]
.

To establish a lower bound on the diagonal term Lii, it thus suffices to show that the expression

s(α) :=
c1,α

ν

[
2ν

α
+ 2ν + 1

]
=

2αΓ
(

1+α
2

)
√
πΓ
(
1− α

2

) +
2α−1αΓ

(
1+α

2

)
ν
√
πΓ
(
1− α

2

)(2ν + 1)

is positive and bounded above for all α ∈ [0, 2]. Clearly, s(α) is continuous and positive for
α ∈ (0, 2), since it is a composition of continuous, positive functions on this domain. Using the fact
that Γ

(
1
2

)
=
√
π, we obtain

lim
α→0+

s(α) = 1.

6



Moreover, since νΓ(1− α
2 ) = 2ν2 Γ(ν2 ) = 2Γ(1 + ν

2 ), we have

lim
α→2−

2α−1αΓ
(

1+α
2

)
ν
√
πΓ
(
1− α

2

) = lim
α→2−

2α−1αΓ
(

1+α
2

)
√
π2Γ

(
1 + ν

2 )
) = 1,

and since Γ(ν2 )→∞ as α→ 2− and hence ν → 0+, we have

lim
α→2−

2αΓ
(

1+α
2

)
√
πΓ
(
1− α

2

) = 0.

Combining these two limits yields
lim
α→2−

s(α) = 2.

If τ and h are chosen to satisfy Inequality (3.1), then

Lii = 1− τ
[
(−∆)

α/2
h

]
ii
≥ 1− τ

hα
s(α) ≥ 1− η. (20)

To bound ‖L‖∞, we note that the CFL condition (3.1) guarantees Lii > 0. Moreover, for j =
1, ...,K − 1 and j 6= i, the off-diagonal terms

Lij = −τ
[
(−∆)

α/2
h

]
ij

=

{
τ
hα

c1,α
2ν (2ν + 1), if j = i± 1

τ
hα

c1,α
2ν

[
(|j−i|+1)ν−(|j−i|−1)ν

|j−i|2

]
, if |j − i| > 1

(21)

are also nonnegative. Hence, the matrix norm is given by the maximum row sum, i.e.

‖L‖∞ = max
i

K−1∑
j=1

Lij = 1 +
K−1∑
j=1

−τ
[
(−∆)

α/2
h

]
ij
.

We will show that
∑K−1

j=1 −τ
[
(−∆)

α/2
h

]
ij
≤ 0 for any i = 1, ...,K−1, from which the result follows.

Indeed, letting k = |i− j|, we note that

K−1∑
j=1
|j−i|>1

−τ
[
(−∆)

α/2
h

]
ij

=
τ

hα
c1,α

2ν

K−1∑
j=1
|j−i|>1

[
(|j − i|+ 1)ν − (|j − i| − 1)ν

|j − i|2

]

≤ τ

hα
c1,α

ν

K−1∑
k=2

[
(k + 1)ν − (k − 1)ν

k2

]
.

Also,

−τ
[
(−∆)

α/2
h

]
i,i−1

− τ
[
(−∆)

α/2
h

]
i,i+1

=
τ

hα
c1,α

ν
(2ν + 1).

On the other hand,

− τ
[
(−∆)

α/2
h

]
ii

=
τ

hα
c1,α

ν

[
−
K−1∑
k=2

(k + 1)ν − (k − 1)ν

k2
− Kν − (K − 1)ν

K2

−(2ν + 1)− 2ν

αKα

]
.

Therefore,
K−1∑
j=1

−τ
[
(−∆)

α/2
h

]
ij
≤ τ

hα
c1,α

ν

[
−K

ν − (K − 1)ν

K2
− 2ν

αKα

]
≤ 0.
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Remark 1. Note that, since s(α)→ 2 as α→ 2−, Inequality (3.1) reduces to the CFL condition

τ

h2
≤ 1

2
η, for η ∈ (0, 1),

which is used to ensure stability for the classical central difference scheme.

It follows from Theorem 3.2 in [14] and simple Taylor expansion arguments that the local
truncation error ζ(τ, h) of the scheme in (10), given by

ζ(τ, h) :=
u(xj , tn+1)− u(xj , tn)

τ
+ (−∆)

α/2
h u(xj , tn)− f(u(xj , tn)), (22)

satisfies ζ(τ, h) = O(τ + h2) as τ, h → 0+, provided the solution u ∈ C2([0, T ], C3,α(Ω)) for any
time T < T ∗ before the blow-up. The global convergence before onset of the blow-up now follows
by standard arguments, as stated in the following theorem.

Theorem 1. Let the error En ∈ RK−1 be given by Enj = u(xj , tn)− Unj , for j = 1, . . .K − 1 and
n = 1, ..., N , and for any time tN < T ∗, let

C = max
0<t<tN
x∈Ω

|f ′(u(x, t))|.

Then, for any τ > 0 and h > 0 satisfying the CFL condition (3.1), we have

‖EN‖∞ ≤
eCtN

C

(
C‖E0‖∞ + ζ(τ, h)

)
= O(τ + h2). (23)

Proof. Applying the updating formula (15) to the error and invoking Equation (22) gives

ENj = LEN−1
j + τ

[
f(u(xj , tN−1))− f(UN−1

j )
]

+ τζ(τ, h),

We proceed to bound ‖EN‖∞ recursively, making use of geometric series and the bound ‖L‖∞ ≤ 1
under Condition (3.1), to obtain

‖EN‖∞ ≤ (1 + τC)‖EN−1‖∞ + τζ(τ, h)

≤ (1 + τC)N‖E0‖∞ + τζ(τ, h)
N−1∑
n=0

(1 + τC)n

= (1 + τC)N‖E0‖∞ +

(
(1 + τC)N − 1

C

)
ζ(τ, h)

≤ (1 + τC)N

C

(
C‖E0‖∞ + ζ(τ, h)

)
.

The result now follows from the inequality (1 + τC)N ≤ eN ·τC = eCtN .

3.1 Existence and Error of Numerical Blow-Up Time

In this section we show that for a sufficiently large initial condition, the finite difference approxi-
mation Unj diverges as n→∞ so that the numerical blow-up estimate given in (11) is well-defined.
Specifically, we make the following assumption.
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Assumption 3. Assume that the non-trivial and non-negative initial condition U0 satisfies

− (−∆)
α/2
h U0

i + f(U0
i ) ≥ af(U0

i ), i = 0, . . . ,K, (24)

for some a ∈ (0, 1), where U0
i = u0(xi) for i = 0, . . .K.

Lemma 3. For the function f satisfying Assumptions 1 above and any grid function Ui on Ω that
is constant on Ωc, we have

(−∆)
α/2
h f(Ui) ≤ f ′(Ui)(−∆)

α/2
h Ui, i = 1, ...,K − 1. (25)

Proof. Applying a first order Taylor approximation to the central difference and using the convexity
of f , we obtain

δk2f(Ui) =
f(Ui+k)− 2f(Ui) + f(Ui−k)

ξ2
k

= f ′(Ui)δ
k
2Ui +

f ′′(ζ1)

2ξ2
k

(Ui+k − Ui)2 +
f ′′(ζ2)

2ξ2
k

(Ui−k − Ui)2

≥ f ′(Ui)δk2Ui,

where ζ1 is some point between Ui and Ui+k and ζ2 lies between Ui and Ui−k. Similarly,

f(Ui)− f(U∞) ≥ f ′(Ui)(Ui − U∞).

The result now follows from the definition of the discrete fractional Laplacian given in terms of
central differences by Equation (13).

The following lemma shows that under the above assumptions, the finite difference solution is
increasing with time and hence there exists an approximate blow up time.

Lemma 4. Let Uni solve Equation (10) and suppose Assumptions 1 and 3 hold, then

Un+1
i − Uni

τ
= −(−∆)

α/2
h Uni + f(Uni ) ≥ af(Uni ), (26)

for any i = 1, ...,K − 1, and n ≥ 0.

Proof. To prove Inequality (26), we show that the quantity

V n
i := −(−∆)

α/2
h Uni + (1− a)f(Uni )

is non-negative for i = 1, . . . ,K−1 and n ≥ 0. Note that V 0
i ≥ 0 for i = 1, . . .K−1 by Assumption

3. Suppose by way of induction that V n
i ≥ 0 for i = 1, . . . ,K − 1 and some n ≥ 0. Then, by

definition,

V n+1
i − V n

i

τ
= −(−∆)

α/2
h

(
Un+1
i − Uni

τ

)
+ (1− a)

(
f(Un+1

i )− f(Uni )

τ

)
. (27)

Using the finite difference update given in Equation (10) and the result from Lemma 3, the first
term in Expression (27) can be bounded below by

−(−∆)
α/2
h

(
Un+1
i − Uni

τ

)
= −(−∆)

α/2
h (−(−∆)

α/2
h Uni + f(Uni ))

= −(−∆)
α/2
h V n

i − a(−∆)α/2f(Uni )

≥ −(−∆)
α/2
h V n

i − af ′(Uni )(−∆)
α/2
h Uni .
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Moreover, using the Taylor expansion of f together with its convexity and Equation (10), the
second term in (27) can be bounded below by

(1− a)

(
f(Un+1

i )− f(Uni )

τ

)
= (1− a)f ′(Uni )

(
Un+1
i − Uni

τ

)
+
f ′′(ζni )

2τ

(
Un+1
i − Uni

)2
≥ (1− a)f ′(Uni )

(
−(−∆)

α/2
h Uni + f(Uni )

)
,

where ζni is some point between Uni and Un+1
i . Combining these two estimates in Equation (27)

gives

V n+1
i − V n

i

τ
≥ (−∆)

α/2
h V n

i + af ′(Uni )(−∆)
α/2
h Uni + (1− a)f ′(Uni )

(
(−∆)

α/2
h Uni + f(Uni )

)
= (−∆)

α/2
h V n

i + f ′(Uni )V n
i ≥ (−∆)

α/2
h V n

i ,

where the final inequality is due to the positive slope of f and the induction hypothesis V n
i ≥ 0.

To prove V n+1
i ≥ 0 for i = 1, . . . ,K − 1, it thus suffices to show that (I − τ(−∆)

α/2
h )V n

i ≥ 0. This

in turn follows from the fact is only possible if all entries of I − τ(−∆)
α/2
h are non-negative, which

is guaranteed under the CFL condition (3.1), specifically by Inequalities (20) and (21).

Corollary 1. Under Assumptions 1 and 3, as well as the CFL condition (3.1), the solution Uni of
Equation (10) satisfies Uni ≥ 0 for i = 0, ...,K, n ≥ 0. Moreover, ‖Un‖∞ := maxj |Unj | satisfies

‖Un‖∞ − ‖Un−1‖∞
τ

≥ af(‖Un−1‖∞), for n ≥ 1, (28)

and ‖Un‖∞ →∞ as n→∞.

Proof. By Assumption 3, we have U0
i ≥ 0 for i = 0, ...,K. Now Assumption 1, guaranteeing that

f(u) ≥ 0 for u ≥ 0, together with Inequality (26) imply

U1
i ≥ U0

i + aτf(U0
i ) ≥ U0

i ≥ 0, for i = 0, ...,K.

Invoking this argument recursively yields Un+1
i ≥ Uni ≥ 0 for i = 0, ...,K and n ≥ 0. Further, let

k = argmaxjU
n−1
j , so that ‖Un−1‖∞ = Un−1

k . By Inequality (26),

‖Un‖∞ ≥ Unk ≥ Un−1
k + aτf(Un−1

k ) = ‖Un−1‖∞ + aτf(‖Un−1‖∞),

from which Inequality (28) follows. Similarly, letting l = argmaxjU
0
j so that ‖U0‖∞ = U0

l > 0 and
using Assumption 1, specifically the fact that f ′(u) > 0 for u > 0, we again make use of Inequality
(26) to obtain

‖Un‖∞ ≥ Unl ≥ Un−1
l + τaf(Un−1

l )

≥ Un−2
l + 2aτf(Un−2

l ) ≥ . . . ≥ U0
l + naτf(U0

l )→∞, as n→∞.

The above corollary implies that, for a fixed discretization level τ satisfying the CFL condition,
the numerical stopping time exists, i.e. for any H with H(s) > 0, H ′(s) > 0 for s > 0 and
lims→∞H(s) =∞ there is nτ such that

τH(||Unτ−1 ||∞) < 1, τH(||Unτ ||∞) ≥ 1.
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It now remains to show that the numerical blow-up time approaches the actual blow-up time as
the discretization is refined.

Recall that the Lp norm is defined by

‖Un‖p =


(∑N−1

j=1 h|Unj |p
) 1
p
, if 1 ≤ p <∞

maxj=1,...N−1 |Unj |, if p =∞

Definition 1. Let T be the blow-up time of the solution u of equation (8). Define T∞ = τnτ to
be the numerical blow-up time.

Theorem 2. If H satisfies

τ ln f
(
H−1

(1

τ

))
→ 0 as τ → 0,

then T∞ → T as τ → 0.

Proof. The theorem is essentially proved in the following papers of Nakagawa [26] and Cho [8, 7].
The outline is as follows: we prove the convergence by showing that

tinf = lim
τ→0

inf T∞ ≥ T

tsup = lim
τ→0

supT∞ ≤ T.

From Lemma 4 and Corollary 1 it follows

||Unτi || → ∞ as i→∞. (29)

Next, assume tinf < T . We pick τi and hi such that the CFL condition

τ

hα
≤
(
c1,α

ν

[
2ν

α
+ 2ν + 1

])−1

η,

is satisfied and

T∞(τi, hi) <
tinf + T

2

The solution u(tn, xj) remains bounded on the interval [0, (tinf + T )/2] which together with (29)
contradicts to Theorem 1. A similar argument helps to establish the inequality for tsup.

4 Numerical Experiments

In this section, we apply the discretization described in Section 2 for the fractional Laplace operator
−(−∆)α/2 to detect the numerical blow-up and get error estimates and convergence results.

Example 1. In the first example we demonstrate the convergence of our method as h, τ → 0,
while satisfying (3.1). To this end, consider Equation (8) on the spatial domain Ω = (−1, 1) with
reaction term f(u) = u2 and initial condition

u(x, 0) =

{
5(1− x2)5, x ∈ (−1, 1)
0, otherwise

.

11



We use the auxiliary scaling function H(s) = s, which readily satisfies Assumption 2. Specifically

lim
τ→0+

τ ln

(
f

(
H−1

(
1

τ

)))
= lim

τ→0+
τ ln(τ−2) = 0.

To investigate blowup estimate’s convergence rate, we compute the numerical blowup time T̂fpde at
different spatial discretization levels h = 2−l where l = 0, ..., 10 with corresponding time discretiza-
tion parameters τ chosen in accordance with the CFL condition (3.1). Specifically, we let

τ = 0.9

(
c1,α

ν

[
2ν

α
+ 2ν + 1

])−1

hα, .

In the absence of an explicit formula for the exact blowup time, we use a numerical solution based
on h = 2−10 as a reference. The results for different values of fractional exponents α ∈ (0, 2] are
shown in Figure 1. As expected, the accuracy of the numerical estimate T̂fpde improves as both τ
and h → 0. Moreover, the estimated rate of convergence are consistent with the log-linear decay
of the error term.
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(a) Log-log plot of the error vs h.
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(b) Log-log plot of the error vs τ .

Figure 1: Convergence of the numerical blowup time as h, τ → 0+.

Figure 1 cannot be used directly to compare the convergence of the method for different values
of α. For every value of h, the time step τ was chosen based solely on stability requirements. Figure
2 shows the relation between h and τ for these α-values. It illustrates how, for a given meshwidth
h, the CFL condition (3.1) requires a far smaller time step τ when α is near 2, and allows for a
larger τ when α is small. Thus, even though Figure 1a shows that, for a given value of h, the error
decreases as α increases, it may be due to smaller values of τ for large α’s. Similarly, a better
accuracy at smaller α-values for a given τ , as shown in Figure 1b, may be the result of a much finer
spatial mesh.

Figure 3 shows the blowup time T̂fpde for the problem above, estimated at the finest refinement
levels, for different values of α ∈ (0, 2]. Since diffusion counteracts the growth caused by the reaction
term f , it is reasonable to expect a delay in the onset of blowup as the fractional exponent α, and
hence the speed of diffusion, is increased.

Example 2. In this example, we investigate the effect of the auxiliary scaling function H(s) on the
accuracy of the blow-up estimate T̂ . In particular, we compute estimates of T̂ using both power

12
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Figure 2: The largest temporal step size τ guaranteeing stability for different mesh-width values h.
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Figure 3: The estimated of blowup time T̂ for the system in Example 1 for different values of α.

functions and exponential functions and compare their accuracy. Moreover, we try to establish
whether there is a relation between the optimal form of H and the error term t ln(f(H−1(1/τ))).

Consider the equation ∂tu + (−∆)α/2u = u2, x ∈ Ω = (−1, 1), t > 0 with the following non-
negative initial condition

and the exterior Dirichlet boundary condition

u(x, t) = 0 x ∈ R \ Ω, t > 0.

We should choose an increasing function H(s) such that lim
s→∞

H(s) =∞ and

τ ln f
(
H−1

(1

τ

))
→ 0 as τ → 0,

for τ > 0. And we stop the numerical computation when τH(‖un‖p) > 1 at the step n. There is
no well ordered way to choose the function H. However, following [13] we will begin with H(s) = s
as a starting choice. The discrete initial and boundary conditions are

13



U0
j = u0(xj), j = 1, ..., J − 1

and
Un0 = UnJ = 0 n ≥ 0.

where h is the spacial grid size and τ is the temporal mesh size.

Next, we need to compute the blow-up time for the fractional PDE. The estimated numerical
blow-up time is T∞ = 0.209880.

Figure 4: ∂tu+ (−∆)α/2u = u2, x ∈ (−1, 1), with α = 1.5, T∞ = 0.209880

As mentioned before different choices of function H and different norms will lead to different
numerical blow-up times. Our choice of H is H(s) = s. The table below shows blow-up times for
different choices of H.

Table 1: T∞ and T1 numerical blow-up times for ∂tu+ (−∆)α/2u = u2, x ∈ (−1, 1), α = 1.5.

H(s) = sm T∞ T1

m=1 0.209880 0.210120
m=1.1 0.209640 0.210120
m=4/3 0.208560 0.209880
m=3/2 0.207120 0.209400
m=2 0.197520 0.204000

This table suggests a pattern which we illustrate graphically below. The convergence is from
below for large H while the convergence is from above for small H. See Figure 5.
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Figure 5: T∞ and T1 blow-up times for different choices of H.

However, we aim to find an optimal H numerically. The reference blow-up time corresponding
to nt = 219 is T∞ = 0.209056 and is T1 = 0.209058. Next we estimate the error to find what H will
minimize the error. The error is defined as

error = | reference blow-up time - blow-up time|.

We find that for T∞ the error is minimized when m = 1.3 and for T1 when m = 1.5. We illustrate
that graphically. See Figure 6.
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Figure 6: The error for different choices of H.

It’s very difficult to observe a systematic way for choosing the function H. Next, we set the
splitting parameter γ = 2 and we compute the blow-up times for different choices of α. The table
below suggests a pattern.

Table 2: T∞ and T1 for ∂tu+ (−∆)α/2u = u2, x ∈ (−1, 1), γ = 2, H(s) = s.

α T∞ T1

0.5 0.161040 0.161400
0.8 0.168480 0.168840
1 0.176280 0.176640
1.3 0.193920 0.194160
1.5 0.209880 0.210120
1.7 0.228840 0.229200
1.9 0.251040 0.251280
1.999 0.263760 0.264000

We observe that the blow-up happens at later time when α gets larger. We also notice that the
blow-up times T∞ and T1 are different as it was expected but they are very close. The plot below
is the illustration of Table 2.
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Figure 7: T∞ and T1 blow-up times using α ∈ [0.3, 1.999].

Next, we numerically estimate the T1 blow-up time. When α = 1.5 and the H(s) = s the
blow-up time is T1 = 0.210120.

Figure 8: ∂tu+ (−∆)α/2u = u2, x ∈ (−1, 1), with α = 1.5, T1 = 0.210120.
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Example 3. Consider the following fractional equation

∂tu+ (−∆)α/2u = eu, x ∈ Ω = (−1, 1), t > 0

with the exponential reaction term and with the following non-negative initial condition

u(0, x) = u0 =

{
3(1− x2)1+m x ∈ (−1, 1)
0 else

and the exterior Dirichlet boundary condition.

u(x, t) = 0 x ∈ R \ Ω, t > 0.

We apply the same discretization described in Sections 2 and choose a non-negative increasing
function H(s) = es − 1 to help to detect the numerical blow-up time. The estimated blow-up time
is T∞ = 0.083040 when α = 1.5. We observe the blow-up happens at an earlier time compared to
f(u) = u2. Also, notice that the initial condition is not taken as large as it is for f(u) = u2.

Figure 9: ∂tu+ (−∆)α/2u = eu, x ∈ (−1, 1), α = 1.5, H(s) = es − 1, T∞ = 0.083040.

Next, we compute the numerical blow-up time for different α-s. We can recognize a pattern
similar to f(u) = u2. We notice that the T∞ and T1 numerical blow-up times are different as it
was expected, and the difference is within the following range (0.00036, 0.00048).
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Table 3: T∞ and T1 for ∂tu+ (−∆)α/2u = eu, x ∈ (−1, 1), γ = 2, H(s) = es − 1.

α T∞ T1

0.5 0.057360 0.057720
0.8 0.060360 0.060720
1 0.063720 0.064080
1.3 0.072480 0.072960
1.5 0.083040 0.083520
1.7 0.099960 0.100320
1.9 0.125640 0.126000
1.999 0.141960 0.142440

We observe that the blow-up happens at a later time as α gets larger.

4.1 Convergence Results

In this section, we would like to show mesh refinement. We fix the mesh ratio λ = 0.3 to ensure the
stability and start to refine the time mesh by powers of 2 and compute the T∞ and T1 numerical
blow-up times. Since λ = 0.3 and α = 1.5 then by solving for h we get

h =
( τ

0.3

)2/3
.

The tables below represent the estimated error and the rate for T∞ and T1 with α = 1.5 and
H(s) = s.

Table 4: T∞, error and rate for ∂tu+ (−∆)α/2u = u2, x ∈ (−1, 1), γ = 2.

nt time mesh τ h T∞ error e rate

24 0.01875000 0.15749013 0.093750 0.115306 1.16867269
25 0.00937500 0.09921257 0.065625 0.143431 0.84047137
26 0.00468750 0.06250000 0.056250 0.152806 0.67755673
27 0.00234375 0.03937253 0.100781 0.108275 0.68726313
28 0.00117188 0.02480314 0.214453 0.005397 1.41255499
29 0.00058594 0.01562500 0.212109 0.003053 1.39259278
210 0.00029297 0.00984313 0.210645 0.001589 1.39464977
211 0.00014648 0.00620079 0.210059 0.001003 1.35838127
212 0.00007324 0.00390625 0.209546 0.000490 1.37436633
213 0.00003662 0.00246078 0.209326 0.000270 1.36785611
214 0.00001831 0.00155020 0.209198 0.000142 1.36948087
215 0.00000916 0.00097656 0.209134 0.000078 1.36461664
216 0.00000458 0.00061520 0.209093 0.000037 1.38019830
217 0.00000229 0.00038755 0.209072 0.000016 1.40572664
218 0.00000114 0.00024414 0.209062 0.000006 1.44555051

Note that the error is defined defined as

e = |T∞ − ref |
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where ref is the reference blow-up time T∞ = 0.209056 corresponding to nt = 219. The rate is

r =
log e

log h

as
e = chr

where c is a constant.
Also, notice that the smaller time step results in a more refined blow-up time and a smaller

error, i.e. from nt = 24 to nt = 218 we have an error refinement from 0.1153060 to 0.0000060
making 0.1153000 difference. And the space mesh h is getting smaller by a factor of 1.6. We can
perform similar analysis for the T1 blow-up time.

Table 5: T1, error and rate for ∂tu+ (−∆)α/2u = u2, x ∈ (−1, 1), γ = 2.

nt time mesh τ h T1 error e rate

24 0.01875000 0.15749013 0.037500 0.171558 0.95371188
25 0.00937500 0.09921257 0.075000 0.134058 0.86972123
26 0.00468750 0.06250000 0.056250 0.152808 0.67755200
27 0.00234375 0.03937253 0.103125 0.105933 0.69402343
28 0.00117188 0.02480314 0.216797 0.007739 1.31505696
29 0.00058594 0.01562500 0.213281 0.004223 1.31458601
210 0.00029297 0.00984313 0.211523 0.002465 1.29962950
211 0.00014648 0.00620079 0.210498 0.001440 1.28723393
212 0.00007324 0.00390625 0.209839 0.000781 1.29029873
213 0.00003662 0.00246078 0.209473 0.000415 1.29630012
214 0.00001831 0.00155020 0.209271 0.000213 1.30680632
215 0.00000916 0.00097656 0.209171 0.000113 1.31113896
216 0.00000458 0.00061520 0.209111 0.000053 1.33159201
217 0.00000229 0.00038755 0.209081 0.000023 1.35953000
218 0.00000114 0.00024414 0.209066 0.000008 1.41096405

Note that for this case the reference blow-up time is T1 = 0.209058 corresponding to nt = 219.
Hence, error refinement from 24 to 218 is 0.171550.

The plot below represent the numerical blow-up times corresponding to different times steps, in
particular to nt = 28, 29, 210, 211... and etc. We can see from the plot the estimated blow-up times
converge to their reference blow-up times, T∞ = 0.209056 and T1 = 0.209058.
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Figure 10: T∞ and T1 blow-up times convergence with respect to different times steps for a fixed
λ. ∂tu+ (−∆)α/2u = u2, x ∈ (−1, 1), with α = 1.5, H(s) = s.

We notice that the error gets close to 0 when the time mesh τ gets smaller. The plots below
confirm that as long as the space mesh h (log(h)) gets smaller the error (log(e)) gets closer to zero.

Figure 11: Mesh in space (log h) with respect to errors (log e) for T∞ and T1.
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5 FPDE (α→ 2 ) and PDE (α = 2) Comparison

We would also like make a comparison between a PDE and a FPDE when classical and fractional
Laplace operators are considered, respectively. The goal is to inspect how close the computed blow-
up times are when central difference scheme is used for PDE, i.e. α = 2, and weighted trapezoidal is
used for the FPDE with α = 1.999. In order to make the comparison possible same initial condition
and the same choice of H(s) = s is considered

u(0, x) = u0 =

{
7(1− x2)1+m x ∈ (−1, 1)
0 else

and the exterior Dirichlet boundary condition

u(x, t) = 0 x ∈ R \ Ω, t > 0.

First we consider equation (3) with 0 boundary conditions and f(u) = u2. Spacial grid size is

chosen such that λ =
τ

h2
= 0.3 is less than 0.5. The numerical blow-up time for the classical heat

equation with appropriate boundary and large enough initial condition is T∞ = 0.264000.

Figure 12: ut − uxx = u2, x ∈ Ω = (−1, 1), t > 0 with τ =
0.3

502
.

Next, consider the fractional problem again with 0 boundary conditions. Illustrated in Figure
12. Note that the λ = 0.2988 in this case. The numerical blow-up time for the fractional PDE is
T∞ = 0.263760.

We observe that the numerical blow-up times detected by the numerical algorithms for the
classical and fractional reaction-diffusion equation are close when the same boundary and initial
conditions are considered. Hence, we can claim that the numerical algorithm implemented to
discretize the fractional heat equation provide an accurate blow-up time.
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Figure 13: ∂tu+ (−∆)α/2u = u2, x ∈ (−1, 1), α = 1.999, γ = 2, T∞ = 0.263760.

6 Conclusion

In this work, we extended a numerical method for detecting the blowup time introduced by Cho
in [8], to space-fractional reaction diffusion equations with homogeneous exterior conditions. We
used a weighted trapezoidal method [15] to discretize the fractional Laplacian and propagated the
numerical solution in time by a forward Euler time-stepping scheme. In our convergence analysis,
we derived CFL conditions under which the scheme is stable and showed that the estimated blow-
up time converges to the true blowup time under appropriate assumptions on the auxiliary scaling
function H. The form of H can influence the accuracy of the approximated blowup time, and
we investigated its choice based on the form of the error term given in (7). In our numerical
experiments, we demonstrated the convergence of the blowup time estimates, investigated their
dependence on the fractional exponent α and reaction term f , and showed that they converge to
those of the classical reaction-diffusion system (3) as α→ 2−. The main advantage of this blowup
detection method over that proposed by [27], is that it does not require the time-step to be decreased
as the solution approaches a blowup; the choice of the fixed time-step is based solely on accuracy
and stability considerations. Nevertheless, for small spatial mesh sizes, the stability requirement
can place severe constraints on the temporal step size, leading to an increase in computational cost,
especially since the discretized fractional Laplacian is not sparse. One avenue of future work would
be to extend the method to include implicit schemes. Since the spatial location of the solution’s
blowup is often localized, another interesting direction would be to adapt the moving mesh methods
developed in [6] to discretizations of the fractional Laplacian. And use them to approximate the
spatial
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with interacting itô and point processes, Annals of Applied Probability, (2005), pp. 1111–1144.

[3] D. Becherer, Utility indifference hedging and valuation via reaction diffusion systems, Pro-
ceedings of The Royal Society A: Mathematical, Physical and Engineering Sciences, 460 (2004),
pp. 27–51.
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