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Introduction

Sequestosome 1/p62 was originally identified as a 
phosphotyrosine-independent ligand of the src homol-
ogy 2 (SH2) domain of p56lck (Joung et al. 1996). Since it 
functions as an intracellular signal modulator or adaptor 
protein, it plays a major role in receptor-mediated signal 
transduction. A highly conserved cytosolic 62 kDa protein, 
it functions as scaffolding that interacts with the atypical 
PKCs (aPKC; PKCζ and PKCλ/ι) and leads to the activa-
tion of nuclear factor-κB (NF-κB), a transcription factor 
important in several signaling pathways (Moscat & Diaz-
Meco 2000). p62 harbors an amino terminal PB1 domain 
with an SH2 binding domain and an acidic interaction 
domain (AID) that binds the atypical PKC (aPKC) (Laurin 
et al. 2002), a ZZ finger, a binding site for the RING-finger 
protein tumor necrosis factor (TNF) receptor-associated 
factor 6 (TRAF6), two peptide sequences rich in proline 
(P), glutamic acid (E), serine (S) and threonine (T) (PEST 
sequences), an LC3 (autophagy marker) interacting 
region (LIR) (Pankiv et al. 2007), and a carboxyl terminal 
ubiquitin (Ub)-associated (UBA) domain (Seibenhener 
et al. 2004). Several mutations of p62 are associated with 
Paget’s disease of bone (PDB) (Laurin et al. 2002). In the 
past decade, studies have shown that p62 is associated 
with several other diseases including Parkinson disease 
(PD), Alzheimer disease (AD), liver cancer, breast cancer, 
obesity and insulin resistance. The purpose of this review 
is to shed light on the physiological function of p62 in 
these diseases.

Neurodegenerative diseases
In neurodegenerative diseases, oxidative stress leads 
to protein misfolding and upon polyubiquitination 
the misfolded proteins accumulate in cytoplasmic and 
intracellular inclusions forming protein aggregates 
(Alves-Rodrigues et al. 1998; Lowe et al. 2001). For 
example, α-synuclein and parkin are the major protein 
components of the inclusion bodies found in PD brain 
(Giasson & Lee 2001; Goedert 2001). Other examples of 
protein aggregates include neurofibrillary tangles in AD, 
Lewy bodies in PD, Mallory bodies (MBs) in steatohepa-
titis, and intracytoplasmic hyaline bodies in hepatocel-
lular carcinoma (HCC) (Kuusisto et al. 2001a; Zatloukal 
et al. 2002). Neuronal cell death or proteasomal dys-
function also leads to the accumulation of misfolded 
and ubiquitinated proteins (Kuusisto et al. 2001b) and 
causes increased expression of p62, which protects cells 
by localizing the misfolded proteins as aggregates in 
cytoplasmic inclusions (Zatloukal et al. 2002; Nakaso 
et al. 2004). Parkin, a ubiquitin ligase, polyubiquitinates 
depolarized mitochondria through its lysine 27 and 
lysine 63 ubiquitin chains. Ubiquitinated mitochondria 
shuttle through microtubules to form aggregates in 
the perinuclear region and are degraded by autophagy 
(Geisler et al. 2010; Okatsu et al. 2010). Likewise, p62 
shuttles ubiquitinated proteins to autophagy for degra-
dation (Komatsu & Ichimura 2010) and is also involved 
in the clustering and degradation of depolarized mito-
chondria and formation of aggresomes (Geisler et al. 
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2010; Okatsu et al. 2010). The neurosecretory cells of 
the hypothalamic and brainstem paraventricular nuclei 
were found to be p62 immunoreactive (Braak et al. 2011) 
and p62 protects these neurons from PD by degrading 
misfolded proteins and blocking the aggregate forma-
tion (Braak et al. 2011).

In AD, the major histopathological lesions are neurofi-
brillary tangles (NFTs) and the neurite plaques (NPs) that 
contain amyloid β (Terry et al. 1999). NFTs accumulate 
with tau, a hyperphosphorylated microtubule associated 
protein. NFTs and distorted neuritis of NPs were found 
to be associated with ubiquitin (Perry et al. 1987). Tau 
accumulated in a polyubiquitinated form (Morishima-
Kawashima et al. 1993) and the ubiquitin mediated 
proteasome function was attenuated in AD (Keller et al. 
2000). In 2002, Kuusisto et al. (2002) discovered the ubiq-
uitin binding protein p62 accumulated and co-localized 
with ubiquitin and tau aggregates in NFTs in AD hip-
pocampus and cortex (Kuusisto et al. 2001a; Kuusisto 
et al. 2002). We have shown that the inclusion bodies from 
AD brain contained p62, ubiquitin, phosphorylated tau, 
and TRAF6 (Babu et al. 2005). TRAF6 is a ubiquitin ligase 
E3 that can ubiquitinate several substrates (Joazeiro & 
Weissman 2000). p62 is known to bind polyubiquitinated 
substrates through its UBA domain and shuttles them to 
the proteasome for degradation through its PB1 domain 
(Seibenhener et al. 2004). Interestingly, tau was a K63 
polyubiquitinated substrate of TRAF6 that binds to the 
UBA domain of p62 (Babu et al. 2005). Degradation of 
tau is ubiquitin-proteasome or p62 dependent and p62 
is required to shuttle tau to the proteasome (Babu et al. 
2005). Since its absence impairs degradation of tau and 
leads to the accumulation of insoluble K63 polyubiq-
uitinted aggregates (Wooten et al. 2008), p62 deficient 
mice accumulate aggregated, K63 polyubiquitinated 
and hyperphosphorylated tau, and develop neurofibril-
lary tangles and neurodegeneration (Babu et al. 2008). 
AD affects memory, thinking, behavior, and cognitive 
skills such as judgment. Mice deficient in the p62 gene 
exhibit AD-like characteristics (Babu et al. 2008). Since 
deletion of the mouse p62 gene revealed disturbances in 
short-term memory, increased anxiety, and depression 
similar to that observed in human AD (Babu et al. 2008). 
In neurodegenerative diseases, oxidative damage to the 
p62 promoter reduced its expression (Du et al. 2009). 
Overexpression of p62 in brain may be a novel way to 
prevent or treat neurodegeneration (Du et al. 2009).

Cancer
Many studies found correlations between p62 protein 
expression and cancer, but no direct links have been 
reported. Autophagy deficient mice, however, develop 
multiple liver tumors and overexpress p62 protein in 
malignant tumor cells (Takamura et al. 2011). An abun-
dance of p62 protein is associated with breast tumors 
and liver cirrhosis as well (Lu et al. 2001; Thompson et al. 
2003). In addition, abnormal expression of both fetal 
RNA-binding protein and p62 is found in liver cancer and 

liver cirrhosis (Lu et al. 2001), and p62 has been identified 
as an important NF-κB mediator in tumorigenesis (Duran 
et al. 2004). A study by Mathew et al. (2009) shows that p62 
was eliminated when autophagy suppresses tumorigene-
sis. The ubiquitin–proteasome pathway can be the target 
of cancer-related deregulation and can lead to the trans-
formation of normal cells to cancer cells, increased drug 
resistance, and tumor progression (Spataro et al. 1998). 
p62 non-covalently binds free ubiquitin (Vadlamudi & 
Shin 1998; Shin 1998) and may play a significant role in 
an ubiquitination-mediated regulatory mechanism dur-
ing cell proliferation and differentiation.

MBs arise because of a hepatocellular disorder that 
is a consequence of chronic alcoholic liver disease. In 
this condition, p62 is rapidly induced in hepatocytes 
and directly increases MB formation by associating with 
abnormal keratins (Zatloukal et al. 2002; Stumptner 
et al. 2002). p62 is up-regulated when the proteasome is 
inhibited (Kuusisto et al. 2002) and several studies have 
documented impairment of the proteasome in alcoholic 
liver disease (Fataccioli et al. 1999; Bardag-Gorce et al. 
2004; Donohue et al. 2004). Autophagy is a major path-
way for degradation of cytoplasmic proteins and has 
been implicated in tumor suppression. The size of the 
Atg7−/− liver tumors is reduced by deletion of p62 sug-
gesting that autophagy is important for the suppression 
of spontaneous tumorigenesis and that accumulation of 
p62 contributes to tumor progression (Takamura et al. 
2011). Overproduction of p62 or autophagy deficiency 
competes with the interaction between Nrf2 and Keap1, 
resulting in stabilization of Nrf2 and transcriptional 
activation of Nrf2 target genes (Copple et al. 2010; Jain 
et al. 2010; Komatsu et al. 2010; Lau et al. 2010; Riley 
et al. 2010). Induction of Nrf2 target genes has been 
observed in many human cancers (Hayes et al. 2009) that 
also exhibit accumulation of p62 (Zatloukal et al. 2002). 
Liver-specific Atg7 knockout mice develop hepatocel-
lular adenoma accompanied by excess accumulation of 
p62 and then Nrf2 activation. The persistent activation of 
Nrf2 through p62 contributes to development of human 
HCC (Inami et al. 2011). The loss of p62 reduces liver 
damage in Atg7 knockout mice (Komatsu et al. 2007; Jin 
et al. 2009), whereas characterization of liver-specific p62 
overexpression in transgenic mice revealed a phenotype 
of a fatty liver with microvesicular fat distribution in p62 
transgenic mice (Tybl et al. 2011). Results suggest that 
p62 plays a role in hepatic pathophysiology and might 
serve as a diagnostic and therapeutic marker.

Paget’s disease of bone
PDB involves abnormal bone destruction and regrowth. 
The phenotypic analysis of genetically modified mice 
lacking p62 shows that it regulates osteoclastogenesis 
and bone homeostasis through the E3 ubiquitin ligase 
TRAF6 by acting as an important intermediary of the 
receptor activator of nuclear factor κB (RANK) pathway 
(Duran et al. 2004). This is consistent with the finding 
that p62 mutations are associated with this disorder 
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characterized by aberrant osteoclastogenic activity 
(Laurin et al. 2002). PDB is caused by genetic mutation 
of p62 where the ubiquitin binding-associated (UBA) 
domain is either truncated or has somehow lost its 
function (Layfield et al. 2006). Understanding how loss 
of the ubiquitin-binding function of p62 impacts on 
signal transduction events in osteoclasts will undoubt-
edly further our understanding of the molecular mech-
anism of PDB (Layfield et al. 2006). When compared to 
wild-type cells, the p62 UBA domain deletion mutant 
(p62ΔUBA) significantly enhanced osteoclastogenesis 
in vitro (Laurin et al. 2002). Overexpressed p62ΔUBA 
enhanced the receptor activator of nuclear factor-κB 
(NF-κB) ligand that induced activation of nuclear 
factor-κB, NFAT, and ERK phosphorylation. Deletion 
of the p62 UBA domain reduced its association with 
TRAF6 in the proteasomal compartment, suggest-
ing that the UBA domain may encode the regulatory 
elements for the receptor activator of NF-κB ligand-
induced osteoclast formation and bone resorption 
and may be directly associated with the onset of PDB. 
Mutation of the p62 UBA domain impairs the ubiq-
uitination and NF-κB signaling that might impact 
osteoclastogenesis and osteoclast activity (Cavey et al. 
2006; Goode & Layfield 2010). In PDB, mutations in 
the UBA domain of p62 are P392L, S399P, M404V/T, 
G411S, and G425R (Cavey et al. 2006; Layfield et al. 
2004; Visconti et al. 2010; Michou et al. 2006). Most 
PDB patients have the P392L mutation, which did does 
not affect the ubiquitin binding ability of p62 (Garner 
et al. 2011). The severity of PDB in patients is somehow 
related to the dysfunction in the ubiquitin binding of 
p62 mutant proteins and remains to be determined. 
PDB is characterized by increased osteoclast activity 
followed by osteoblast response (Morales-Piga et al. 
1995). The tumor suppressor cylindromatosis (CYLD) 
gene is a deubiquitinase enzyme that can interact with 
p62 and negatively regulate osteoclastogenesis (Jin 
et al. 2008). CYLD disrupts the ubiquitin chains from 
several substrates and inhibits the activation of NF-κB 
(Trompouki et al. 2003; Brummelkamp et al. 2003; 
Kovalenko et al. 2003). Interestingly, the deubiquitinase 
activity of CYLD is dependent upon p62 (Wooten et al. 
2008) since its interaction with the p62 mutant P392L 
was impaired and increased the osteoclast activity in 
PDB (Sundaram et al. 2011). Thus, p62 is critical to the 
development of PDB.

Obesity and insulin resistance
Obesity is associated with an increased risk of develop-
ing insulin resistance and type 2 diabetes. Five-month-
old p62 knockout mice had a significant increase in 
body fat (Rodriguez et al. 2006) and were heavier as 
well as larger than control mice. The amount of food 
eaten by p62 knockout and control mice was same, but 
p62 knockout mice drank more water than the control 
mice suggesting that they may be diabetic. The size 
and weight of the liver, spleen, and heart tissues were 

increased in p62 knockout mice that presented with 
impaired glucose and insulin tolerance. Deletion of the 
p62 gene increased ERK activation and adipogenesis 
could lead to obesity and insulin and leptin resistance 
(Rodriguez et al. 2006). Recently, p62 is found to interact 
with mTOR and raptor (Duran et al. 2011). p62 connects 
autophagy and mTORC1 activity to control adipogen-
esis (Moscat & Diaz-Meco 2011). An α-glucosidase 
inhibitor, acarbose has been used to treat type 2 dia-
betes (Chiasson et al. 2002), by increasing insulin sen-
sitivity and reducing the blood sugar (Chiasson et al. 
1996). After 10 weeks of acarbose treatment, obese and 
insulin resistant p62 knockout mice showed reduced 
body fat and weight gain as well as lower blood glucose 
and cholesterol (Okada et al. 2009). p62 may prove to 
be useful for therapeutic treatment of obesity and type 
2 diabetes.

conclusions

Sequestosome 1/p62 has roles in neurodegenerative 
diseases such as PD and ADs. Evidence suggests that 
it may be a factor in breast cancer, liver cancer, PDB, 
obesity, and insulin resistance. p62 may prove to be 
useful for therapeutic treatment of obesity and type 2 
diabetes.
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