DIRAC POINTS FOR SQUARE LATTICE PHOTONIC CRYSTALS

CHIU-YEN KAO*, JUNSHAN LINT, AND BRAXTON OSTING?!

Abstract. This work is concerned with Dirac points in dispersion surfaces associated with
the wave equation where the material coefficient attains the translational symmetries of a square
lattice. It is proved in Keller et. al. (2018) that the spectrum of the Schrédinger operator over a
square lattice does not have a Dirac point at the high symmetry point of the Brillouin zone, at least
for the lower bands. In the high-contrast limit, we prove the existence of the Dirac point for the
2D Helmholtz operator over a square lattice away from the high symmetry point of the Brillouin
zone, if the dielectric function of the periodic medium attains reflection symmetry. In particular,
the two-dimensional eigenspace at the Dirac point is spanned by eigenfunctions with the opposite
parity. Based on this observation, we propose a computational inverse design method using the
local-density-of-state to generate a Dirac point at the desired Bloch wave vector and frequency.
Numerous numerical results demonstrate the capability of our algorithm to generate a desired Dirac
point robustly.
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1. Introduction. A Dirac point is formed by the conical intersection of two
dispersion surfaces in the spectral bands of a periodic operator. Mathematically, it is
a degenerate point (k*,w*) in the spectrum such that two dispersion surfaces forming
the degenerate point have the expansion

(1.1) wh(k) = w* + ag <:_"“

K*|

) [k — ']+ O(lk — &)

with nonzero slope functions, a4 (%) Dirac points play a special role in the

study of topological materials, which attain unique wave transport property induced
by the topology of the material [12, 27]. In general, for a photonic/phononic material
exhibiting a Dirac point in the spectrum, a spectral band gap can be opened near
the Dirac point either by breaking the time-reversal symmetry or the space-inversion
symmetry to create nontrivial topological phases [6, 9, 21, 24, 25, 33]. From this point
of view, a Dirac point can be viewed as a transition point for materials with different
topological phases.

The mathematical analysis of Dirac points dates back to the study of the tight-
binding approximation model for graphene in [30, 32]. Due to the increasing interest
in topological insulators in recent years, Dirac points were investigated for a broad
class of partial differential operators over the honeycomb lattices. More specifically,
Dirac points for the Schréodinger equation model of graphene were considered in [10]
over the honeycomb lattice with a weak potential and later thoroughly studied in [7]
for potentials that are not necessarily weak. An alternative approach based on the
symmetry argument was presented in [4] for the analysis of Dirac points over graphene.
These results are then generalized to elliptic operators with other settings over the
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honeycomb lattice, including point scatterers, high-contrast medium, impenetrable
obstacles, resonant bubbles, etc [2, 5, 8, 18, 22].

The Dirac point in the honeycomb lattice occurs at the high symmetry points of
the Brillouin zone. Its existence is attributed to the special symmetry that is imposed
for the medium coeflicients of the differential operator. For instance, the Schrédinger
operator with a potential function that is inversion symmetric and invariant under a

27 _rotation in the periodic cell allows the decomposition of the solution space # into

3
three subspaces Ho ® H1 @ Ha, wherein a function ¢ € H; gains a phase of ei2m/3

if rotated by %’r in the spatial domain. At the Dirac point, the two-dimensional

eigenspace is spanned by ¢1 € Hi and ¢o € Ho with the relation ¢o(x) = ¢1(—x).
The slope of the Dirac cone is nontrivial because of the different rotational behavior
of the eigenfunctions ¢;(x) and ¢2(x) in two subspaces H; and Ha.

For the reasons mentioned above, the majority of the study for the Dirac point
is carried out over the honeycomb lattice. The Dirac point in other lattices is much
less investigated due to the lack of the desired symmetry to generate a non-trivial
slope value for the dispersion surfaces at the degeneracy. In this work, we aim to
study the Dirac point in the square lattice. It is proven in [14] that, very different
from the honeycomb lattice, the Schrodinger operator over a square lattice does not
exhibit a Dirac point at the high symmetry point of the Brillouin zone, at least for
the first five spectral bands. We aim to prove the existence of the Dirac point for
Bloch wave vectors away from the high-symmetry point in the Brillouin zone, if the
partial differential operator attains reflection symmetry in space. Furthermore, we
propose an inverse design method to generate a Dirac point at the desired Bloch
wavenumber and frequency. Using this method, we demonstrate that a Dirac point
can be generated at many locations in the Brillouin zone.

1.1. Main contribution of this work. We consider the square lattice in R?
given by A := Ze, ® Zey = {l1e1 + lrey: £1,0s € Z}, where e; = a(1,0) and
es = a(0,1) are the lattice vectors and a is the lattice constant. The dielectric
function p(x) is a periodic in R? with p(x + e) = p(x) for any e € A. Let k;
and ko be the reciprocal lattice vectors that satisfy e; - k; = 27d;; for 7,5 = 1,2.
We define the reciprocal lattice A* = Zky ® Zko = {l1k1 + laka: U1,y € Z}, and
denote the fundamental cell in A*; or the Brillouin zone, by B. Define I" = (0,0),
X = (7/a,0) and M = (7/a,7/a), then the triangle formed by the vertices TX M is
called the reduced Brillouin zone when photonic crystals have rotation and reflection
(with respect to xi-axis and xs-axis) symmetry.

Let Y := {t1e1 + t2e2 |0 < t1,12 < 1} be the fundamental cell of the lattice. For
each Bloch wave vector k € B, we consider the following eigenvalue problem with the
frequency w € R:

(1.2a) Ak, w;x) + w?p(x) (K, w; x) = 0, x€Y +A,
(1.2b) P(k,w;x + €) = " Y(Kk,w; X), fore € A.

The eigenfunction ¢ is called the Bloch mode, which can be written as ¢ (k,w;x) =
e *¢(k,w;x), wherein ¢ is a periodic function satisfying ¢(k,w;x + €) = ¢(k,w; x)
for all e € A.

We first consider the special configuration when the periodic medium consists of
periodically arranged impenetrable inclusions (e.g., perfect conductors) embedded in
a homogeneous background medium. In such a scenario, the PDE (1.2a) reduces to

(1.3a) Ak, w;x) +wp(k,w;x) =0, x € (Y\D.) + A,
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where D, denotes the impenetrable inclusion in the fundamental cell Y with size .
Along the boundary of the inclusions, the Dirichlet boundary condition

(1.3b) PY(k,w;x) =0, x€ID.+A

is imposed. Our first goal is to prove the existence of the Dirac point for certain k
on the boundary of the reduced Brillouin zone I'’X M if D, is a disk with radius e
that is centered at x. = %(el + e3). Furthermore, we show that the eigenspace at
the Dirac point is spanned by two Bloch modes with opposite parity. The existence
of Dirac points in the lower bands are summarized in Theorems 3.15, 4.1, and 4.2
for some k* on I'’X, 'M and XM respectively. We apply the integral equation
approach for solving the eigenvalue problem (1.3a) and perform the spectral analysis
of the Laplacian operator —A via the characteristic value of the underlying integral
operator.

Our second goal is to investigate the existence of Dirac points for k not necessarily
covered in the theoretical analysis. To this end, we consider the inverse design prob-
lem of solving the medium coefficient p(x) such that the eigenvalue problem (1.2a)
attains a Dirac point at the desired pair (k*,w*). Note that a brute-force optimization
framework of minimizing the distance between two frequency bands at «* while en-
forcing the constraint of nonzero slope value « in (1.1) may not have solutions. From
the quantitative spectral analysis, it is observed that the parity of two independent
eigenfunctions is opposite at the Dirac point. Therefore, we impose the constraint on
the parity of eigenfunctions, instead of eigenvalues directly, to create a Dirac point.
The desired parity for the eigenfunctions can be realized by optimizing the so-called
the local density-of-state method (LDOS) [19]. The proposed computational inverse
design framework is able to produce a Dirac point at the desired location (k*,w*).
For instance, in Figure 5.2, we show that a material coefficient can be constructed so
that the second and third spectral bands exhibit a Dirac point at locations along the
X M interval in the Brillouin zone.

The rest of the paper is organized as follows. In Section 2, we reformulate the
eigenvalue problem (1.3) as an equivalent integral equation. Section 3 and 4 examine
the existence of Dirac points for (1.3) on the boundary of the reduced Brillouin zone
by analyzing the characteristic values of the integral operator. In Section 5, we pres-
ent the inverse design approach and various numerical examples to demonstrate the
effectiveness of the approach.

2. Integral equation formulation for the eigenvalue problem (1.3). For
a given Bloch wave vector k € B and frequency w € R, we use G(k,w;x) to denote
the corresponding quasi-periodic Green’s function that satisfies

(2.1) (A +whG(k,w;x) Zemeé x —e) forx e R2
ecA
It can be shown that

(2.2) G(k,w;x) = —i Z em'eHél)(w\X —e),
ecA

where Hél) is the zeroth-order Hankel function of the first kind. Alternatively,
G(k,w;x) adopts the following spectral representation (cf. [1, 3]):

er(rta)x
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(2.3) G(k,w;x) =



Note the Green’s function is not well defined when the frequency satisfies |w| = |k +q]
for some q € A*. We call such a frequency a singular frequency and denote the set of
singular frequencies by

Qsing (k) = {w: |w| = |k + q| for some q € A*}.

For each k € B, we arrange all the singular frequencies in Qging () in ascending order
and denote them as @1 (k) < @a(k) < -+ < @Op(k) < @Wpy1(K) < ---
We now introduce the following single-layer potential

(24)  [S%g)(x) = / | Glmwix=y)ply) sy, x€ (¥\D)+ A,

where ¢ is a density function on 0D.. Let H*(0D.) be the standard Sobolev space
of order s over the boundary of D, i.e.,

H?(OD,) := {f € L*(0D.): | Z(1+|7”L|2)S|fn|2 < 0o where f, are its Fourier coeﬁicients}.
nez

It is well-known that $*¢ is bounded from H~/2(dD.) to H'/?(0D.) [1, 3]. We
represent the Bloch mode for the eigenvalue problem (1.3) using the above defined
layer potential by ¥ = §*“p. Using the Green’s identity, it is easy to check that
(w,v) is an eigenpair for the Dirichlet problem (1.3) if and only if there exists a
density function ¢ € H~1/2(0D.) such that

(2.5) [S®“p](x) =0 forx € dD..

To facilitate the asymptotic analysis, we apply the change of variables to rewrite the
above integral equation as

(2.6) [SE¥pl(x) =0 forx € 9D,

where the integral operator S takes the form

(2.7) [SE“p](x) := /eaD G(k,w;e(x—y))p(y)dsy, x€9dD;.

We seek for eigenpairs (w, ¢) such that (2.6) attains nontrivial solutions.

3. Dirac point on I'X. We consider k = (k,0) € I'X. In particular, we restrict
our attention to the Bloch wavenumber k for which « € I, the O(e) neighborhood of
5 Assume that the lattice constant ¢ = 1 and D1 is a disk with radius 1. Decompose
the function space H*(0D1) = H5(0D1) & H:(0D1), where H5(0D1) and HE(0Ds)
are subspaces of #°(0D;) with functions that are odd and even with respect to the z1
axis respectively. Using the symmetry of the Green’s function, we have the following
lemma.

LEMMA 3.1. §¥% is a bounded linear operator from H;l/Q(aDl) to H(l)/Q(@Dl)
and Ho'? (0Dy) to L2 (0D1) respectively.

3.1. Eigenvalues as the characteristic values of an infinite linear system.
Let N, be the set of the positive integers and N, := N, U {0}. Define

H? = {{an}neNi: 3 (14 n%)anl? < oo} (i = o,e).
neN;
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We parameterize the boundary of Dy by r(t) = (cost,sint) and introduce the
functions ¢\ = ﬁsin(mrt) for n € N,, (;Sée) = \/%, and ¢\ = #cos(mrt) for
N.\{0}. Define the two subspaces of H?*[(0, 27)] as follows:

#1:[(0.2m)] = { 3 andl: {an}new € B2 (1= o.e).
neN;
In view of Lemma 3.1, the linear operator S induces a bounded operator from
7—[;1/2([0, 27]) to ’}-13/2([07 27]) in the parameter space for i = e, o, which we still denote
as S for ease of notation. If we expand ¢ € ?‘-[;1/2([07 27]) as ¢ = Z cn W, then
neN;
(2.6) reads »_, cy. Cn (Sf""&?) = 0. Define the infinite matrix A; = [a%)n]m,nel\m

where
(3.1) al(,w) = (85000, 01)) = / [SEo01(1) 63 (1) dt.
0

We see that, when S is restricted to w2 0,27]), (2.6) holds if and only if there
€

%

exists nonzero ¢ = {¢p}tnen; € Hi_l/ * such that the following infinite linear system
holds:
(3.2) Ai(k,w)c=0 (i=o,e).

Such w are called the characteristic values of the system. To study the eigenvalues w
of the Dirichlet problem (1.3a)-(1.3b), we investigate the characteristic values of (3.2).
To this end, we follow the method in [22] by performing the asymptotic analysis of the
integral operator to reduce (3.2) to a finite-dimensional nonlinear characteristic system
and deriving the asymptotic expansions of the characteristic values with respect to
the size of the obstacles €. It is shown that each eigenvalue w* is near a singular
frequency associated with the Green’s function (2.3). These singular frequencies also
correspond to the eigenvalues of the homogeneous medium over the square lattice.

3.2. Decomposition of the Green’s function and the single-layer oper-
ator S¥¢ . Recall that k = (k,0), where & lies in the O(g) neighborhood of 7.
We are interested in the spectral properties near the desired location (k*,w*) where
k* = (%,0) and w* = 57” Define Ay = {qi,q2,93}, where q; = 27(—1,-1)7,
qe = 27(—1,1)T, and q3 = 27(1,0)7. We consider eigenvalues in the vicinity of the
singular frequency w = |k + q| for q € Aj. To this end, we define the region

Qe(k) = [J{weRT: C1? <’ - Ik +qf” < Coe?)
qeEA]

for some positive constants C; and Cs.
We decompose the Green’s function into the three parts as follows:

2
(3.3) Ho(w;x) = = Ho (wlx]), x#0,
ez(n+q)-x
3.4 G (k,w;x) := —_——,
( ) Ao(’q' w X) q;g w2 — |F.',—|—q|2
(3.5) G(K,W;X) 1= G(k,w;x) — Ho(w;x) — GAS (k,wix), x#0,

G(k,w;0) := )1(11&) G(k,w;X).
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In the above decomposition, Hp(w;x) is singular when |x| = 0, and we introduce G
to extract the singular behavior of the Green’s function when w is close to the singular
frequency w* = 57” As such G(k,w;x) is a smooth function of x for any real-valued
w.

LEMMA 3.2. ([13, p.31-32, Section 2.1.1]), If 0 < |x| < 1, then

1
e i L DU USRS )

(=17 Y1 o
where by,1 = P (pl)?’ bpa={0-Y 5 | bp1s Y0 =Eo—In2——, and

s=1

N
1
Ey = lim (Z ——1In N) =~ 0.57721 is the Fuler-Mascheroni constant.

N—
[ee] p:lp

Let U, be a disk centered at the origin and radius . From the Taylor expansion
of the finite-sum G'ax(x), we have the following lemma.

LEMMA 3.3. For eachw € Q.(k), Gay(k,w;x) is analytic for x € Ua. with e < 1
and it possesses the Taylor expansion

1
(36) GA(’; (K/,w,x) = m (2 —+ QZH_frl — (sz_f):% =+ b2x§))
1 1
(37) + m (1 + K4+ T1 — 2/{3_",5%) —+ G?\% (K‘/,w;x),
+

where kK = k £ 2w, b := 2w, and

1 1
GN(k,wX) = —Fs—— g Caq — (W) 2S? + ——5 E Copy + (W)
A0(7 ) ) w2 — K2 — b2 1,()1 2 wz—ni 1,+()17
|| >3 a1>3

a=(a1,02), |Cat| < clel for a certain constant C independent of w, € and o.

LEMMA 3.4. For each w € Q.(k), G(Kk,w;x) is smooth for x € Us. with e < 1.
In addition,

(3.8) sup 3?118;‘2263(&,@0) <C, 0<a;+ay<2,
we: (k)
wherein the constant C is independent of w, €.

DEFINITION 3.5 (Decomposition of the single-layer operator SF*). Let Spy.e,

SAg,s and 35 be the integral operators with the kernel Hy, G/\é and G given in (3.3)-
(3.5):

(St e0)(x) 1—/eaD Ho(wie(x —y))e(y)dsy, x€ 0Dy,

[Saz 0] (%) ::/ Gay(k,wie(x —y))p(y)dsy, x€ 0D,
y€OD,

@ﬂ@%/@DGMMWQWW@M%,XEm%

Then, it follows that SF“ = Sp, e + Sax e + S..
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3.3. Decomposition of the matrix A;. Recall that amn = (S"”” “’¢ ¢5fl)),
using the decomposition of the integral operator S¥*, we express agn)n as the sum of

the following three terms:
(St ) = (So.c0, 000} + (Sng)ih = (Sageds02) (S0 = (Se0l, 62}

In what follows, we obtain the asymptotic expansion of (Sg,, 8) (SA*@)mn, and

(S. )( ") to obtain a decomposition of the matrix A;.

3.3.1. The decomposition for A,. Recall that ¢\ = ﬁsin(mrt) for n €

N,. In light of the expansmns in Lemmas 3.2, 3.3 and 3.4, we obtain the following
expansions for (SHO,E)mn, (SA* )mn, and (5‘5)%%

LEMMA 3.6. For e < 1, there holds

—% (1+0(e?Ine)) m=neN,,

(3.9) (Stro.e)n =
0 otherwise.
Proof. Define
1
(3.10) Sop(x) := by / In|x —y|e(y)dsy, x€09D.
™ y€OD,

On the unit circle, there holds [x—y|? = |r(t) — r(7)|* = 2—2 cos(t—7) = 4sin? (557).
As such, in the parameter space, it follows from Lemma 8.23 in [16] that

1) sl =1 [ (4 (15

where

)) Ga(7) dr = (),

_ 0, n = 0; R
Un—{_l n #0: and wn(t)—\/—gre .

Therefore, using the relation (bsf)(t) = ﬁ(wn (t)—1_n(t)), the expansion (3.9) follows

from (3.11) and Lemma 3.2. |

A direction computation under the polar coordinate by using Lemma 3.3 leads to
the following expansions.

LEMMA 3.7. Fore < 1 and w € Q.(k), there holds

1

PR (2mb%e? + O(?)) m=n=1,
(3.12) (Sage)ioh = -
: ! 1 0] (5“‘&"(3"’""'"‘)) otherwise.
w? — K2 — e K3
LEMMA 3.8. For ¢ < 1 and w € Q.(k), (55)5321 = Edmyn where the operator
A = [aymn] is bounded from H, 12 4o HY?, and the operator norm |A|l < C with C

independent of € and w.



1 1
w2 — K2 =02 |w? — KL
Therefore, by virtue of Lemmas 3.6-3.8, we obtain the following decomposition for
the matrix A,:

Note that for w € Q.(k), there holds

0(%).

€

PROPOSITION 3.9 (Decomposition of A,). There exists a constant ¢ > 0 such
that for ¢ € (0,c) and w € Q.(K), the matriz A can be decomposed as A, = D, +
e &, + o(e), where D, := diag(d, )nez with

2h%e? 1
S 2 32 5 n = 1,
d — w2 — R — b 2
" 1
YR > 17
2n "
and E, = [emn]. In addition, &, is bounded from H;UQ to ]I-]Ll)/2 with the norm

I€]l < C for a constant C independent of € and w.
3.3.2. The decomposition for A.. Following the procedure in Section 3.3.1,

we can obtain the similar decomposition for A. by noting that qbée) = \/% and
(g ﬁ cos(nmt) for n > 1.

LEMMA 3.10. For e < 1, there holds

1
2—(1115 +Inw+7v) +O0(%lne) m=n=0,
™
(3.13) (SHoe) S = —QL (1+0(e?Ine)) m=n2>1,
n
0 m # n.

Let @ = [¢mnlpy.n=o be an infinite matrix, for which the nonzero elements are

2 1 ) K%+ b? 1 k%
q00—271'<w2_h:2 —b2+w2—,‘{1>_2ﬂ€ (w2—,‘ﬁj2—b2+2w2 D) 5

2k 1K
QOl\/§7T€<w2_K2 —s T 2_+ 2), q10 = —qo1,

we? K2 + b2
qo2 = ﬁ

2 2
K2 1 &
q112ﬂ'€2< %—b2+7 2+2),

LEMMA 3.11. Fore < 1 and w € Q.(k), there holds

1 1 max(3, s
(314) (SAS,E)grez?n = Q@mn + (aﬂ — ﬂz_ 2 + 2 /{3_) @) (5 ax(3,|m| |n‘)) .

LEMMA 3.12. Fore <1 and w € Q.(K), (Sg)mn can be expressed as

(3 15) (S~ )(6) _ {G<K7W;O)+€'(~loo m=mn=20,

€+ Amn otherwise,



where the operator A= [Grmn] s bounded from ]I-]Ie_l/2 to Hém, and the operator norm
Al < C with C independent of € and w.

Therefore, by virtue of Lemmas 3.10 - 3.12, we obtain the following decomposition
for the matrix A.:

PROPOSITION 3.13 (Decomposition of A.). There exists a constant ¢ > 0 such
that for e € (0,¢) and w € Q(K), the matriz A, can be decomposed as A, = Q+ D, +
& + o(e), where D, := diag(dy)nez with

1 ~
—(ne+Inw+y)) + G(k,w;0) n=0,
d, = 2
n>1,

~5
and E = [emn]. In addition, &, is bounded from H, /2 to HY'? with the norm 1€l <
C for a constant C' independent of € and w.

3.4. Characteristic equations. We reduce the systems (3.2) to the nonlin-
ear characteristic equations for w by using the decomposition of the matrix A; in
Proposition 3.9 and 3.13.

For i = o, we denote N* = N,\{1} and define the vectors &, := {afz)l}meN*,
¢ := {¢m }men+, and the matrix A, = [aS%]meN*,neN*. Then the system (3.2) can be

split into the following two equations:

(3.16) a9 e +a%e=0, cia,+A,e=0.

LEMMA 3.14. For w € Q.(k) and sufficiently small e, the operator A,: H P

7—[},/2 is invertible.

Proof. For each w € Q.(k), let A, be decomposed as A, = D, + £&, 4 o(¢) using
the decomposition of A, in Proposition 3.9. Using the explicit expression of {d,}5 ,
in Proposition 3.9, it can be shown that @o is invertible from H, 1/2 to Hi/ 2 with a
bounded operator norm ||D;!||. Expressing A, as A, = D, (I +eD; &, + o(¢)), then
it is clear that A, is invertible for sufficiently small €. a

Using Lemma 3.14, we express ¢ as ¢ = —c; (A 'a,) and substitute into the first
equation in (3.16) to obtain

(3.17) (ag? - A:Aglao) e = 0.
Similarly, for i = e, by expressing the vector ¢ as ¢ = [c1, c2] and the matrix A, as

— -Ae,ll AZ,QI)
-Ae B <Ae,21 Ae,22 ’

where ¢1 = [cg, ¢1,c2]T and A, 11 is 3 X 3 matrix, the system (3.2) can be reduced to
(3.18) (.Ae,u — A:’QlA;%QAe’Ql) c1 =0.

To obtain the characteristic values of (3.2) for each &, we solve for w such that
(3.17) and (3.18) attain nontrivial solutions, or equivalently, we find w that is a root
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of one of the following characteristic equations:

(3.19a) a\? (k,w) — &% (K, w) A; (K, w)a, (K, w) = 0,
(3.19b) det (Ae,n(n,w) - ,4;21(,.;,w)A;§2(n,w)Ae721(ﬂ,w)) —0.

3.5. Degeneracy of the eigenvalue. We solve the characteristic equations
(3.19a) and (3.19b) to obtain the eigenvalues. From Proposition 3.9, we have

o 2mh2e? 1 o o
AP (k,w) = s — S+ 0(e); al) = eely)

27 3 +o(e), m>1

ml

In light of Proposition 3.9, (3.19a) reads

2rb2e? 1
FowZop 3 toe=0

Hence the corresponding root w, satisfies
(3.20) w2 =K% + 1% + 4702 (14 0(e)).

Similarly, let 8 = 3= (Inw+10)) +G(k,w;0), it follows from Proposition 3.13 that
() _ 1 .
agy = qoo + o Ine + 5+ O(e);
1
a”grez?n = qmn — ?5mn + Eefﬁ% +o(e) otherwise.
n

An explicit evaluation of the characteristic equation (3.19b) yields

2
2 1 9 9 9 2K_ K4
(w252_b2+w2n2).(1+0(5 IHE))+47T5 (w252b2+

+ - w? = kY
2 1 K2 1 K2 Ine
2.2 — +

B 5 e O()=0

Bre <wz_ﬁz_b2+w2_,€3> (w2_ 2—b2+2w2_,.@1)+ S +B+0() =0,
which can be simplified as

2 1 8m2e?(khy — k_)? Ine
1 ’1 - — O(e) =0.

<W2_”2_b2 +w2—'€3> (1+0(ne)) (w2—n%—b2)'(w2—/€i)+2w TA+0E)

Equivalently, the equation can be written as
1
(2(w? = k1) + (W = k2 = b%))- (14 O (& 1n€))—12877452+<;€ + 6+ O(E)) (w=K2=b?)-(wP—kK3) = 0.
s

In particular, the above equation holds when w? — k% — b* = 0 or w? — k3 = 0. The
corresponding root w. (k) satisfies

(3.21) w(k) = k2 +b% = k5 +641'e* (1 + O(* Ine)),

(&

3.22 Wi(k) = k2 = k2 + 0% +1287%% (1 + O(e?Ine)) ,
+

e

with k = k = F —8m%e?+O(e®Ine) and k = & = § +16m°c? + O(e® Ine), respectively.
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By virtue of (3.20) -(3.22), we see that
(3.23) wWo(k) —we(k) >0 and we(R) —we(R) <0

for sufficiently small e. The continuity of the band frequency leads to the degeneracy
of the eigenvalues with w,(k*) = we(k*) for some k* € (k,%). The corresponding
eigenfunctions can be solved by (3.17) and (3.18).

THEOREM 3.15. There exists k* € (k, k) such that wy(k*) = we(k*) = w* is
a characteristic value of (2.6). Furthermore, w* attains the asymptotic expansion
(3.20), with the corresponding two-dimensional eigenspace ’H;l/z(aDl) spanned by
bo(xX) = 22 + O(ex®) € Hy /*(0D1) and ¢e(x) = ape + z1 + O(cz®) € He /*(0Dy),
wherein o is a nonzero constant independent of € and |a| = 2.

REMARK 3.16. We observe from (3.23) that w,(k) — we(k) swaps signs at k and
K. Indeed, it can be shown that the sign of wo(k) — we(k) swaps when k < kK* and
Kk > Kk* near kK*. Namely, the two branches of eigenvalues with different parity of
eigenfunctions cross each other at K*.

REMARK 3.17. From the analysis above, it is observed that the Bloch wavenumber
K* at the degeneracy point depends on the perturbation parameter €. Furthermore,
when € is no longer small, the numerical computation implies that the degeneracy
point (k*,w*) may disappear. This is very different from the Dirac point for the
honeycomb lattice, where the Dirac point persists at the high symmetry point of the
Brillouin zone, even for large perturbation parameter e [7].

3.6. The conical singularity for the dispersion surface near (k*,w*). We

consider the eigenpair (k,w) near (k*,w*) for the eigenvalue problem (2.6). Let

p* e 7—[*_1/2(8D1) := span{¢,, ¢.} be a solution to the system S& "¢ = 0. Define

0k =k — K" dw=w—w*, §p=p—p* and IS, := S+ — S . Then J¢p satisfies
(3.24) S o = —88.p" — 6S.0¢.

The Fredholm alternative implies that (3.24) attains a solution if and only if

(3.25) (68.0" +68.60,0;) =0, j=o,e.

Under the above condition, there exists a unique dp L H;l/Z(BDl) that solves (3.24),
which is given by

—1
(3.26) Sp = — (I + 3;1535) (ST16S.) "

Here S| denotes the restriction of Sf*""* onto the subspace that is orthogonal to

*_1/2(8D1). Combining (3.25) and (3.26), and expanding ¢* as ¢* = a1¢, + a2,
for ay, ag € C,; we have the following lemma for (k,w).

LEMMA 3.18. The pair (k,w) in the neighborhood of (k*,w*) is an eigenpair of

(2.6) if and only if the following 2 x 2 system holds for some oy and ao satisfying
a1 - Qg 75 0:

s (i mien) misee)) () = ()

-1
where the operator T := =S, (I + 811585> Sll.
11



We have the following lemma using the decomposition (3.3)-(3.5) and a standard
perturbation argument.

LEMMA 3.19. For each fized ¢ < 1, near (k*,w™), there holds
(328) (5Ss¢u ¢J) = ((;K'v 5(")) : ((VR,MSAS,E¢ia ¢]) + O(l)) + O(MK’F) + O(|6w|2)

Jor sufficiently small 6k and dw, where Sa; - is introduced in Definition 5.5.

THEOREM 3.20. Given ¢ < 1, there are two distinct branches of eigenvalues
wt (k) near (k*,w*) such that w*(k*) = w* and each branch w* (k) is a cone lo-
cally.

Proof. Using Lemma 3.18 and the expansion of T, we observe that the pair (k,w)
in the neighborhood of (k*,w*) satisfies

58-00:00)  (58:60,00)) _
(3.29) det(gésme,%; (5Sg¢e,¢e§>0

up to the first order in terms of dx and dw for each entry of the matrix. In view of
Lemma 3.19, we first compute the gradient V,, ,Gx (K", w*;x). For each q € Ag, the
partial derivative of each mode is given by

5 ( et(rta)x )Z ijez(n-&-q)-x Q(Rj-‘rqj')el(ﬁ-’_q)'x
. — |k +qf? —lk+d? (W —|k+q]?)?

ez(n-i—q)-x _2wel(R+CI)'X
N (WQ — e+ Q|2> S (W[t g
For |x| = ¢, using the Taylor expansion and the fact that (w*)? — |k* + q|?> = O(&?)
for q € Aj, we obtain

)

* * 2K’i * *
0u, Gy (5°3%) = oy — (e yr — gy (2 2 — (6270t 4 Pad))
2K7 K*)? 1
ety (14 = ) o 2)
14b%xy — Ab?K* 1T 0 1
(W) = (k2)? = 02)? ’
—2w*
((@*)? = (k)2 = b?)?
—2w* (k%) 1
14Kk ay — =),
ey (e = ) vo
By substituting the above into (3.28) and using ¢,(x) = z2+O(ez®) and ¢e(x) =
€+ 1 + O(ex®), it can be computed that

+

O, Gy (K™, w75 x) =

0,Gax (K", w™;x) = (24 2uk* 2 — ((8%)%2] + b%23))

(6S(K*,w*)bo, Po) = D*A* (K*0K1 — w*dw) + 522,
(6S(K*,w*) o, de) = bA* (K* —1209) - 6kia + 532,
((58(1{* W) e, ¢O) = b2\* (K" 4+ 12a0) - Okg + 552,
(0S (K", w)ge, bc) =

5S(K*,w* ) e, bo ((2)\* RE)?  NL(63)?) + 40d (VKT + X)) - O

*

w

. 7( (2A% (K7)2 + A% (K5)%) + 402 (2% + A1) ) O + 522

12



* % * b2e? * b2 e? :
Here, H:‘: = g* £ 277, )\_ = m, )\+ = W, and the hlgh—
order terms are 555, = O (1) 4+ O(|6k|?) + O(]éw|?). Therefore, we obtain that the
leading-order of the dispersion relation (3.29) is a homogeneous equation of the form

tl . (5&))2 + tQ . ((5%31)2 + t3 . (6%2)2 + t4 . (5%1 . 50.}) = O,

wherein t; > 0 and ts,t3 < 0. The proof is complete. 0
4. Dirac point on I'M and X M.

4.1. Dirac point on I'M. We consider k = (k,x) € T'M. With the abuse of
notation, we decompose the function space H*(9D;) = HE(OD1)®HE(OD1) (odd/even
w.r.t. the line 1 = x2 ), and restrict the single layer operator S onto each subspace.

To obtain the characteristic equations from the integral equation (2.6), we start
by setting A = {qi,92,93}, where q; = 27(1,0)7, qo = 27(0,1)T, and q3 =
27(—1,—1)T, and decompose the Green’s function into three parts following (3.3)
- (3.5). To compare with the calculations in Section 3, we make change of variable
by setting =} = x1 + x2 and x5 = x5 — x1 for the Green’s function and replace e
by €/4/2 in the integral equation (2.6). It is clear that functions in H3(9D;) and
H:(O0D;) are odd and even with respect to the x) axis. The key observation from
the decomposition is that Ga: (k,w;x) attains a similar expansion as (3.6) in the new
coordinate:

1
Gax (K, w;x) = P — (2 + 2wy 2y — (kT2 + b%2f))
+
1 / 1 2,2 0 /
+m 1+Zl€_$1 —5143_1'1 +GA3(K'/,(U;X),

where k4 := k + 2w. Therefore, by repeating the decomposition of the operators A,
and A, in the function space H:(0D;) and HE(OD;) respectively as in Section 3.3, one
reduces each subsystem (3.2) into the characteristic equations in the form of (3.19a)
- (3.19b). Solving the characteristic equations give two branches of eigenvalues w, (k)
and we(k):

wi(k) = k% + K>+ 2mb%e? (1 + O(e)),

16

w2 (k) = 2k2 = K5 + K>+ 64n'e® (1 + O(’ Ine)) for k =k = g - EF%Q +0(® Ine),
8

w(k) = kT + k% =2k + 321" (1+ O(” Ine)) fork =k = g + 577352 +O0(® Ine).

In particular, there holds w, (k) — we(k) < 0 and wy(k) — we(k) > 0 for sufficiently
small e. We deduce that there exists k* € (&, &) such that we(k*) = we(K*) = w*.

THEOREM 4.1. There ezxists k* = (k*,Kk*) as a characteristic value of (2.6),
with k* € (k,R) satisfying wo(K*) = we(k*) = w*. The corresponding eigenspace
is span{d,, p.}, wherein ¢o(x) € 7-[0_1/2((9D1) and ¢.(x) € H;”Q(aDl),

The conical singularity for the dispersion surface near (k*,w*) can be established
in the same way as Section 3.6, and we omit here for conciseness.

4.2. Dirac point on XM. We consider k = (7,x) € XM. First, we obtain a
decomposition of the Green’s function as (3.3) - (3.5) by setting A§ = {q1,d2,d3,d4},
where q; = 27(0,1)T, q = 27(0,-1)T, q3 = 27(—1,-1)7, and q4 = 27(-1,1)T.

13



Again, to compare with the calculations in Section 3, we make change of variables
x} = x9 and z, = z1. Then in the new coordinate, G A takes the following form:

Gy (R, wix') = — (24 2wk y 2y — (K527 + 722f))

1
— 2 _ 9
w Ky —
1
)

+ — (1+ 22 — (k22 +722)) + GR: (K, w;x).

By restricting the integral operator S onto the subspaces H3(0D1) and HE(0D)
that consists of odd and even functions with respect to the 2| axis, and decomposing
the operator A, and A, as in Section 3.3, we still obtain the characteristic equations

in the form of (3.19a) - (3.19b). More explicitly, (3.19a) and (3.19b) now read

232 2m3e? 1
3 5 5 + O(E) =0.

w—kK2 -7 w?-ki—m

(W= K5 —7°) + (W — &2 = 7%)) - (24 O (*Ine)) — 128742

+<1;:+/3+0(s)> (W =R =) (WP - R - ) =0,

Solving the first equation yields two roots w¥ (k) satisfying

(WER) = Ky + 7+ 4p()*s? (140(), () € [5,1].

On the other hand, the second equation attains w.(x) that satisfies

wi (k) = k2 + 7% = kT +1287%* (1 + O(*Ine)) for k = £ = —167°” + O(e’ Ine),

€

w(k) = kT = k% + 7% + 128" (1 4+ O(? Ine)) for k = & = 167°c* + O(® Ine).
Thus for sufficiently small e, there holds

o (£) —we(r) >0, w, (F) —we(R) <0;

wh(k) —we(k) <0, wl(k)—we(k)>0.

o
We conclude that there exists x** € (k, &) such that wF (k*%) = w(k*F) = w**.

THEOREM 4.2. There exists k* = (7, k*) as a characteristic value of (2.6), with
Kk* € (k,R), and the corresponding eigenspace is span{d,,d.}, wherein ¢,(x) and
@e(x) is odd and even with respect to the xo azis respectively.

The conical singularity for the dispersion surface near (k*,w*) can be established
similarly.

REMARK 4.3. Theorems 3.15, 4.1, and 4.2 prove the existence of the Dirac point
for some k* on the boundary of the reduced Brillouin zone T X M for the lower spectral
bands, or more precisely, the first siz spectral bands. Following the same procedure,
one can obtain the Dirac point in higher bands, for which the finite-term G (k,w;x")
in the decomposition of the Green’s function will contain more modes.

5. Inverse design of Dirac points. Given a pair (k*,w*), with K* on the
boundary of the reduced Brillouin zone I'M X, we would like to solve for a dielectric
function p(x) in (1.2a) such that the spectrum of the differential operator attains a
Dirac point at (k*,w*). The challenge of the computational design lies in achiev-
ing two goals simultaneously: the degeneracy at (k*,w*) and the conical shape of

14



dispersion surfaces near (k*,w*). In particular, the enforcement of nonzero slope
value at the Dirac point is difficult to impose directly. Based on the analysis of the
parity of the Bloch modes at and near a Dirac point in Sections 3 and 4, we apply
the local density-of-state (LDOS) method to impose the constraint for the parity of
eigenfunctions to solve the inverse design problem.

5.1. The local density-of-state (LDOS) method. In view of Theorems 3.15,
4.1, 4.2, we observe that at a Dirac point, the eigenspace of the integral operator S
attains a two-dimensional eigenspace span{ ., ¢}, wherein ¢,(x) € Ho 1/ 2(dD;) and
Pe(x) € He_l/Q(@Dl).l It can be deduced that the corresponding eigenspace for the
differential operator in (1.2a) is spanned by ¥,(x) € Ho(Y) and 9.(x) € He(Y),
which are odd and even in the periodic cell Y along the symmetry axis. Furthermore,
from Remark 3.16, the parity of the eigenfunctions corresponding to the two frequency
bands crossed at the Dirac point swaps before and after the degeneracy. Therefore, we
solve the inverse design problem by finding p(x) such that there exist two frequency
bands wy, (k) < W1 (k) satisfying w,, (K*) = w41 (k*) and the corresponding Bloch
modes ¥, (k,w; x) and ¥, 11(K, w; x) satisfy the following:

(G1) The two-dimensional eigenspace Ex« o« corresponding to the crossing of the
m-th and m + 1-th dispersion surfaces is spanned by an eigenfunction in
Ho(Y) and an eigenfunction in H.(Y).

(G2) The parity of the Bloch modes ¥, (k,w;x) and ©,,+1(k,w;x) swaps before
and after the crossing of w,,(k) and wy,4+1(k) at (k*,w*). That is, on one
side of the crossing, ¥, (k,w;x) € Ho(Y) and Yy, 41(k,w;x) € He(Y) and
visa versa on the other side of the crossing.

To treat the boundary condition more conveniently, we express the Bloch mode in
(1.2a) as Y(k,w; x) = " *¢(k,w;X), wherein the periodic function ¢(k,w;x) satisfies

(5.1a) (V +16) - (V4 16)d(k, w; X) + wp(x)d(k, w;x) = 0 x € R?
(5.1b) oKk, w;x +€e) = ¢(Kk,w; X) ec A

Let (¢, ) = / @(x)1(x) dx, we define the Hilbert spaces of periodic functions
%

L5,(Y) = {o(x): (pd,¢) < o0, d(x +e) = ¢(x), Ve € A},
H, (V) :={o(x) € L} ,(YV): dig(x) €Ll (YV), i=1,2}.
To achieve band degeneracy at (k*,w*) with the Bloch modes satisfying the above
parity, we seek to maximize the local density-of-state (LDOS) radiated by dipoles

arranged at proper locations [19]. Let u be the periodic part of the wave field radiated

by a collection of dipoles s(x) = Z}]:1 a;0(x —y;) that solves

(5.2)  (VH41k) - (V4 1k)u(k,w; x) + wp(x)u(k,w;x) = —we **s(x) inY,

the local density of eigenstates is defined by (cf. [19])
6 1K-T

(5.3) LDOS(k,w) := ——Re u(k,w;x)e"™s(x) dx ;.
™ Y

IFor k located on I'M, XM and I'X, the axis of symmetry is z1, 22 and z1x2 respectively for
functions in 'H;l/z(aDl) and He_l/Q(aDl).
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To attain an eigenvalue at (k*,w™*), one maximizes the following frequency-averaged
local density-of-eigenstate function:

(5.4) Ly(r",w") = /OO LDOS(k*,w)W(w*;w) dw,

— 00

in which W(w*;w) is a window function peaked at a desired frequency w*. The
desired parity for eigenfunctions specified in (G1)(G2) above is achieved by choosing
the amplitude a; and the dipole locations y; suitably. For instance, two dipoles placed
with mirror symmetry along the symmetry axis and a3 = ae give rises to even parity
for the eigenfunction, while two dipoles at the same locations with a; = —ay yield
odd parity for the eigenfunction.

5.2. Slope of the dispersion surface. Assume that (k*,w™*) is a Dirac point.
Let us express the dispersion surface near (k*,w*) as k = k* + dk and w = w* 4 dw,
and the periodic eigenfunction as ¢ = ¢* 4+ d¢. Then it can be shown that d¢ satisfies

(V +1k) - (V4 1)56(x) + w?p(x)dp(x) = F(x) x€Y,
where
(5.5) F(x) = —20ww*¢* — 210k - (V +16*)d* + O(|6k|?, |0w]?).

From the Fredholm alternative and neglecting the high-order terms in F'(x), we obtain

(5.6) (ww ™ + 10k - (V+1")9",¢;) =0, j=o,e.
Expanding ¢* as ¢* = a0 + Qede, (5.6) is cast as the following linear system:

(o TS0 A ) () - )

Denote the above 2 x 2 matrix as M(dk, dw), then the leading-order of the dispersion
relation is expressed by the equation det M(dk, dw) = 0.

For k* on the boundary of the reduced Brillouin zone, we express k* as K* =
Kip1 + K3po with the unit vector p; given by eq, es, and (e; + e3)/v/2 respectively
when k* is on T'X, XM and I'M respectively . Let p, be the unit vector such that
pP1 - p2 = 0. Correspondingly, we write dk as 0k = dk1p1 + dKkop2- Note that, from
the symmetry of Bloch modes, there holds

(G0, pe) = 0, <3p2 (e“‘*'ngj), em*'ngj> =0, j=oore,

Re<ap1¢ja¢j>:0a <apl¢j7¢k> :_<6pi¢ka¢j>a j,kZOOI' €,

where the partial derivative Jp, is taken with respect to the spatial variable x. As
such the matrix A reduces to

<6ww* — 851 (1{Dp, b0, G0) + K1 {00, 00) 105+ (V. 0c) ) .
10K - <v¢ov ¢e> dww* — 5“1 (Im<ap1 ¢ev ¢e> + HT<¢)67 ¢e>)

2The choice of p1 is not unique when & is located on the vertices I', M, or X. We use either of
the two specified vectors.
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Therefore, the dispersion relation near the Dirac point (k*,w™*) is given by
Y O SN ) Ao, (@) _1,,(00) (0,) s 12 _
det M = (w" dw — py 9K W dw — w0k |y 0kt + py T 0ke|* =0,

where

ngo) = Im(0p, @0, Po) + K1 {Po, Do), U§€)e) = Im(0p, de, Pe) + K1 (Pe; Pe);
PJ(107€) = <ap1 Gos Pe), PJ(207€) = <8P2¢0’¢e>'

By rewriting the above equation as

(5.7)

(" 6w = prf o) = (D)2 (k1) = "6 + Sl = 0,

. + ;L(U):I:p<e) . . . . %
with p7” = =—5~—, we obtain the dispersion relation near (k*,w*) as
K
(5.8) w(k) =w* + “iﬁ Dl — %] + O — P2,
wherein

(5.9)  px(R) = (& p1) £ (D)2 p1)2 + 1O F - pr) + 1 (R - po)?

for k = 25
o]l

REMARK 5.1. We will enforce “the nontrivial slope values i (R)” constraint in
the optimization framework below when generating a pair of Dirac cones at (K*,w*).
From various numerical examples in Section 5.5, it is observed that one can achieve
|t (R)| > 0 on the boundary of the reduced Brillouin zone TXM that excludes the
vertices I', X, and M. The absence of Dirac points at ', X, and M is attributed
to the reflection symmetry imposed for the Bloch modes. For example, k* = X can
be viewed as a Bloch wave vector on T'X or XM, then (G1) implies that the Bloch
mode ¥ is even/odd with respect to both horizontal and vertical azes, and a direct
calculation using (5.7) leads to ps(p1) = p+(p2) = 0. We recall the absence of the
Dirac point for k* = M proved in [1]], wherein the slope of the dispersion surfaces
vanishes when the two Bloch modes at the degeneracy point (k*,w*) attain different
rotation symmetry. Mathematically, it will be interesting to investigate what Bloch
modes will give rise to a linear dispersion relation at the vertices I', X, and M.

5.3. The optimization framework. Our inverse design consists of two steps.
In the first step, we aim to design a periodic medium to achieve a degeneracy point
at the desired location (k*,w*) such that the two Bloch modes at and near (k*,w*)
satisfy (G1)(G2). Following the discussions in Section 5.1, we choose kK = K* + Ak -
p1, wi = w* £ Aw with small Ax and Aw and propose the optimization framework
in the following form:

(5.10) max min { Ly, (k,w); i = 0,¢, (,0) € {(",0"), (L,w])} |,
P<p<p

where Ly, is the LDOS functions (5.4) with the chosen source functions s;(x) in the

form of (5.2) to achieve the desired parity for eigenfunctions. To solve the problem

efficiently, we may reformulate the maxmin problem (5.10) as a constrained optimiza-

tion problem as follows and apply the quasi-Newton method. Let

Fj(p)szSi(K/vw) (]:1776)
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be the opposite of the six LDOS functions with i = 0, e and (k,w) € {(k*,w*), (K%, w})
in (5.10). Then the maxmin problem (5.10) is equivalent to the constrained optimiza-
tion problem:

min 6
(5.11) 2<p<7

In the second step, we impose the constraint on the slope of the dispersion surface
so that its value is nontrivial. To this end, we impose the condition

lps(P1))* >0 and |us(p2)f >0

for some positive constant o, where py (k) is defined in (5.9). Correspondingly, we
propose the following optimization framework:

min 6 — Ao
P<p<p

(5.12) Fi(p) <0, j=1.2,.6;
o <|px(py)l?, j=12
In the above, A > 0 as a penalization parameter.

5.4. Implementation details. The optimization problems in (5.11) and (5.12)
are numerically solved using a gradient-based, BFGS quasi-Newton method where the
constraints are enforced using an interior-point strategy, as implemented in Matlab’s
fmincon function. The gradients of F; and |u4 (p;)|?, j = 1,2 are provided below in
Theorem 5.2 and Theorem 5.4, respectively.

5.4.1. The computation of the LDOS function and the Fréchet deriva-

2@/ Which is a normalized
(w22 2

square of a Lorentzian function peaked at w* with the band width . By the residue
theorem, it can be calculated that the frequency-averaged LDOS defined in (5.4) can

be evaluated at a single complex frequency @* := w* + +y and there holds (cf. [19]))

tive. We choose the window function W (w*;w) =

(5.13) Ls(k*,w") =Re (L(n*,&;*) - z'y@wL(ls;*,&}*)),

6 S
where L(k,w) = —f/ u(k,w;x)e"™* s(x) dx. To compute 9, L(k,w), we introduce
Ty

the adjoint problem

(V —1K) - (V —1k)v(k, w; X) + w?p(x)v(k, w; X) = —we™7s(x) x € R?,

(5.14)
v(Kk,w;x +e) =v(k,w;X) ec A
Then
6 120
(5.15) JyL(k,w)=—— [ v(Kk,w;x)s(x)dx+ — [ p(x)u(k,w;x)v(K,w;x) dX.
W Jy ™ Y

THEOREM 5.2. Lg(k*,w*) is Fréchet differentiable with respect to p(x). Let 6L
be the perturbation of Ls(Kk*,w*) when p(x) is perturbed by dp(x), then

(5.16) 0Ls(K*,w*) = Re/Y 5p(x)g(x) dx + O (||6p]?),
18



where

9(%) = (" + 29) u(k”, &% X)u(K", 57 )
T

12
@ )? (u @0 (&%) + (", B (k7,67 ) ).

In the above, wi (K, w;X) and wy(k,w;x) € H) ,(Y) satisfy

(5.17) (V=1kr) - (V—1k)w (K, w;x)

Wp(x)wi (K, w; x) = p(x)v(K,w; X),
(5.18) (V=) (V—1r)ws(k,w;x) + w2p(

x)we (K, w; x) = p(x)u(k, w; x).

Proof. A direct perturbation of (5.13) and (5.15) yields

0Ly =— g/ du(x) s(x) dx + by dv(x) s(x) dx

W Jy
(5.19)
12
+ =

5p(x)u(x)v(x) + p(x)du(x)v(x) + p(x)u(x)dv(x) dx

Y
In view of (5.2) and (5.14), du(x) and dv(x) satisfy
(V 41K) - (V 4 16)0u(x) + w?p(x)du(x) = —w?dp(x)u(x);
(V —1K) - (V —18)0v(x) + w?p(x)0v(x) = —w?dp(x)v(x).

The desired formula for g(x) is obtained by applying the Green’s second identity to
each pair (v, du), (u,0v), (Ju,w;) and (dv,ws), and substituting into (5.19). |

5.4.2. The Fréchet derivative of slope functions. In view of (5.9), the

Fréchet derivative of slope functions with respect to p(x) boils down to the Fréchet
derivative of ;" ) and ,ugw ) for i, j = o, e, which is obtained in what follows.

First, let ¢; € H, ,(Y) (i = o,e) be an eigenfunction at x = &* with norm
l¢illcz vy = 1 that satisfies (5.1a). Assume that p is perturbed by dp, then the
perturbation of the eigenfunction satisfies

(5.20) (V4 1") - (V + 16°)0; + (w*)2p00; = —2u*Gwpds — (w*)*5p6i + o)
In the above, the perturbation of the frequency is given by

(5.21) =2 /Y 5p()| i ()|? dx,

which follows from the relation (5.1a), (5.20) and the Green’s identity. Furthermore,
from [|¢s[|c2 (v) = [|¢i + 0¢illcz (v) =1, it can be deduced that

(5.22) (PO, i) = f%/ 5p(x)|¢ps(x)|* dx +1;  for some real number a;.
Y

LEMMA 5.3. Let d¢; be the perturbation of the eigenfunction that satisfies (5.20).
For any f € L2 ,(Y), there holds

(5.23) (661, f) = —(w*)? /Y 3p(x)¢i(x)v(x) dx + 1c; (61, f) + ol ),
where «; is defined in (5.22), and v € H,, (Y satisfies

(5.24) (V+6™) - (V41" v+ (w)2pv 4+ 2(w*)%p (pv,¢:) s = [ inY.
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The proof of Lemma 5.3 uses the adjoint state method and it is provided in the
supplementary materials. Note that we introduce the projection term 2(w*)%p (pv, ¢;) ¢;
in (5.24) such that the boundary value problem attains a unique solution in ) ,(Y).
This is necessary for computational purpose as w* is the eigenfrequency that satisfies
(5.1a), and the differential operator (V +1x*) - (V +15*) + (w*)?p attains a nontrivial
kernel.

THEOREM 5.4. Let
Ji(p) = (i, ¢i),  J2(p) == (Owdi, @) J3(p) = (Oko, de)-
Then Jpm(p) (m =1,2,3) is Fréchet differentiable and there holds

)
Ji(p+dp) = Ji(p) + (6p, gi) + o ([[dpl]),
(5.25)  Ja(p +dp) = J2(p) + (dp, gir) + o (ldp]]) ,
J3(p + 5[)) = Js(p) + <5p, goek> + Zao<¢m 8k¢e> - Zae<ak¢oa ¢e> +o (H(Sp”) ’

where

gi(x) = —2(w*)? - Re {(ﬁi(x)vi(x)} ,
(5.26) gin(x) = 20(w*)? - Im{d)i(x)vik(x)} :

goek(x) = (W*)2 : (d)o(x)veok(X) - mvoek<x))~

In the above, v;, vir, and vji, solves (5.24) with f = ¢;, Ox¢i, and Or¢;, respectively.
Proof. A direct perturbation of J(p) yields

Ju(p+ ) — Ji(p) = 2Re(56,, 6:) + o(||5p])
=-—2@f>2-Re/L5poo¢xxﬂ265dx-romamn.

Similarly,

Jo(p+dp) — J2(p) = (Ok(6¢), di) + (Ondi, d0s) + o(||0p]])
= —(0¢i, Ok i) + (Oki, 6¢:) + o([[0p]|)

= 2t { | 310Gl B i + o)

where we have used the fact that Re{¢;, Ox¢;) = 0. The perturbation of J3(p) follows
in parallel. 0

5.5. Numerical examples. In all examples, it is assumed that 1 < p(x) < 20.
We discretize the boundary value problem (5.2) and the adjoint problems (5.17),
(5.18), (5.24) using the finite element method over a triangular mesh of size h = 1/n,
as shown in Figure 5.1 (Left). The dielectric function p(x) is assumed to be constant
over each small square consisting of two small triangles. To generate the Bloch modes
1, and 1), that satisfy the desired parity specified in (G1)(G2), we choose the dipole
sources s, and s, in the form of s;(x) = 23:1 a;;0(x —yij) (i = o,e) such that
Yi1 + Yi2 is located on the symmetry axis. Furthermore, the coefficients «;; satisfy
Qo1 = —Qp2 = 1 and a1 = aey = 1 for the odd and even mode respectively. The last
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Fic. 5.1. Left: The triangular mesh used to discretize the PDEs over the unit cell. Middle and
Right: The dipole source locations y;1 and y;o (i = o,e) when the symmetry axis is horizontal.

two rows of Tables 5.1-5.2 collect the dipole locations that are used in the numerical
computation when k* is on XM, I'’X and X M respectively. The corresponding LDOS
function L, (k,w) is computed via the formulas (5.13) - (5.15), wherein u(x) and v(x)
solves (5.2) and (5.14) respectively with the desired dipole sources s;(x).

When solving the optimization problems (5.11) and (5.12), for simplicity we start
with an initial guess with a constant dielectric function p(x) = 5 and set a tolerance
value of € = 107 on either the relative change on step size or the objective function
value. In each iteration, the gradient for the LDOS functions L, (k,w) (i = 0, €) and
the slope functions p+(p;) (j = 1,2) is computed via (5.16) and (5.25).

The penalization parameter A in (5.12) is given in second row of Tables 5.1-
5.2 for various k*. Figures 5.2, 5.5 and 5.7 demonstrate the Dirac cones that are
obtained at the desired (k*,w*) by solving the optimization problems (5.11) and
(5.12) sequentially. Let p* = min{|p+(p1)|, |p+(p2)|} be the minimum of the cone
slope value along the directions p; and po, wherein py (&) is defined in (5.9). The
third row of Tables 5.1-5.2 collects the the minimum slope value for each pair of the
Dirac cones in Figures 5.2, 5.5 and 5.7. For completeness, we also plot the optimized
solution for the dielectric function p(x) in Figure 5.3, 5.6 and 5.7. To show the swap
the parity of the Bloch mode ¥(k,w; x) before and after crossing of the spectral bands
at the Dirac point (k*,w™*), in Figure 5.4 we plot the ¥(k,w;x) for the second and
third band near the Dirac point (k*,w*) when k* = (7,0.37) and w* = 2.0.

TABLE 5.1
The penalization parameter \ (second row), the minimum slope value p* for the Dirac cones
(third row), and the dipole sources locations (fourth and fifth row) when k* = (w,k*7). Xc =

%(el + e2) is the center of the unit cell.

K" 0.1 0.2 0.3 0.4 0.5 | 0.6 0.7 | 0.8 | 0.9
A 50 50 50 50 100 | 100 50 50 50
w* 1008|016 | 0.21 | 0.22 | 0.23 | 0.16 | 0.11 | 0.08 | 0.07
Yoi | Yo,; =Xc+0.3p1 =0.1p2 Yo,; = Xc + 0.3p1 £0.15p>
Yej | Yej =Xc—0.3p1 £0.2py Yej = Xc — 0.3p1 +0.2py
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Fic. 5.2. Dirac point at (kK*,w*) wherein k* = (7,k*7) € XM and k* =0.1,0.2,---,0.9, and
w* = 2.0. The Dirac point is formed by the 2nd and 3rd band.
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Fic. 5.3. The dielectric function p(x) that generates the Dirac point in Figure 5.2 for k* =
0.3,0.6, and 0.9.
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Fi1c. 5.4. The real part of the 2nd and 3rd Bloch mode ¢ (k,-) with the optimized dielectric
function p(x) solved at k* = (m,0.37), which is plotted in Figure 5.3 (left). (a)(b): kK = K* — 155 P1;
(c)(d): & = K* + 1551 The parity of the Bloch modes ¥(k,-) swaps before and after crossing of
the 2nd and 3rd spectral band at the Dirac point (k*,w™).

22



TABLE 5.2
The penalization parameter \ (second row), the minimum slope value p* for the Dirac cones
(third row), and the dipole sources locations (fourth and fifth row) when k* = (k*m,0).

K* 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 | 0.9
A 1000 | 1000 | 2500 | 1000 | 2000 | 500 | 500 | 100 | 800
uw* 0.02 | 0.11 | 0.10 0.26 0.34 | 0.38 | 0.40 | 0.37 | 0.2
Yoi | Yo =Xc+0.15p; £0.1ps Yo,; = Xc +0.15p; £0.1p2
Yei | Ye,j = Xc— 0.25p1 = 0.15p2 Ye,; = X — 0.15p1 £ 0.15p2

TABLE 5.3
The penalization parameter \ (second row), the minimum slope value p* for the Dirac cones
(third row), and the dipole sources locations (fourth and fifth row) when k* = (k*m, K*T).

K* 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
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Yo Yo1 =X+ 0.3p1 +0.2p2, yo2 =%+ 0.3p1 —0.2p2
Ye,j Ye,1 = Xe — 0.3p1 +0.2p2,  ye2 =% —0.3p; — 0.2py

|
|
|
i
°
op
it
|
|
|
i
°
S
op
fre

1
9
1

. 05 2
o - X P X -
01 03 04 04 01 05

. T———— . T T 08 . — ¥
o -01 06 0 -01 07 0 -01 08

2%
°
g

op

26

Fic. 5.5. Dirac point at (k*,w*) wherein k* = (k*m,0) € 'X and v* = 0.1,0.2,---,0.9.
w* = 2.7 for k* = 0.1 and w* = 3.0 otherwise. The Dirac point is formed by the 3rd and 4th band.

[3] H. AMMARI, H. KANG, AND H. LEE, Layer Potential Techniques in Spectral Analysis, Mathe-
matical Surveys and Monographs, Vol. 153, Amer. Math. Soc., Rhode Island, 2009.

[4] G. BERKOLAIKO AND A. COMECH, Symmetry and Dirac points in graphene spectrum, J. Spectr.
Theor., 8 (2018), 1099-1147.

[5] M. CAsSIER AND M. WEINSTEIN, High contrast elliptic operators in honeycomb structures,
Multiscale Model. & Sim., 19 (2021), 1784-1856.

23



20

Fi1c. 5.6. The dielectric function p(x) that generates the Dirac point in Figure 5.5 for k* =
0.3,0.6, and 0.9.
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Fi1c. 5.7. Dirac point at (k*,w*), where k* = (k*m,k*m) € M with k* = 0.1,0.2,---,0.9.
w* = 3.9 for k* = 0.1, w* = 3.8 for k* = 0.2, and w* = 3.0 otherwise. The Dirac point is formed
by the 6th and 7th bands for k* = 0.1,0.2, and by the 4th and 5th bands otherwise.
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Fic. 5.8. The dielectric function p(x) that generates the Dirac point in Figure 5.7 for k* =
0.3,0.6, and 0.9.

24



A. DrROUOT AND M. WEINSTEIN, Edge states and the valley Hall effect, Adv. Math., 368 (2020):
107142.

C. FEFFERMAN AND M. WEINSTEIN, Honeycomb lattice potentials and Dirac points, J. Amer.
Math. Soc., 25 (2012), 1169-1220.

C. FEFFERMAN, J. LEE-THORP, AND M. WEINSTEIN, Honeycomb Schridinger operators in the
strong binding regime, Commun. Pur. Appl. Math., 6 (2018), 1178-1270.

J. P. LEE-THORP, M. I. WEINSTEIN, AND Y. ZHU, Elliptic operators with honeycomb symmetry:
Dirac Points, edge states and applications to photonic graphene, Arch. Ration. Mech. An.,
232 (2019), 1-63.

V. GRUSHIN, Multiparameter perturbation theory of Fredholm operators applied to Bloch func-
tions, Math. Notes, 86 (2009), 767-774.

F. HALDANE AND S. RAGHU, Possible realization of directional optical waveguides in photonic
crystals with broken time-reversal symmetry, Phys. Rev. Lett., 100 (2008), 013904.

M. Z. HasaN AND C. L. KANE, Colloquium: topological insulators, Rev Mod. Phys., 82 (2010):
3045-3067.

G. Hsiao AND W. L. WENDLAND, Boundary Integral Equations, Applied Mathematical Sci-
ences, Vol. 164, Springer Berlin Heidelberg, 2008.

R. KELLER, J. MARzZUOLA, B. OSTING, AND M. WEINSTEIN, Spectral band degeneracies of g-
rotationally invariant periodic Schrédinger operators, Multiscale Modeling & Simulation,
16 (2018), 1684-1731.

A. KHANIKAEV, ET AL., Photonic topological insulators, Nat. Mater., 12 (2013), 233-239.

R. KRESS, Linear Integral Equations (3rd edition), Applied Mathematical Sciences, Vol. 82,
Springer.

P. KUuCHMENT AND O. PoST, On the spectra of carbon nano-structures, Comm. Math. Phys.,
275 (2007), 805-826.

M. LEE, Dirac cones for point scatterers on a honeycomb lattice, STAM J. Math. Anal., 48
(2016), 1459-1488.

X. Liang and S. Johnson, Formulation for scalable optimization of microcavities via the
frequency-averaged local density of states, Opt. Express, 21 (2013), 30812-30841.

J. LIN AND H. ZHANG, Mathematical theory for topological photonic materials in one dimension,
J. Phys. A: Math. Theor., 55 (2022): 495203.

W. L1, J. LiN, J. Quu, AND H. ZHANG, Interface Modes in Honeycomb Topological Photonic
Structures with Broken Reflection Symmetry, 2024, arXiv:2405.03238.

W. L1, J. LIN, AND H. ZHANG, Dirac points for the honeycomb lattice with impenetrable obsta-
cles, SIAM J. Appl. Math., 83 (2023): 1546-1571.

L. Lu, J. JOANNOPOULOS, AND MARIN SoOLJACIC, Topological photonics, Nat. Photonics, 8
(2014), 821-829.

T. Ma AND G. SHVETS, All-Si valley-Hall photonic topological insulator, New J. Phys., 18
(2016), 025012.

M. MAKWANA, R. CRASTER, AND S. GUENNEAU, Topological beam-splitting in photonic crystals,
Opt. Express, 27 (2019), 16088-16102.

T. OcHIAl AND M. ONODA, Photonic analog of graphene model and its extension: Dirac cone,
symmetry, and edge states, Phys. Rev. B, 80 (2009), 155103.

T. OzAWA, ET AL. Topological photonics, Rev. Mod. Phys., 91 (2019), 015006.

S. RAGHU AND F. D. M. HALDANE, Analogs of quantum-Hall-effect edge states in photonic
crystals, Phys. Rev. A, 78 (2008), 033834.

M. RECHTSMAN, ET AL., Photonic Floquet topological insulators, Nature, 496 (2013), 196-200.

J. C. SLoNCZEWSKI AND P. R. WEIss, Band structure of graphite, Phys. Rev., 109 (1958),
272-279.

D. TORRENT AND J. SANCHEZ-DEHESA, Acoustic analogue of graphene: observation of Dirac
cones in acoustic surface waves, Phys. Rev. Lett., 108 (2012), 174301.

P. WALLACE, The band theory of graphite, Phys. Rev., 71 (1947), 622-634.

L. Wu AND X. Hu, Scheme for achieving a topological photonic crystal by using dielectric
material, Phys. Rev. Lett., 114 (2015), 223901.

Z. YANG, ET AL. Topological acoustics, Phys. Rev. Lett., 114 (2015), 114301.

R. BRAYTON, S. DIRECTOR, G. HACHTEL AND L. VIDIGAL, A new algorithm for statistical
circuit design based on quasi-newton methods and function splitting, IEEE Transactions
on Circuits and Systems, 26 (1979), 784-794.

25



	Introduction
	Main contribution of this work

	Integral equation formulation for the eigenvalue problem (1.3)
	Dirac point on X
	Eigenvalues as the characteristic values of an infinite linear system
	Decomposition of the Green's function and the single-layer operator  Sbold0mu mumu subsection, 
	Decomposition of the matrix Ai
	The decomposition for Ao
	The decomposition for Ae

	Characteristic equations
	Degeneracy of the eigenvalue
	The conical singularity for the dispersion surface near (bold0mu mumu *, *)

	Dirac point on M and XM
	Dirac point on M
	Dirac point on XM

	Inverse design of Dirac points
	The local density-of-state (LDOS) method
	Slope of the dispersion surface
	The optimization framework
	Implementation details
	The computation of the LDOS function and the Fréchet derivative
	The Fréchet derivative of slope functions

	Numerical examples

	References

