Fano resonance for a periodic array of perfectly conducting narrow slits

Junshan Lin∗ Stephen P. Shipman† and Hai Zhang‡

Abstract

This work concerns resonant scattering by a perfectly conducting slab with periodically arranged subwavelength slits, with two slits per period. There are two classes of resonances, corresponding to poles of a scattering problem. A sequence of resonances has an imaginary part that remains nonzero and on the order of the width $\varepsilon$ of the slits; these are associated with Fabry-Perot resonance, with field enhancement of order $1/\varepsilon$ in the slits. The focus of this study is another class of resonances which become real valued at normal incidence, when the Bloch wavenumber $\kappa$ is zero. These are embedded eigenvalues of the scattering operator restricted to a period cell, and the associated eigenfunctions extend to surface waves of the slab that lie within the radiation continuum. When $0 < |\kappa| \ll 1$, the real embedded eigenvalues will be perturbed as complex-valued resonances, which induce the Fano resonance phenomenon. We derive the asymptotic expansions of embedded eigenvalues and their perturbations as resonances when the Bloch wavenumber becomes nonzero. Based on the quantitative analysis of the diffracted field, we prove that the Fano-type anomalies occurs for the transmission of energy through the slab, and show that the field enhancement is of order $1/(\kappa\varepsilon)$, which is stronger than Fabry-Perot resonance.

Keywords: Embedded eigenvalues, Fano resonance, electromagnetic field enhancement, subwavelength structure, Helmholtz equation.

1 Introduction

Fano resonance, which was initially recognized in the study of the autoionizing states of atoms in quantum mechanics [10], is a type of resonant scattering that gives rise to asymmetric spectral line shapes. Fano resonance has been extensively explored more recently in photonics due to its unique resonant feature of a sharp transition from total transmission to total reflection, which leads to the design of efficient optical switching devices and photonic devices.

∗Department of Mathematics and Statistics, Auburn University, Auburn, AL 36849 (jzl0097@auburn.edu). Junshan Lin was partially supported by the NSF grant DMS-1719851.
†Department of Mathematics, Louisiana State University, Baton Rouge, LA 70803 (shipman@lsu.edu).
‡Department of Mathematics, HKUST, Clear Water Bay, Kowloon, Hong Kong (haizhang@ust.hk). Hai Zhang was supported by HK RGC grant GRF 16304517 and GRF 16306318.
Figure 1: Geometry of the periodic slit scattering problem on the $x_1 x_2$ plane. Each period consists of two subwavelength slits $S_0^{i-\varepsilon}$ and $S_0^{i+\varepsilon}$, which have a rectangular shape of length 1 and width $\varepsilon$. The upper and lower aperture of the slit $S_0^{i+\varepsilon}$ is denoted as $\Gamma_1^{+}\varepsilon$ and $\Gamma_2^{+}\varepsilon$, respectively. The domain exterior to the perfect conductor is denoted as $\Omega_\varepsilon$, which consists of the slit region $S_\varepsilon$, the domains above the slab $\Omega_1$, and the domain below the slab $\Omega_2$.

with high quality factors. We refer the readers to [13, 22, 24] and the references therein for detailed discussions. Mathematically, Fano resonance is associated with certain eigenvalues embedded in the continuous (radiation) spectrum of the underlying differential operators and the corresponding bound states in the continuum (sometimes called BIC) [14, 15, 25, 30]. The existence of embedded eigenvalues in photonic slab structures is treated in [3, 26, 27]. Guided-mode theory [11], analytic perturbation theory [25, 28], and an augmented scattering matrix method [6] have been used to study the Fano resonant transmission for several configurations when the Bloch wave vector is perturbed and the bound states associated with the embedded eigenvalues become quasi-modes.

For photonic structures, the quantitative studies of embedded eigenvalues and Fano resonance mostly rely on numerical approaches. In this paper, we derive explicitly the embedded eigenvalues and provide quantitative analysis of their perturbations as resonances in the context of periodic metallic structures with small holes. Based on these explicit expressions, we are able to obtain the transmission and reflection for the scattering of the metallic structure, which allow us to prove the appearance of Fano-type resonance phenomenon rigorously. The study in this paper is also in line with our recent attempt to understand the so-called extraordinary optical transmission (EOT) in subwavelength hole structures [8, 12]. We also refer to [4, 5] for resonant scattering by closely related cavity structures in perfect conductors.

In a series of studies [18, 21], we have established rigorous mathematical theories for the EOT and field enhancement in narrow slit structures perforated in a perfectly conducting metallic slab. Both a single slit structure and a periodic array of slit structures in various scaling regimes were considered. The structures in the present work exhibit an infinite set of resonances similar to those, in which the imaginary part of the complex frequency remains nonzero, resulting in Fabry-Perot type resonance. But they also exhibit a finite set of real resonances, which are the eigenvalues mentioned above. They occur when the Bloch wavenumber $\kappa$ is zero, and they move away from the real axis when $\kappa$ becomes nonzero. We show that the field enhancement associated with these resonances is stronger than for the resonant frequencies that remain non-real. This resonance is known as Fano resonance, and
Figure 2: Left: Transmission $|T|$ when $d = 1$, $d_0 = 0.4$, $\varepsilon = 0.05$, $\kappa = 0.1$. An asymmetric line shape occurs near $k = 2.83$. Right: Zoomed view of Fano resonance.

it is associated with sharp anomalies in the transmission of energy across the slab. For the purely Fabry-Perot resonance, the amplification is on the order inversely proportional to the width $\varepsilon$ of the slits, uniformly in $\kappa$, whereas for the perturbed eigenvalues, the resonance is on the order of $1/(\kappa \varepsilon)$.

To be more specific, we consider a periodic slab structure with narrow slits as shown in Figure 1, where each period contains two identical slits. In Figure 2, the transmission coefficient across the slab exhibits an asymmetric shape, with peak and dip at very close frequencies. The perfectly conducting metallic slab occupies the domain $\{x = (x_1, x_2); 0 < x_2 < 1\}$ in the $x_1x_2$ plane. The domain above and below the metallic slab are denoted by $\Omega_1$ and $\Omega_2$ respectively. The slits, which are perforated in the metallic slab and invariant along the $x_3$ direction, occupy the region $S_\varepsilon = \bigcup_{n=0}^{\infty} (S_\varepsilon^{(0)} + nd)$, where $d$ is the size of the period and $S_\varepsilon^{(0)}$ consists of two subwavelength slits $S_\varepsilon^{0,-}$ and $S_\varepsilon^{0,+}$. The slits $S_\varepsilon^{0,-}$ and $S_\varepsilon^{0,+}$ are given by

$$S_\varepsilon^{0,-} := \{(x_1, x_2) \mid - \frac{d_0 + \varepsilon}{2} < x_1 < - \frac{d_0 - \varepsilon}{2}, \ 0 < x_2 < 1\}$$

and

$$S_\varepsilon^{0,+} := \{(x_1, x_2) \mid \frac{d_0 - \varepsilon}{2} < x_1 < \frac{d_0 + \varepsilon}{2}, \ 0 < x_2 < 1\}.$$

Denote the upper and lower apertures of the slit $S_\varepsilon^{0,\pm}$ by $\Gamma_{1,\varepsilon}^{\pm}$ and $\Gamma_{2,\varepsilon}^{\pm}$ and exterior domain of the metallic structure by $\Omega_\varepsilon = \Omega_1 \cup \Omega_2 \cup S_\varepsilon$.

We will consider the time-harmonic transverse magnetic (TM) situation. The incident magnetic field is perpendicular to the $x_1x_2$ plane and its $x_3$ component is the scalar function

$$u^{\text{inc}}(x) = e^{ik(x_1 \sin \theta - (x_2 - 1) \cos \theta)} = e^{i\zeta_0 x_1 - i\zeta_0 x_2}, \quad (1.1)$$

in which $k$ is the free-space wavenumber, $\theta \in (-\pi/2, \pi/2)$ is the angle of incidence, $\kappa = k \sin \theta$ is the Bloch wavenumber, and $\zeta_0 = \sqrt{k^2 - \kappa^2} > 0$. The total field $u(x)$ satisfies the following

$$u(x) = u^{\text{inc}}(x) + u^{\text{scat}}(x),$$

where $u^{\text{scat}}(x)$ is the scattered field.
scattering problem:
\[
\begin{align*}
\Delta u_\varepsilon + k^2 u_\varepsilon &= 0 \quad \text{in } \Omega_\varepsilon, \quad (1.2) \\
\frac{\partial u_\varepsilon}{\partial \nu} &= 0 \quad \text{on } \partial \Omega_\varepsilon, \quad (1.3) \\
u_\varepsilon(x_1 + d, x_2) &= e^{i\kappa d} u_\varepsilon(x_1, x_2), \quad (1.4) \\
u_\varepsilon(x_1, x_2) &= u_\text{inc}(x_1, x_2) + \sum_{n=-\infty}^{\infty} u_{n,1}^s e^{i\kappa_n x_1 + i\zeta_n x_2} \quad \text{in } \Omega_1, \quad (1.5) \\
u_\varepsilon(x_1, x_2) &= \sum_{n=-\infty}^{\infty} u_{n,2}^s e^{i\kappa_n x_1 - i\zeta_n x_2} \quad \text{in } \Omega_2. \quad (1.6)
\end{align*}
\]

Equation (1.2) is the Helmholtz partial differential equation, with \(\Delta = \frac{\partial^2}{\partial x_1^2} + \frac{\partial^2}{\partial x_2^2}\). Equation (1.3) is the Neumann boundary condition, with \(\nu\) the unit normal vector pointing to \(\Omega_\varepsilon\). Equation (1.4) expresses the quasi-periodic property, which is consistent with the incident field. The series in (1.5) and (1.6) are the Rayleigh-Bloch (Fourier) expansions for outgoing, or radiating, fields (cf. [2, 3, 27]), in which the coefficients \(u_{n,i}^s\) are complex amplitudes. The constants \(\kappa_n\) and \(\zeta_n\) are defined by
\[
\kappa_n = \kappa + \frac{2\pi n}{d} \quad \text{and} \quad \zeta_n = \zeta_n(k, \kappa) = \sqrt{k^2 - \kappa_n^2}, \quad (1.7)
\]
where the domain of the analytic square root function is taken to be \(\mathbb{C}\setminus\{-it : t \geq 0\}\), with \(\sqrt{1} = 1\). With this choice of square root,
\[
\zeta_n(k, \kappa) = \begin{cases} 
\sqrt{k^2 - \kappa_n^2}, & \text{if } |\kappa_n| \leq k, \\
i\sqrt{k^2 - \kappa_n^2}, & \text{if } |\kappa_n| \geq k.
\end{cases} \quad (1.8)
\]
The Rayleigh modes with \(|\kappa_n| < k\) are propagating, and the modes with \(|\kappa_n| > k\) are evanescent. The case of \(\zeta_n = 0\) is delicate, but we won’t be concerned with it since we are interested in the regime in which \(\zeta_n\) is real for \(n = 0\) and nonzero imaginary for \(n \neq 0\) (cf. 3.1).

By applying layer potential techniques and asymptotic analysis, we aim to

(i) provide quantitative analysis of the embedded eigenvalues for the homogeneous scattering problem (1.2)–(1.6) when \(\kappa = 0\), and their perturbations as resonances when \(\kappa \neq 0\) (Theorems 4.5 and 4.9);

(ii) give a rigorous proof of Fano resonant transmission anomalies as shown in Figure 2 for the periodic structure (Theorem 5.6);

(iii) characterize the corresponding field amplification at Fano resonance (Theorem 5.8).

The rest of the paper is organized as follows. We present an equivalent integral equation formulation for the scattering problem (1.2)–(1.6) in Section 2. In Section 3, we derive the asymptotic expansions of the integral operators. The asymptotic analysis of the embedded eigenvalues when \(\kappa = 0\) and their perturbations when \(\kappa \neq 0\) is given Section 4. The Fano resonance and the corresponding field enhancement is analyzed in Section 5.
2 Boundary-integral formulation

The scattering problem \((1.2) - (1.6)\) can be formulated equivalently as a system of boundary-integral equations. The development in this section is standard.

Due to the quasi-periodicity of the solution, one can restrict the Bloch wave number \(\kappa\) to the first Brillouin zone \(\kappa \in (-\pi/d, \pi/d]\). Note that our incident field is the propagating harmonic for \(n = 0\). For each fixed \(\kappa \in (-\pi/d, \pi/d]\), let \(g(x, y) = g(k, \kappa; x, y)\) be the quasi-periodic Green function, which satisfies the equation

\[
\Delta g(x, y) + k^2 g(x, y) = e^{ik(x_1 - y_1)} \sum_{n=-\infty}^{\infty} \delta(x_1 - y_1 - nd)\delta(x_2 - y_2),
\]

with \(x = (x_1, x_2)\) and \(y = (y_1, y_2)\) in \(\mathbb{R}^2\). Its Rayleigh-Bloch expansion (cf. [23]) is

\[
g(k, \kappa; x, y) = -\frac{i}{2d} \sum_{n=-\infty}^{\infty} \frac{1}{\zeta_n(k, \kappa)} e^{ik(x_1 - y_1) + i\kappa_n |x_2 - y_2|}. \tag{2.1}
\]

The exterior Green functions for the domains \(\Omega_1\) and \(\Omega_2\) above and below the slab with the Neumann boundary condition \(\partial g^e(\kappa; x, y)/\partial \nu_y = 0\) along the boundaries \(\{y_2 = 1\}\) and \(\{y_2 = 0\}\) are equal to \(g_e^e(x, y) = g_e^e(k, \kappa; x, y) = g(k, \kappa; x, y) + g(k, \kappa; x', y)\), where

\[
x' = \begin{cases} (x_1, 2 - x_2) & \text{if } x, y \in \Omega_1, \\ (x_1, -x_2) & \text{if } x, y \in \Omega_2. \end{cases}
\]

The interior Green functions \(g^{i,\pm}_e(x, y)\) in the slits \(S^{0,\pm}_e\) with the Neumann boundary condition are

\[
g^{i,\pm}_e(k; x, y) := g^{i,0}_e(k; x_1 + \frac{d_0}{2}, y_1 + \frac{d_0}{2}, x_2, y_2),
\]

in which \(g^{i,0}_e(k; x, y)\) satisfies

\[
\Delta g^{i,0}_e(k; x, y) + k^2 g^{i,0}_e(k; x, y) = \delta(x - y), \quad x, y \in (-\frac{\varepsilon}{2}, \frac{\varepsilon}{2}) \times (0, 1),
\]

and it can be expressed explicitly as

\[
g^{i,0}_e(k; x, y) = \sum_{m,n=0}^{\infty} c_{mn} \phi_{mn}(x) \phi_{mn}(y),
\]

in which \(c_{mn} = [k^2 - (m\pi / \varepsilon)^2 - (n\pi)^2]^{-1}\),

\[
\phi_{mn} = \sqrt{\frac{a_{mn}}{\varepsilon}} \cos \left(\frac{m\pi}{\varepsilon} \left(x_1 + \frac{\varepsilon}{2}\right)\right) \cos(n\pi x_2),
\]

and

\[
a_{mn} = \begin{cases} 1 & m = n = 0, \\ 2 & m = 0, n \geq 1 \text{ or } n = 0, m \geq 1, \\ 4 & m \geq 1, n \geq 1. \end{cases}
\]

Applying Green’s theorem in the reference period \(\Omega^{(0)} := \{x \in \mathbb{R}^2 \mid -\frac{d}{2} < x_1 < \frac{d}{2}\}\) yields the following lemma for the total field \(u_e\).
Lemma 2.1 Let $u_\varepsilon(x)$ be the solution of the scattering problem $[1.2] - [1.6]$, then

$$\begin{align*}
    u_\varepsilon(x) &= \int_{\Gamma^+_{1,\varepsilon}\cup\Gamma^-_{1,\varepsilon}} g^\varepsilon(x, y) \frac{\partial u_\varepsilon(y)}{\partial y_2} \, ds_y + \int_{\Gamma^-_{1,\varepsilon}} g^\varepsilon(x, y) \frac{\partial u_\varepsilon(y)}{\partial y_2} \, ds_y + \int_{\Gamma^+_{1,\varepsilon}} g^\varepsilon_-(x, y) \frac{\partial u_\varepsilon(y)}{\partial y_2} \, ds_y + u^{\text{inc}}(x) + u^{\text{refl}}(x) \quad \text{for } x \in \Omega^{(0)} \cap \Omega_1, \\
    u_\varepsilon(x) &= -\int_{\Gamma^+_{2,\varepsilon}\cup\Gamma^-_{2,\varepsilon}} g^\varepsilon(x, y) \frac{\partial u_\varepsilon(y)}{\partial y_2} \, ds_y \quad \text{for } x \in \Omega^{(0)} \cap \Omega_2, \\
    u_\varepsilon(x) &= -\int_{\Gamma^-_{1,\varepsilon}} g^{i_\varepsilon}(x, y) \frac{\partial u_\varepsilon(y)}{\partial y_2} \, ds_y + \int_{\Gamma^-_{1,\varepsilon}} g^{i_\varepsilon}(x, y) \frac{\partial u_\varepsilon(y)}{\partial y_2} \, ds_y \quad \text{for } x \in S_\varepsilon^{0_-}, \\
    u_\varepsilon(x) &= -\int_{\Gamma^+_{1,\varepsilon}} g^{i_\varepsilon}(x, y) \frac{\partial u_\varepsilon(y)}{\partial y_2} \, ds_y + \int_{\Gamma^+_{1,\varepsilon}} g^{i_\varepsilon}(x, y) \frac{\partial u_\varepsilon(y)}{\partial y_2} \, ds_y \quad \text{for } x \in S_\varepsilon^{0_+}.
\end{align*}$$

Here, $u^{\text{refl}}(x) = e^{i(x_1 + \phi(x_2 - 1))}$ is the reflected field of the ground plane $\{x_2 = 1\}$ without the slits.

Taking the limit of layer potentials in the above lemma to the slit apertures and imposing the continuity condition leads to the following system of integral equations:

$$\begin{align*}
    &\int_{\Gamma^+_{1,\varepsilon}\cup\Gamma^-_{1,\varepsilon}} g^\varepsilon(x, y) \frac{\partial u_\varepsilon(y)}{\partial y_2} \, ds_y + \int_{\Gamma^-_{1,\varepsilon}} g^{i_\varepsilon}(x, y) \frac{\partial u_\varepsilon(y)}{\partial y_2} \, ds_y - \int_{\Gamma^+_{1,\varepsilon}} g^{i_\varepsilon}(x, y) \frac{\partial u_\varepsilon(y)}{\partial y_2} \, ds_y + u^{\text{inc}}(x) + u^{\text{refl}}(x) = 0, \\
    &\int_{\Gamma^+_{1,\varepsilon}\cup\Gamma^-_{1,\varepsilon}} g^\varepsilon(x, y) \frac{\partial u_\varepsilon(y)}{\partial y_2} \, ds_y + \int_{\Gamma^-_{1,\varepsilon}} g^{i_\varepsilon}(x, y) \frac{\partial u_\varepsilon(y)}{\partial y_2} \, ds_y - \int_{\Gamma^+_{1,\varepsilon}} g^{i_\varepsilon}(x, y) \frac{\partial u_\varepsilon(y)}{\partial y_2} \, ds_y + u^{\text{inc}}(x) + u^{\text{refl}}(x) = 0, \\
    &\int_{\Gamma^+_{2,\varepsilon}\cup\Gamma^-_{2,\varepsilon}} g^\varepsilon(x, y) \frac{\partial u_\varepsilon(y)}{\partial y_2} \, ds_y - \int_{\Gamma^-_{2,\varepsilon}} g^{i_\varepsilon}(x, y) \frac{\partial u_\varepsilon(y)}{\partial y_2} \, ds_y + \int_{\Gamma^+_{2,\varepsilon}} g^{i_\varepsilon}(x, y) \frac{\partial u_\varepsilon(y)}{\partial y_2} \, ds_y = 0, \\
    &\int_{\Gamma^+_{2,\varepsilon}\cup\Gamma^-_{2,\varepsilon}} g^\varepsilon(x, y) \frac{\partial u_\varepsilon(y)}{\partial y_2} \, ds_y - \int_{\Gamma^-_{2,\varepsilon}} g^{i_\varepsilon}(x, y) \frac{\partial u_\varepsilon(y)}{\partial y_2} \, ds_y + \int_{\Gamma^+_{2,\varepsilon}} g^{i_\varepsilon}(x, y) \frac{\partial u_\varepsilon(y)}{\partial y_2} \, ds_y = 0,
\end{align*}$$

for $x \in \Gamma^-_{1,\varepsilon}$,

$$\begin{align*}
    &\int_{\Gamma^+_{2,\varepsilon}\cup\Gamma^-_{2,\varepsilon}} g^\varepsilon(x, y) \frac{\partial u_\varepsilon(y)}{\partial y_2} \, ds_y - \int_{\Gamma^-_{2,\varepsilon}} g^{i_\varepsilon}(x, y) \frac{\partial u_\varepsilon(y)}{\partial y_2} \, ds_y + \int_{\Gamma^+_{2,\varepsilon}} g^{i_\varepsilon}(x, y) \frac{\partial u_\varepsilon(y)}{\partial y_2} \, ds_y = 0,
\end{align*}$$

for $x \in \Gamma^+_{2,\varepsilon}$.

The slit apertures are rescaled to the $\varepsilon$-independent variable $X \in I := (-\frac{1}{2}, \frac{1}{2})$ by

$$x_1 = \varepsilon X \pm \frac{d_0}{2} \quad \text{for } (x_1, 1) \in \Gamma^\pm_{1,\varepsilon} \text{ and } (x_1, 0) \in \Gamma^\pm_{2,\varepsilon}.$$

The following quantities will be used in the boundary-integral formulation of the scattering
The Green functions are also rescaled:

\[ G^e_\epsilon(X, Y) := g^e(\epsilon X + \frac{d_0}{2}, 1; \epsilon Y + \frac{d_0}{2}, 1) = g^e(\epsilon X, 0; \epsilon Y, 0) \]

\[ = -\frac{i}{d} \sum_{n=-\infty}^{\infty} \frac{1}{\zeta_n(k, \kappa)} e^{i\kappa_n \epsilon(X-Y)}, \]

\[ G^{e, \pm}_\epsilon(X, Y) := g^e(\epsilon X + \frac{d_0}{2}, 1; \epsilon Y + \frac{d_0}{2} + \epsilon Y, 1) = g^e(\epsilon X + d_0, 0; \epsilon Y, 0) \]

\[ = -\frac{i}{d} \sum_{n=-\infty}^{\infty} \frac{1}{\zeta_n(k, \kappa)} e^{i\kappa_n (\epsilon(X) \pm d_0)}, \]

\[ G^i_\epsilon(X, Y) := g^i_\epsilon(\epsilon X + \frac{d_0}{2}, 1; \epsilon Y + \frac{d_0}{2}, 1) = g^i_\epsilon(\epsilon X, 0; \epsilon Y, 0) \]

\[ = \epsilon^{-1} \sum_{m,n=0}^{\infty} c_{mn} a_{mn} \cos \left( m\pi(X + \frac{1}{2}) \right) \cos \left( m\pi(Y + \frac{1}{2}) \right); \]

\[ \tilde{G}^i_\epsilon(X, Y) := g^i_\epsilon(\epsilon X + \frac{d_0}{2}, 1; \epsilon Y + \frac{d_0}{2}, 0) = g^i_\epsilon(\epsilon X, 1; \epsilon Y, 0) \]

\[ = \epsilon^{-1} \sum_{m,n=0}^{\infty} (-1)^n c_{mn} a_{mn} \cos \left( m\pi(X + \frac{1}{2}) \right) \cos \left( m\pi(Y + \frac{1}{2}) \right). \]

Define the following rescaled boundary-integral operators for \( X \in I \):

\[ (T^e \varphi)(X) = \int_I G^e_\epsilon(X, Y) \varphi(Y) dY \quad (T^e \varphi)(X) = \int_I G^e_\epsilon(X, Y) \varphi(Y) dY \quad (T^e \varphi)(X) = \int_I G^e_\epsilon(X, Y) \varphi(Y) dY \]

\[ (T^i \varphi)(X) = \int_I G^i_\epsilon(X, Y) \varphi(Y) dY \quad (T^i \varphi)(X) = \int_I G^i_\epsilon(X, Y) \varphi(Y) dY \quad (T^i \varphi)(X) = \int_I G^i_\epsilon(X, Y) \varphi(Y) dY. \]

**Proposition 2.2** The system (2.2) is equivalent to the system \( \mathbb{T} \varphi = \epsilon^{-1} f \), in which

\[ \mathbb{T} = \begin{bmatrix} T^e + T^i & T^e, - & T^i \\ T^e, + & T^e + T^i & 0 \\ T^i & 0 & T^e \end{bmatrix}, \quad \varphi = \begin{bmatrix} \varphi_1^- \\ \varphi_1^+ \\ \varphi_2^- \\ \varphi_2^+ \end{bmatrix}, \quad f = \begin{bmatrix} 2f^- \\ 2f^+ \\ 0 \\ 0 \end{bmatrix} \]

and \( f^\pm (X) = -e^{i\kappa(\epsilon X \pm d_0/2)}. \)
3 Asymptotic expansion of the integral operators

The analysis in the rest of this paper will concern parameters $k$ and $\kappa$ such that $|\kappa| < \pi/d$ and $(\kappa + 2n\pi/d)^2 > k^2$ for all integers $n \neq 0$. In particular, $0 < k < 2\pi/d$. This is the parameter regime in which $\zeta_0$ is real and $\zeta_n$ is imaginary for $n \neq 0$, that is, there is exactly one propagating Rayleigh mode. In the $\kappa$-$k$ plane, it is a diamond-shaped region $D_1$,

$$D_1 = \{ (\kappa, k) : |\kappa| < \pi/d, 0 < k < |\kappa + 2n\pi/d| \text{ } \forall n \neq 0 \}. \tag{3.1}$$

The behavior of the rescaled Green functions to leading order in $\varepsilon$ and $|\kappa|$ is independent of $(X, Y)$, due to the logarithmic singularity. This will reduce the leading asymptotics of $[2.8]$ to a four-dimensional system involving the average field values on the ends of the slits $\Gamma_{i,\varepsilon}$. The following quantities, which depend on $k$, $\kappa$, and $\varepsilon$, describe this behavior.

$$\beta_0(k, \kappa, \varepsilon) = \frac{1}{\pi} \ln \frac{2\pi \varepsilon}{d} + \sum_{n \neq 0} \left( \frac{1}{2|n|} - \frac{i}{d} \frac{1}{\zeta_n(k, \kappa)} \right) - \frac{i}{d} \frac{1}{\zeta_0(k, \kappa)}, \tag{3.2}$$

$$\beta^-(k, \kappa) = -\frac{i}{d} \sum_{n=-\infty}^{\infty} \frac{1}{\zeta_n(k, \kappa)} e^{-i\kappa d_0}, \quad \beta^+(k, \kappa) = -\frac{i}{d} \sum_{n=-\infty}^{\infty} \frac{1}{\zeta_n(k, \kappa)} e^{i\kappa d_0}. \tag{3.3}$$

$$\beta_1(k, \varepsilon) = \frac{1}{\varepsilon k \tan k} + \frac{2 \ln 2}{\pi}, \quad \tilde{\beta}(k, \varepsilon) = \frac{1}{\varepsilon k \sin k}, \tag{3.4}$$

$$\beta(k, \kappa, \varepsilon) = \beta_0(k, \kappa, \varepsilon) + \beta_1(k, \varepsilon), \quad \gamma(k, \kappa, \varepsilon) = \beta(k, \kappa, \varepsilon) - \frac{1}{\varepsilon k \tan k} - \frac{1}{\pi} \ln \varepsilon. \tag{3.5}$$

The asymptotic expansions for the kernels $G^e_{\varepsilon}, G^e_{\varepsilon^-}, G^e_{\varepsilon^+}, G^i$ and $G^i$ are given in the following two lemmas.

**Lemma 3.1** For $|\kappa| \ll 1$ and $\varepsilon \ll 1$, if $k \in (0, 2\pi/d)$, then

$$G^e_{\varepsilon}(X, Y) = \beta_0(k, \kappa, \varepsilon) + \frac{1}{\pi} \ln |X - Y| + r_e(k, \varepsilon; X, Y), \tag{3.6}$$

$$G^e_{\varepsilon^-}(X, Y) = \beta^-(k, \kappa) + \rho^-(k, \varepsilon; X, Y), \tag{3.7}$$

$$G^e_{\varepsilon^+}(X, Y) = \beta^+(k, \kappa) + \rho^+(k, \varepsilon; X, Y). \tag{3.8}$$

Here $r_e$, $\rho^\pm$ are bounded functions with $r_e \sim O(\varepsilon)$ and $\rho^\pm \sim O(\varepsilon)$ for all $X, Y \in I$. In addition, the following holds:

(i) For $\kappa = 0$,

$$\beta^\pm_e(k, 0) = \hat{\beta}_0(k) := -\frac{i}{d} \frac{1}{\zeta_0(k)} - \sum_{n=1}^{\infty} \frac{2}{\sqrt{(2\pi n)^2 - (kd)^2}} \cos(\kappa_n d_0). \tag{3.9}$$

and

$$r_e(0, \varepsilon; X, Y) = \hat{r}_e(|X - Y|), \quad \rho^\pm(0, \varepsilon; X, Y) = \hat{\rho}(|\pm d_0 + \varepsilon(X - Y)|) \tag{3.10}$$

for some real-valued functions $\hat{r}_e$ and $\hat{\rho}$.  

8
(i) If $|\kappa| \ll 1$, then
\[ r_e(\kappa, \varepsilon; X, Y) = r_e(0, \varepsilon; X, Y) + O(\kappa \varepsilon), \quad \rho^{\pm}(\kappa, \varepsilon; X, Y) = \rho^{\pm}(0, \varepsilon; X, Y) + O(\kappa \varepsilon). \] (3.11)

**Proof.** We first derive the asymptotic expansion of $G^\varepsilon(X, Y)$. From the definition of the Green’s function, we see that
\[ G^\varepsilon(X, Y) = \frac{1}{d} \sum_{n \in \mathbb{Z}} \frac{1}{i\zeta_n(k, \kappa)} e^{i\kappa \varepsilon (X - Y)}. \] (3.12)

Set $a = 2\pi/d$, and $Z = X - Y$. For $n \neq 0$, from the definition of $\zeta_n$, one can write
\[ \frac{1}{i\zeta_n(k, \kappa)} = -\frac{1}{a|n|} \left( \sqrt{1 + \frac{2\kappa}{an} + \frac{\kappa^2 - k^2}{(an)^2}} \right)^{-1}. \] (3.13)

For $(\kappa, k) \in D_1$, we have
\[ \left| \frac{2\kappa}{an} + \frac{\kappa^2 - k^2}{(an)^2} \right| < 1 \quad \text{for } n \neq 0. \]

Applying the Taylor expansion and splitting $(i\zeta_n)$ into its even and odd parts with respect to the variable $n$ yields
\[ \frac{1}{i\zeta_n(k, \kappa)} = h^n_e(k, \kappa) + h^n_o(k, \kappa), \]

and consequently,
\[ \sum_{n \in \mathbb{Z}} \frac{e^{i\kappa \varepsilon Z}}{i\zeta_n(k, \kappa)} = e^{i\kappa \varepsilon Z} \left( \frac{1}{i\zeta_0} + 2 \sum_{n=1}^{\infty} h^n_e(k, \kappa) \cos(na \varepsilon Z) + 2i \sum_{n=1}^{\infty} h^n_o(k, \kappa) \sin(na \varepsilon Z) \right). \] (3.14)

If $\kappa = 0$, it can be calculated that
\[ h^n_e(k, 0) = -\sum_{n=1}^{\infty} \frac{1}{an} \left( 1 + \sum_{m=1}^{\infty} \frac{c_m}{n^{2m}} \right), \quad \text{where} \quad c_m = \frac{1 \cdot 3 \cdots (2m - 1)}{2^m m!} \left( \frac{k}{a} \right)^{2m}, \]

and $h^n_o(k, 0) = 0$, thus
\[ 2 \sum_{n=1}^{\infty} h^n_e(k, 0) \cos(na \varepsilon Z) = -\sum_{n=1}^{\infty} \frac{2}{an} \cos(na \varepsilon Z) - \frac{1}{a} \sum_{m=1}^{\infty} c_m \sum_{n=1}^{\infty} \frac{1}{n^{2m+1}} \cos(na \varepsilon Z). \]

Using the relations (cf. [7, 16])
\[ -\sum_{n=1}^{\infty} \frac{2}{n} \cos \left( \frac{a \varepsilon Z}{2} \right) = \log \left( 4 \sin^2 \frac{a \varepsilon Z}{2} \right), \]
\[ \sum_{n=1}^{\infty} \frac{1}{n^{2m+1}} \cos \left( \frac{a \varepsilon Z}{2} \right) = \sum_{n=1}^{\infty} \frac{1}{n^{2m+1}} + O(\varepsilon^{2m} Z^{2m}) \ln(|\varepsilon|Z) \quad (m \geq 1), \]
in which the big-O remainder is uniform over \( m \), we obtain

\[
2 \sum_{n=1}^{\infty} h^e_n(k, \kappa) \cos(an\varepsilon Z) = \frac{1}{a} \ln \left( 4 \sin^2 \frac{a\varepsilon Z}{2} \right) + 2 \sum_{n=1}^{\infty} \left( h^e_n(k, 0) + \frac{1}{an} \right) + O(\varepsilon^2 \ln \varepsilon)
\]

\[
= \frac{2}{a} \ln |Z| + \frac{2}{a} \ln(a\varepsilon) + 2 \sum_{n=1}^{\infty} \left( \frac{1}{i\zeta_n(k, 0)} + \frac{1}{an} \right) + O(\varepsilon^2 \ln \varepsilon).
\]

(3.15)

The desired asymptotic expansion for \( G^e_{\varepsilon}(X, Y) \) follows by combining (3.12), (3.14) and (3.15). In addition, the above expansion shows that \( r_{e}(0, \varepsilon; X, Y) \) is a function of \( |Z| := |X - Y| \) and is real when \( \kappa = 0 \).

If \( |\kappa| \ll 1 \), the even part can be written as

\[
h^e_n(k, \kappa) = -\frac{1}{a|n|} + \frac{1}{|an|^3} \sum_{m=0}^{\infty} \frac{e_m(k, \kappa)}{(an)^{2m}}.
\]

Similar calculations yield

\[
2 \sum_{n=1}^{\infty} h^e_n(k, \kappa) \cos(na\varepsilon Z) = \frac{2}{a} \ln Z + \frac{2}{a} \ln(a\varepsilon) + 2 \sum_{n=1}^{\infty} \left( h^e_n(k, \kappa) + \frac{1}{an} \right) + O(\varepsilon^2 \ln \varepsilon). \tag{3.16}
\]

The odd term \( h^o_n(k, \kappa) \) has the form

\[
h^o_n(k, \kappa) = \kappa \text{sgn}(n) \sum_{m=1}^{\infty} \frac{b_m(k, \kappa)}{(an)^{2m}},
\]

and it follows that

\[
\sum_{n=1}^{\infty} h^o_n(k, \kappa) \sin(na\varepsilon Z) = \kappa \sum_{m=1}^{\infty} \frac{b_m(k, \kappa)}{(an)^{2m}} \sin(na\varepsilon Z) =: \kappa \sum_{m=1}^{\infty} b_m(k, \kappa) A_m.
\]

By noting that \( b_1 = 1 \), we obtain (cf. \[7\])

\[
A_1 = \sum_{n=1}^{\infty} \frac{1}{(na)^2} \sin(na\varepsilon Z) = -\frac{1}{a} \varepsilon Z \ln(a\varepsilon Z) + O(\varepsilon).
\]

On other hand, for \( m > 1 \), \( A_m = O(\varepsilon) \). Hence,

\[
2 \sum_{n=1}^{\infty} h^o_n(k, \kappa) \sin(an\varepsilon Z) = -\frac{2}{a} \kappa \varepsilon Z \ln(a\varepsilon Z) + O(\kappa \varepsilon). \tag{3.17}
\]

Substituting the sums (3.16) and (3.17) into (3.14) and using the expansion

\[ e^{i\kappa \varepsilon Z} = 1 + i\kappa \varepsilon Z + O((\kappa \varepsilon)^2), \]
Asymptotic expansions can be obtained for $\beta$ where $\sum$ we obtain

$$
\sum_{n \in \mathbb{Z}} \frac{e^{i \kappa_n \varepsilon Z}}{\zeta_n(k, \kappa)} = \frac{e^{i \kappa_0 Z}}{\zeta_0(k, \kappa)} + \frac{2}{\lambda} \ln|Z| + \frac{2}{\lambda} \ln(a \varepsilon) + 2 \sum_{n=1}^{\infty} \left( \frac{h_n^e(k, \kappa) + \frac{1}{a n}}{\alpha} \right) + O(\varepsilon^2 \ln \varepsilon) + O(\kappa \varepsilon)
$$

Therefore, the desired expansion

$$
G_{\varepsilon}^\pm(X, Y) = \beta_e(k, \kappa, \varepsilon) + \frac{1}{\pi} \ln|X - Y| + r_e(k, \varepsilon; X, Y)
$$

follows, where $\beta_e$ is defined in (3.2) and $r_e = O(\varepsilon)$. In addition, from the above calculations, it is clear that $r_e(k, \varepsilon; X, Y) = r_e(0, \varepsilon; X, Y) + O(\kappa \varepsilon)$.

Now for $G_{\varepsilon}^{\pm +}(X, Y)$, note that

$$
G_{\varepsilon}^{\pm +}(X, Y) = -i d \sum_{n=\infty}^{\infty} \frac{1}{\zeta_n(k, \kappa)} e^{i \kappa_n \varepsilon(X - Y) \pm d_0}.
$$

An analogous expansion as $G_{\varepsilon}^e(X, Y)$ leads to

$$
G_{\varepsilon}^{\pm}(X, Y) = \beta^\pm(k, \kappa) + \rho^\pm(k, \varepsilon; X, Y),
$$

where $\beta^\pm$ is defined in (3.3) and $\rho^\pm = O(\varepsilon)$. In particular, when $\kappa = 0$, it follows that

$$
\beta^\pm(k, 0) = \hat{\beta}(k) := -i d \cdot \frac{1}{\zeta_0(k)} - \sum_{n=1}^{\infty} \frac{2}{\sqrt{(2 \pi n)^2 - (kd)^2}} \cos(\kappa_n d_0),
$$

and the high-order terms take the form of

$$
\rho^\pm(0, \varepsilon; X, Y) = \sum_{n=1}^{\infty} \frac{2}{\sqrt{(2 \pi n)^2 - (kd)^2}} \left( \cos(\kappa_n d_0) - \cos(\kappa_n (\pm d_0 + \varepsilon(X - Y))) \right).
$$

From the above expressions, it is seen that $\rho^\pm(0, \varepsilon; X, Y) = \hat{\rho}(\pm d_0 + \varepsilon(X - Y))$ for some real-valued function $\hat{\rho}$.

**Remark 1** Asymptotic expansions can be obtained for $(\kappa, k) \notin D_1$ [22]. In this case, $\hat{r}_e$ and $\hat{\rho}$ in (3.10) are no longer real valued.

**Lemma 3.2** If $k \varepsilon \ll 1$, then

$$
G_{\varepsilon}^{\pm}(X, Y) = \beta_1(k, \varepsilon) + \frac{1}{\pi} \left[ \ln \left| \sin \left( \frac{\pi(X - Y)}{2} \right) \right| + \ln \left| \sin \left( \frac{\pi(X + Y + 1)}{2} \right) \right| \right] + r_{1,1}(\varepsilon; |X - Y|) + r_{1,2}(\varepsilon; |X + Y + 1|).
$$

Here $r_{1,1}$ and $r_{1,2}$ are bounded and real functions with $r_{1,1} \sim O(\varepsilon^2)$, $r_{1,2} \sim O(\varepsilon^2)$, $\hat{r}_{1,1} \sim O(e^{-1/\varepsilon})$, and $\hat{r}_{1,2} \sim O(e^{-1/\varepsilon})$ for all $X, Y \in I$. In addition, there holds

$$
r_{1,1}(\varepsilon; t + 2) = r_{1,1}(\varepsilon; t), \quad \hat{r}_{1,2}(\varepsilon; t + 2) = \hat{r}_{1,2}(\varepsilon; t) \quad \text{for } 0 \leq t < 2.
$$
The proof is similar to Lemma 3.1 of [19], and we present the calculations in the appendix for completeness.

Define the kernels
\[
\rho(X, Y) = \frac{1}{\pi} \left[ \ln |X - Y| + \ln \left| \sin \left( \frac{\pi(X - Y)}{2} \right) \right| + \ln \left| \sin \left( \frac{\pi(X + Y + 1)}{2} \right) \right| \right],
\]
\[
\rho_\infty(\kappa; X, Y) = r_e(\kappa, \varepsilon; X, Y) + r_{i,1}(\varepsilon; |X - Y|) + r_{i,2}(\varepsilon; |X + Y + 1|),
\]
\[
\tilde{\rho}_\infty(X, Y) = \tilde{r}_{i,1}(\varepsilon; |X - Y|) + \tilde{r}_{i,2}(\varepsilon; |X + Y + 1|),
\]
where \(r_e, r_{i,1}, r_{i,2}, \tilde{r}_{i,1}, \) and \(\tilde{r}_{i,2}\) are given in (3.6), (3.18), (3.19) respectively. Let \(S, S^\infty_\kappa, S^{\infty, \pm}_\kappa\) and \(\tilde{S}^\infty\) be the integral operators with the kernels \(\rho(X, Y), \rho_\infty(X, Y), \rho^\pm(X, Y),\) and \(\tilde{\rho}_\infty(X, Y):\)
\[
[S\varphi](X) = \int_I \rho(X, Y)\varphi(Y) \, dY \quad X \in I;
\]
\[
[S^{\infty}_\kappa\varphi](X) = \int_I \rho_\infty(\kappa; X, Y)\varphi(Y) \, dY \quad X \in I;
\]
\[
[S^{\infty, \pm}_\kappa\varphi](X) = \int_I \rho^\pm(X, Y)\varphi(Y) \, dY \quad X \in I;
\]
\[
[\tilde{S}^\infty\varphi](X) = \int_I \tilde{\rho}_\infty(X, Y)\varphi(Y) \, dY \quad X \in I.
\]

Define the functions spaces
\[
V_1 = \tilde{H}_0^{1,1}(I) := \{ u = U|_I \mid U \in H^{-1/2}(\mathbb{R})\text{ and } \text{supp } U \subset \bar{I} \} \quad \text{and} \quad V_2 = H^{1,1}(I).
\]

The following two lemmas hold for the operators defined above.

**Lemma 3.3** The following holds for the operators \(S, S^{\infty}_\kappa,\) and \(\tilde{S}^\infty:\

1. If \(\tilde{\varphi}(X) = \varphi(-X),\) then \([S\tilde{\varphi}](X) = [S\varphi](X).\)

2. The operator \(K\) is bounded from \(V_1\) to \(V_2\) with a bounded inverse. Moreover,
\[
\alpha := \langle S^{-1}1, 1 \rangle_{L^2(I)} \neq 0.
\]

3. The operator \(S + S^{\infty}_\kappa + \tilde{S}^\infty\) is invertible for small \(\varepsilon.\) Let \(\varphi\) and \(\tilde{\varphi}\) be the solution of
\[
(S + S^{\infty}_\kappa + \tilde{S}^\infty)\varphi = g \quad \text{and} \quad (S + S^{\infty}_\kappa + \tilde{S}^\infty)\tilde{\varphi} = \tilde{g}
\]
respectively, where \(\tilde{g}(X) = g(-X)\). If \(\kappa = 0,\) then it holds that \(\tilde{\varphi}(X) = \varphi(-X)\).

A sketch of the proof will be provided in the appendix. Note that if \(\kappa = 0,\) from (3.10) we see that the kernel of \(S^{\infty, -}_0\) and \(S^{\infty, +}_0\) is given by \(\hat{\rho}(|-d_0 + \varepsilon(X - Y)|)\) and \(\hat{\rho}(d_0 + \varepsilon(X - Y)|)\) respectively for the real-valued function \(\hat{\rho}.\) Therefore, the following lemma follows from a direction calculation.
Lemma 3.4  If $\kappa = 0$, then the following holds for the operators $S^\infty_{0,-}$ and $S^\infty_{0,+}$:

1. Let $(S^\infty_{0,-})^*$ be adjoint operator of $S^\infty_{0,-}$, then $(S^\infty_{0,-})^* = S^\infty_{0,+}$.

2. If $\tilde{\varphi}(X) = \varphi(-X)$, then $[S^\infty_{0,+}\tilde{\varphi}](X) = [S^\infty_{0,-}\varphi](X)$.

We define the projection operator $P : V_1 \to V_2$ via

$$P\varphi(X) = \langle \varphi, 1 \rangle 1,$$

where 1 is a function defined on the interval $I$ and is equal to one therein. Now we are ready to present the decomposition of the integral operators $T^e + T^i$, $T^e \pm$, and $\tilde{T}^i$. This follows from the asymptotic expansion of the Green functions in Lemmas 3.1 and 3.2.

Proposition 3.5  Let $k \in (0, 2\pi/d)$. The operators $T^e + T^i$, $T^e \pm$, and $\tilde{T}^i$ admit the decompositions

$$T^e + T^i = \beta P + S^\infty, \quad T^e \pm = \beta^\pm P + S^\infty_{k \pm}, \quad \tilde{T}^i = \tilde{\beta} P + \tilde{S}^\infty,$$

where $S^\infty$, $S^\infty_{k \pm}$ and $\tilde{S}^\infty$ are bounded from $V_1$ to $V_2$ with the operator norm

$$\|S^\infty_{k \pm}\| \lesssim \varepsilon, \quad \|S^\infty\| \lesssim \varepsilon, \quad \text{and} \quad \|	ilde{S}^\infty\| \lesssim e^{-1/\varepsilon}$$

uniformly in $\kappa$.

4  Embedded eigenvalues and resonances

Let us define the singular frequencies of the scattering problem to be the set of eigenvalues and resonances for the homogeneous problem. Precisely, these are the $k$-values of pairs $(\kappa, k)$ for which the system (1.2–1.6) with the incident field $u^{\text{inc}}$ removed has a nonzero solution, or, equivalently, pairs for which the system (2.8) has a nonzero solution with $f = 0$. Eigenvalues are real values of $k$, whereas resonances are complex values of $k$. The field (eigenmode) corresponding to an eigenvalue decays exponentially above the grating, whereas the field (quasi-mode) corresponding to a resonance grows exponentially above the grating.

4.1  The conditions for eigenvalues and resonances

In this section, we establish the condition for the singular frequencies. From the previous discussions, we have seen that they are equal to the characteristic values $k$ of the system of integral operators (2.2). When reduced to functions on the scaled interval $I$, this amounts to finding those frequencies $k$ such that $T\varphi = 0$ admits a nonzero solution in $(V_1)^4$. Recall that

$$T = \begin{bmatrix} \hat{T} & \hat{T} \\ \hat{T} & \hat{T} \end{bmatrix}, \quad \text{where} \quad \hat{T} = \begin{bmatrix} T^e + T^i & T^e_- \\ T^e_+ & T^e + T^i \end{bmatrix} \quad \text{and} \quad \tilde{T} = \begin{bmatrix} \tilde{T}^i & 0 \\ 0 & \tilde{T}^i \end{bmatrix}.$$

We may decompose the set of its characteristic values as follows.
Lemma 4.1 Let $\mathbb{T}_+ = \mathbb{T} + \mathbb{T}$ and $\mathbb{T}_- = \mathbb{T} - \mathbb{T}$. Then

$$\sigma(\mathbb{T}) = \sigma(\mathbb{T}_+) \cup \sigma(\mathbb{T}_-),$$

where $\sigma(\mathbb{T})$, $\sigma(\mathbb{T}_+)$ and $\sigma(\mathbb{T}_-)$ denote the sets of characteristic frequencies $k$ of $\mathbb{T}$, $\mathbb{T}_+$ and $\mathbb{T}_-$, respectively.

Proof. The function space $(V_1)^4$ can be decomposed as $(V_1)^4 = V_{\text{even}} \oplus V_{\text{odd}}$, where $V_{\text{even}} = \{\varphi_-, \varphi_+, \varphi_-, \varphi_+\}^T; \varphi_\pm \in V_1\}$ and $V_{\text{odd}} = \{[\varphi_-, \varphi_+, \varphi_-^-, \varphi^+_+]^T; \varphi_\pm \in V_1\}$ are invariant spaces for $\mathbb{T}$. Thus $\sigma(\mathbb{T}) = \sigma(\mathbb{T}|_{V_{\text{even}}}) \cup \sigma(\mathbb{T}|_{V_{\text{odd}}})$. Then observe that $\mathbb{T}|_{\varphi_-, \varphi_+, \varphi_-^-, \varphi^+_+]^T} = [\psi_-, \psi_+, \psi_-, \psi^+_+]^T$, with $\mathbb{T}_+|_{\varphi_-, \varphi_+}^T = [\psi_-, \psi^+_+]^T$ so that $\sigma(\mathbb{T}|_{V_{\text{even}}}) = \sigma(\mathbb{T}_+)$, and similarly $\sigma(\mathbb{T}|_{V_{\text{odd}}}) = \sigma(\mathbb{T}_-)$. \hfill \Box

We now investigate the characteristic values of the operators $\mathbb{T}_+$ and $\mathbb{T}_-$. They can be reduced to the roots of certain nonlinear functions. We present the derivations for $\mathbb{T}_+$, and the derivations for $\mathbb{T}_-$ are parallel.

By defining the operators

$$\mathbb{P}_\kappa = \begin{bmatrix} (\beta + \tilde{\beta})P & \beta^-P \\ \beta^+P & (\beta + \tilde{\beta})P \end{bmatrix}, \quad \mathbb{S}_\kappa^\infty = \begin{bmatrix} S_\kappa^\infty & \tilde{S}_\kappa^\infty \\ \tilde{S}_\kappa^\infty & S_\kappa^\infty \end{bmatrix}, \quad \text{and} \quad \mathbb{L}_\kappa = \mathbb{S}_\kappa \oplus \mathbb{S}_\kappa^\infty,$$

and using the decomposition of the operators in Proposition 3.5 we obtain $\mathbb{T}_+ = \mathbb{P}_\kappa + \mathbb{L}_\kappa$, and thus $\mathbb{T}_+ \varphi = 0$ becomes

$$\left(\mathbb{P}_\kappa + \mathbb{L}_\kappa\right)\varphi = 0, \quad \text{(4.1)}$$

where $\varphi = [\varphi^-, \varphi^+]^T$. Let $\{\mathbf{e}_j\}_{j=1}^2 \in V_1 \times V_1$ be given by $\mathbf{e}_1 = [1, 0]^T$ and $\mathbf{e}_2 = [0, 1]^T$.

Lemma 4.2 $\mathbb{L}_\kappa$ is invertible for sufficiently small $\varepsilon$, and

$$\mathbb{L}_\kappa^{-1}\mathbf{e}_1 = S^{-1}1 \cdot \mathbf{e}_1 + O(\varepsilon), \quad \mathbb{L}_\kappa^{-1}\mathbf{e}_2 = S^{-1}1 \cdot \mathbf{e}_2 + O(\varepsilon),$$

and

$$\langle \mathbb{L}_\kappa^{-1}\mathbf{e}_1, \mathbf{e}_1 \rangle = \alpha + O(\varepsilon), \quad \langle \mathbb{L}_\kappa^{-1}\mathbf{e}_1, \mathbf{e}_2 \rangle = O(\varepsilon), \quad \text{(4.2)}$$

where $\alpha$ is defined in (3.27).

Proof. By Lemma 3.3 $\mathbb{L}_\kappa$ is invertible for sufficiently small $\varepsilon$ via the Neumann series,

$$\mathbb{L}_\kappa^{-1} = (\mathbb{S}_\kappa \oplus \mathbb{S}_\kappa^\infty)^{-1} = \sum_{j=0}^{\infty} (-1)^j \left(S^{-1}\mathbb{S}_\kappa^\infty\right)^j S^{-1} = S^{-1}1 + O(\varepsilon).$$

The assertion holds from the definition (3.27) of the constant $\alpha$. \hfill \Box

Applying $\mathbb{L}_\kappa^{-1}$ on both sides of (4.1) yields

$$\mathbb{L}_\kappa^{-1} \mathbb{P}_\kappa \varphi + \varphi = 0,$$

which, using the equation

$$\mathbb{P}_\kappa \varphi = (\beta + \tilde{\beta})\langle \varphi, \mathbf{e}_1 \rangle \mathbf{e}_1 + \beta^- \langle \varphi, \mathbf{e}_2 \rangle \mathbf{e}_1 + \beta^+ \langle \varphi, \mathbf{e}_1 \rangle \mathbf{e}_2 + (\beta + \tilde{\beta})\langle \varphi, \mathbf{e}_2 \rangle \mathbf{e}_2,$$
can be expanded into
\[(\beta + \tilde{\beta})\langle \varphi, e_1 \rangle \mathbb{L}_\kappa^{-1}e_1 + \beta^- \langle \varphi, e_2 \rangle \mathbb{L}_\kappa^{-1}e_2 + \beta^+ \langle \varphi, e_1 \rangle \mathbb{L}_\kappa^{-1}e_1 + \beta^- \langle \varphi, e_2 \rangle \mathbb{L}_\kappa^{-1}e_2 + (\beta + \tilde{\beta}) \langle \varphi, e_2 \rangle \mathbb{L}_\kappa^{-1}e_2 + \varphi = 0. \tag{4.4}\]

Taking the $L^2$-inner product of (4.4) with $e_1$ and $e_2$ yields
\[
\tilde{M}_{\kappa,+} \begin{bmatrix} \langle \varphi, e_1 \rangle \\ \langle \varphi, e_2 \rangle \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix},
\tag{4.5}
\]
where the matrix $\tilde{M}_{\kappa,+}$ is defined by
\[
\tilde{M}_{\kappa,+} := \begin{bmatrix} \langle \mathbb{L}_\kappa^{-1} e_1, e_1 \rangle & \langle \mathbb{L}_\kappa^{-1} e_1, e_2 \rangle \\ \langle \mathbb{L}_\kappa^{-1} e_1, e_2 \rangle & \langle \mathbb{L}_\kappa^{-1} e_2, e_2 \rangle \end{bmatrix} \begin{bmatrix} \beta(k, \kappa, \varepsilon) + \tilde{\beta}(k, \varepsilon) & \beta^-(k, \kappa) \\ \beta^+(k, \kappa) & \beta(k, \kappa, \varepsilon) + \tilde{\beta}(k, \varepsilon) \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.
\tag{4.6}
\]

Let $\tilde{\lambda}_{1,+}(k; \kappa, \varepsilon)$ and $\tilde{\lambda}_{2,+}(k; \kappa, \varepsilon)$ be the eigenvalues of $\tilde{M}_{\kappa,+}$. From the above discussions, it is seen that the characteristic values of the operator-valued function $T_+(k; \kappa, \varepsilon)$ are the roots of $\tilde{\lambda}_{1,+}(k)$ and $\tilde{\lambda}_{2,+}(k)$. Following a similar decomposition for $T_-$, then the characteristic values of the operator-valued function $T_-$ are the roots of $\tilde{\lambda}_{1,-}(k)$ and $\tilde{\lambda}_{2,-}(k)$, which are eigenvalues of the matrix
\[
\tilde{M}_{\kappa,-} := \begin{bmatrix} \langle \mathbb{L}_\kappa^{-1} e_1, e_1 \rangle & \langle \mathbb{L}_\kappa^{-1} e_1, e_2 \rangle \\ \langle \mathbb{L}_\kappa^{-1} e_1, e_2 \rangle & \langle \mathbb{L}_\kappa^{-1} e_2, e_2 \rangle \end{bmatrix} \begin{bmatrix} \beta(k, \kappa, \varepsilon) - \tilde{\beta}(k, \varepsilon) & \beta^-(k, \kappa) \\ \beta^+(k, \kappa) & \beta(k, \kappa, \varepsilon) - \tilde{\beta}(k, \varepsilon) \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.
\tag{4.7}
\]

**Remark 2** The operator $\mathbb{P}_\kappa$ and $\mathbb{L}_\kappa$ take different forms in the decomposition of $T_+$ and $T_-$. For $T_-$, all quantities with a tilde in the definitions of $\mathbb{P}_\kappa$ and $\mathbb{S}_\kappa^\infty$ should be multiplied by $-1$. We suppress this dependence here and henceforth, as it is clear in context. The dependence on $\kappa$ is retained because the study of embedded eigenvalues and associated resonance is an analysis of the behavior of the scattering problem for $\kappa$ at and near $0$.

Since the leading-order of $\beta$ in $\varepsilon$ is $O(1/\varepsilon)$, we scale the matrix $\tilde{M}_{\kappa,\pm}$ by letting
\[
M_{\kappa,\pm} := \varepsilon \tilde{M}_{\kappa,\pm},
\tag{4.8}
\]
and the eigenvalues of $M_{\kappa,\pm}$ are
\[
\lambda_{j,\pm}(k; \kappa, \varepsilon) := \varepsilon \tilde{\lambda}_{j,\pm}(k; \kappa, \varepsilon), \quad j = 1, 2.
\tag{4.9}
\]

The following proposition summarizes the resonance condition.

**Proposition 4.3** The singular frequencies of the scattering problem (1.2) (1.6) are the roots of the functions $\lambda_{j,\pm}(k; \kappa, \varepsilon)$, $(j = 1, 2)$, where $\lambda_{1,+}$ and $\lambda_{2,+}$ are eigenvalues of the matrix $M_{\kappa,+}$, and $\lambda_{1,-}$ and $\lambda_{2,-}$ are eigenvalues of the matrix $M_{\kappa,-}$. 

15
4.2 Embedded eigenvalues and resonances for $\kappa = 0$

We investigate the roots of the functions $\lambda_{j,\pm}(k; \kappa, \varepsilon)$ ($j = 1, 2$) when $\kappa = 0$. It is shown that real-valued roots and complex-valued roots with negative imaginary part coexist. They correspond respectively to eigenvalues and resonances of the scattering problem at normal incidence. We prove their existence and derive their asymptotic expansions.

**Lemma 4.4** The following statements for $\kappa = 0$ hold.

(i) If $k$ is real, then $\mathbb{L}_0^{-1}\varphi$ is real for any real-valued function $\varphi$.

(ii) $\langle \mathbb{L}_0^{-1}e_1, e_1 \rangle = \langle \mathbb{L}_0^{-1}e_2, e_2 \rangle$ and $\langle \mathbb{L}_0^{-1}e_1, e_2 \rangle = \langle \mathbb{L}_0^{-1}e_2, e_1 \rangle$.

**Proof.** First, in view of Lemmas 3.1 and 3.2, $\mathbb{L}_0^{-1}\varphi$ is real-valued since the kernels of operators $S$, $S_\infty$, $\tilde{S} \infty$, and $S_\infty^{-}$ are all real, and assertion (i) follows.

To show (ii), let $\varphi = (\varphi_1, \varphi_2)^T$ and $\tilde{\varphi} = (\tilde{\varphi}_1, \tilde{\varphi}_2)^T$ satisfy $\mathbb{L}_0\varphi = e_1$ and $\mathbb{L}_0\tilde{\varphi} = e_2$. By a direct calculation, it is seen that

$$(S - S_\infty^{-}(S + S_\infty^{+})^{-1}S_\infty^{+})\varphi_1 = 1, \quad (S + S_\infty^{+}(S + S_\infty^{+} + \tilde{S}_\infty^{-})^{-1}S_\infty^{-})\tilde{\varphi}_2 = 1.$$ 

By virtue of Lemmas 3.3 and 3.4 there holds $\tilde{\varphi}_2(X) = \varphi_1(-X)$, and it follows that $\langle \mathbb{L}_0^{-1}e_1, e_1 \rangle = \langle \mathbb{L}_0^{-1}e_2, e_2 \rangle$. Similarly, it can be shown that $\tilde{\varphi}_1(X) = \varphi_2(-X)$, so the second identity also holds. $\square$

When $\kappa = 0$, by noting that $\beta_{\pm}^\kappa(k, 0) = \hat{\beta}(k)$ (see (3.9)) and using the equalities in Lemma 4.4, the matrix $\tilde{M}_{0, +}$ can be expressed as

$$\tilde{M}_{0, +} := \begin{bmatrix} \langle \mathbb{L}_0^{-1}e_1, e_1 \rangle & \langle \mathbb{L}_0^{-1}e_1, e_2 \rangle \\ \langle \mathbb{L}_0^{-1}e_2, e_1 \rangle & \langle \mathbb{L}_0^{-1}e_2, e_2 \rangle \end{bmatrix} \begin{bmatrix} \beta + \hat{\beta} & \hat{\beta} \\ \hat{\beta} & \beta + \hat{\beta} \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}. \quad (4.10)$$

It can be calculated that the eigenvalues of $\tilde{M}_{0, +}$ are

$$\tilde{\lambda}_{1,+}(k, 0, \varepsilon) = 1 + (\beta + \hat{\beta} + \hat{\beta}) (\langle \mathbb{L}_0^{-1}e_1, e_1 \rangle + \langle \mathbb{L}_0^{-1}e_1, e_2 \rangle), \quad (4.11)$$

$$\tilde{\lambda}_{2,+}(k, 0, \varepsilon) = 1 + (\beta + \hat{\beta} - \hat{\beta}) (\langle \mathbb{L}_0^{-1}e_1, e_1 \rangle - \langle \mathbb{L}_0^{-1}e_1, e_2 \rangle), \quad (4.12)$$

and the associated eigenvectors are $[1 \; 1]^T$ and $[1 \; -1]^T$. Similarly, the eigenvalues of $\tilde{M}_{0, -}$ are

$$\tilde{\lambda}_{1,-}(k, 0, \varepsilon) = 1 + (\beta - \hat{\beta} + \hat{\beta}) (\langle \mathbb{L}_0^{-1}e_1, e_1 \rangle + \langle \mathbb{L}_0^{-1}e_1, e_2 \rangle), \quad (4.13)$$

$$\tilde{\lambda}_{2,-}(k, 0, \varepsilon) = 1 + (\beta - \hat{\beta} - \hat{\beta}) (\langle \mathbb{L}_0^{-1}e_1, e_1 \rangle - \langle \mathbb{L}_0^{-1}e_1, e_2 \rangle), \quad (4.14)$$

and the associated eigenvectors are $[1 \; 1]^T$ and $[1 \; -1]^T$. Therefore, in view of Lemma 4.2
and formulas \((3.2)-(3.5)\) for \(\beta\) and \(\bar{\beta}\), the eigenvalues of \(M_{0,\pm}\) are expressed explicitly as

\[
\begin{align*}
\lambda_{1,+}(k;0,\varepsilon) &= \varepsilon + \left[ \frac{1}{k \tan k} + \frac{1}{k \sin k} + \frac{\varepsilon}{\pi} \ln \varepsilon + \varepsilon \gamma(k,0) + \varepsilon \hat{\beta}(k) \right] (\alpha + O(\varepsilon)), \\
\lambda_{2,+}(k;0,\varepsilon) &= \varepsilon + \left[ \frac{1}{k \tan k} + \frac{1}{k \sin k} + \frac{\varepsilon}{\pi} \ln \varepsilon + \varepsilon \gamma(k,0) - \varepsilon \hat{\beta}(k) \right] (\alpha + O(\varepsilon)), \\
\lambda_{1,-}(k;0,\varepsilon) &= \varepsilon + \left[ \frac{1}{k \tan k} - \frac{1}{k \sin k} + \frac{\varepsilon}{\pi} \ln \varepsilon + \varepsilon \gamma(k,0) + \varepsilon \hat{\beta}(k) \right] (\alpha + O(\varepsilon)), \\
\lambda_{2,-}(k;0,\varepsilon) &= \varepsilon + \left[ \frac{1}{k \tan k} - \frac{1}{k \sin k} + \frac{\varepsilon}{\pi} \ln \varepsilon + \varepsilon \gamma(k,0) - \varepsilon \hat{\beta}(k) \right] (\alpha + O(\varepsilon)).
\end{align*}
\]

Remark 3 If \((0,k) \in D_1\) (see \((3.4)\)), that is \(0 < k < 2\pi/d\), then from the explicit expressions \((3.5)\) and \((3.9)\), we see that

\[
\text{Im} \left( \gamma(k,0) + \hat{\beta}(k) \right) = -\frac{2}{d \zeta_{0}(k)} \quad \text{and} \quad \text{Im} \left( \gamma(k,0) - \hat{\beta}(k) \right) = 0.
\]

The \(O(\varepsilon)\) terms \((4.15)-(4.18)\) are real-valued by Lemma 4.4, and hence \(\lambda_{1,+}(k;0,\varepsilon)\) and \(\lambda_{1,-}(k;0,\varepsilon)\) are complex-valued functions, while \(\lambda_{2,+}(k;0,\varepsilon)\) and \(\lambda_{2,-}(k;0,\varepsilon)\) are real-valued functions.

Theorem 4.5 If \(\kappa = 0\), the singular frequencies of the scattering problem \((1.2)-(1.6)\) admit the following asymptotic expressions in \(\varepsilon:\)

\[
\begin{align*}
k^{(1)}_m &= m\pi + 2m\pi \left[ \frac{1}{\pi} \ln \varepsilon + \left( \frac{1}{\alpha} + \gamma(m\pi,0) + \hat{\beta}(m\pi) \right) \varepsilon \right] + O(\varepsilon^2 \ln^2 \varepsilon); \\
k^{(2)}_m &= m\pi + 2m\pi \left[ \frac{1}{\pi} \ln \varepsilon + \left( \frac{1}{\alpha} + \gamma(m\pi,0) - \hat{\beta}(m\pi) \right) \varepsilon \right] + O(\varepsilon^2 \ln^2 \varepsilon)
\end{align*}
\]

for positive integers \(m < 2/d\). In the above, \(\text{Im} k^{(1)}_m = O(\varepsilon)\) and \(\text{Im} k^{(2)}_m = 0\).

Remark 4 The frequencies \(k^{(1)}_m\) for \(m < 2/d\) are resonances in the lower half of the complex plane, which are also called Fabry-Perot resonances \([12, 19, 20]\). The frequencies \(k^{(2)}_m\) are real-valued eigenvalues embedded in the continuous spectrum, since the continuous spectrum of the quasi-periodic scattering operator is \([0, \infty)\) when \(\kappa = 0\) \([3, 27]\).

Remark 5 The asymptotic expansions of \(k^{(1)}_m\) and \(k^{(2)}_m\) in Theorem 4.5 still hold for \(m > 2/d\). However, when \(m > 2/d\), one has \(\text{Re} k^{(2)}_m \geq 2\pi/d\) so that \((0, \text{Re} k^{(2)}_m) \notin D_1\). That is, this wavenumber-frequency pair lies above the diamond region in which exactly one of the Rayleigh modes is propagating and embedded eigenvalues are not expected. Indeed, for such singular frequencies, there holds \(\text{Im} \left( \gamma(m\pi,0) - \hat{\beta}(m\pi) \right) \neq 0\) and the \(O(\varepsilon^2 \ln^2 \varepsilon)\)-term is also complex, and the frequencies \(k^{(2)}_m\) become complex-valued resonances with \(\text{Im} k^{(2)}_m = O(\varepsilon)\). Here we restrict our attention to \(m < 2/d\) since we are concerned with embedded eigenvalues in this paper.
Proof. The leading-order term \( \frac{1}{k \tan k} + \frac{1}{k \sin k} \) of \( \lambda_{1,+}(k) \) attains a simple root \( k_{m,0} = m\pi \) for odd integers \( m \). Let us choose the disc \( B_\delta(k_{m,0}) \) with radius \( \delta \) centered at \( k_{m,0} \) in the complex \( k \)-plane, with \( \delta = O(1) \) as \( \varepsilon \to 0 \). We analytically extend the functions \( \beta_\varepsilon(k), \beta_1(k), \beta(k) \) to \( B_\delta(k_{m,0}) \). One can show that the asymptotic expansions in \( \varepsilon \) for the kernels \( G^e_\varepsilon, G^{e,\pm}_\varepsilon, G^i_\varepsilon \) and \( \tilde{G}^a_\varepsilon \) given in Lemmas 3.1 and 3.2 hold in \( B_\delta(k_{m,0}) \). From Rouche’s theorem, we deduce that there is a simple root of \( \lambda \sim \hat{\lambda}_{1,+}(k;0,\varepsilon) \), denoted as \( k^{(1)}_m \), close to \( k_{m,0} \) if \( \varepsilon \) is sufficiently small.

To obtain the leading-order asymptotic terms of \( k^{(1)}_m \), let us consider the root of

\[
\hat{\lambda}_{1,+}(k;\varepsilon) = \varepsilon + \left[ \frac{1}{k \tan k} + \frac{1}{k \sin k} + \frac{1}{\pi} \varepsilon \ln \varepsilon + \varepsilon \gamma(k,0) + \varepsilon \beta(k) \right] \alpha.
\]

The Taylor expansion for \( \hat{\lambda}_{1,+}(k;\varepsilon) \) at \( k = k_{m,0} \) is

\[
\hat{\lambda}_{1,+}(k;\varepsilon) = \varepsilon + \left( \left[ \frac{1}{k \tan k} + \frac{1}{k \sin k} \right] \right) \left. \right|_{k=k_{m,0}} \cdot (k - k_{m,0}) + O(k - k_{m,0})^2 + \frac{1}{\pi} \varepsilon \ln \varepsilon
\]

\[
+ \varepsilon \gamma(k_{m,0},0) + \varepsilon \beta(k_{m,0}) + \varepsilon \cdot O(k - k_{m,0}) \right] \cdot \alpha,
\]

and the root of \( \hat{\lambda}_{1,+} \) is given by

\[
k_{m,1} = k_{m,0} + 2m\pi \left[ \frac{1}{\pi} \varepsilon \ln \varepsilon + \left( \frac{1}{\alpha} + \gamma(k_{m,0},0) + \beta(k_{m,0}) \right) \varepsilon \right] + O(\varepsilon^2 \ln^2 \varepsilon).
\]

The high-order term of the roots for \( \lambda_{1,+}(k) \) can be obtained by the Rouche’s theorem. Note that

\[
\lambda_{1,+}(k) - \hat{\lambda}_{1,+}(k) = \lambda_{1,+}(k) - \varepsilon \cdot O(\varepsilon)
\]

one can find a constant \( C > 0 \) such that

\[
|\lambda_{1,+}(k) - \hat{\lambda}_{1,+}(k)| < |\hat{\lambda}_{1,+}(k;0,\varepsilon)|
\]

for all \( k \) satisfying \( |k - k_{m,1}| = C\varepsilon^2 \ln^2 \varepsilon \). The assertion holds by Rouche’s theorem.

The roots of \( \lambda_{1,-}(k;0,\varepsilon) \) and \( \lambda_{2,+}(k;0,\varepsilon) \) can also be obtained by perturbation arguments. In particular, \( \lambda_{2,+}(k) \) attains roots close to \( m\pi \) with odd integers \( m \), while \( \lambda_{1,-}(k) \) and \( \lambda_{2,-}(k) \) attain roots close to \( m\pi \) with even integers \( m \). Finally, \( k^{(2)}_m \) are seen to be real by noting that the functions \( \lambda_{2,+}(k;0,\varepsilon) \) and \( \lambda_{2,-}(k;0,\varepsilon) \) are real-valued for \( k \in (0,2\pi/d) \).

4.3 Perturbation of embedded eigenvalues and resonances

If \( \kappa \neq 0 \), both the eigenvalues and resonances at \( \kappa = 0 \) will be perturbed on the complex \( k \)-plane. The resonances will stay in the lower half plane. On the other hand, the real eigenvalues will emerge as a second group of complex-valued resonances that enter the lower half plane. We aim to obtain the asymptotic expansion of these two groups of resonances. In particular, we would like to characterize the order of the imaginary parts for the resonances that originate from the perturbation of embedded eigenvalues.
Remark 6 We shall assume that $\kappa = O(\varepsilon^\rho)$ in this section, where $0 < \rho < \frac{1}{2}$. This is not an essential assumption for the expansion of resonances discussed in what follows. However, one would need to investigate higher-order terms more thoroughly in the asymptotic expansion if $\rho \geq \frac{1}{2}$.

A brute-force perturbation argument leads to an order of $O(\kappa \varepsilon)$ for the imaginary parts of resonances that emanate from the eigenvalues as $\kappa$ is perturbed from 0. To obtain a better expansion, as given in Theorem 4.9 below, we need to exploit the symmetry of the matrices $\tilde{M}_{\kappa,\pm}$. Define matrices $\tilde{M}_{\kappa,\pm}$ and $\hat{M}_{\kappa,\pm}$ by

$$\frac{1}{\varepsilon} \hat{M}_{\kappa,\pm} = \alpha \left[ \begin{array}{cc} \beta \pm \tilde{\beta} & \beta^- \\ \beta^+ & \beta \pm \tilde{\beta} \end{array} \right] + \left[ \begin{array}{c} 1 \\ 0 \\ 0 \\ 1 \end{array} \right],$$

where $\alpha := (S^{-1}1,1)$. The eigenvalues of the matrices $\tilde{M}_{\kappa,\pm}$ and $\hat{M}_{\kappa,\pm}$ are

$$\hat{\lambda}_{1,+}(k; \kappa, \varepsilon) = \varepsilon + \varepsilon \alpha (\beta + \tilde{\beta} + \sqrt{\beta^- \cdot \beta^+}), \quad \hat{\lambda}_{2,+}(k; \kappa, \varepsilon) = \varepsilon + \varepsilon \alpha (\beta + \tilde{\beta} - \sqrt{\beta^- \cdot \beta^+}),$$

$$\hat{\lambda}_{1,-}(k; \kappa, \varepsilon) = \varepsilon + \varepsilon \alpha (\beta - \tilde{\beta} + \sqrt{\beta^- \cdot \beta^+}), \quad \hat{\lambda}_{2,-}(k; \kappa, \varepsilon) = \varepsilon + \varepsilon \alpha (\beta - \tilde{\beta} - \sqrt{\beta^- \cdot \beta^+}).$$

The corresponding (right) eigenvectors of $\tilde{M}_{\kappa,\pm}$ are

$$\hat{v}_{1,\pm} = [1 \sqrt{\beta^- \cdot \beta^+} / \beta^-]^T, \quad \hat{v}_{2,\pm} = [1 - \sqrt{\beta^- \cdot \beta^+} / \beta^-]^T,$$

and the left eigenvectors are

$$\hat{w}_{1,\pm} = [1/2 \beta^- / (2\sqrt{\beta^- \cdot \beta^+})]^T, \quad \hat{w}_{2,\pm} = [1/2 - \beta^- / (2\sqrt{\beta^- \cdot \beta^+})]^T.$$

Lemma 4.6 The eigenvalues and eigenvectors of $\tilde{M}_{\kappa,\pm}$ attain the following asymptotic expansions as $\kappa \to 0$.

$$\hat{\lambda}_{j,\pm}(k; \kappa, \varepsilon) = \varepsilon + \varepsilon \alpha \left[ \beta \pm \tilde{\beta} + \frac{1}{2} (-1)^{j+1}(\beta^+ + \beta^-) \right] + O(\kappa^2 \varepsilon), \quad j = 1, 2;$$

$$\hat{v}_{j,\pm} = [1 (-1)^{j+1}(1 + \eta)]^T + O(\kappa^2), \quad j = 1, 2;$$

$$\hat{w}_{j,\pm} = [1/2 (-1)^{j+1}/(2(1 + \eta))]^T + O(\kappa^2), \quad j = 1, 2,$$

where $\eta = O(\kappa)$.

Proof. Note that

$$\beta^- \cdot \beta^+ = \frac{1}{4} [((\beta^+ + \beta^-)^2 - (\beta^+ - \beta^-)^2].$$

Since $\beta^+(k,0) = \beta^-(k,0) = \tilde{\beta}$, we have, as $\kappa \to 0$,

$$(\beta^+ - \beta^-)^2 = O(\kappa^2)$$

and hence

$$\sqrt{\beta^- \cdot \beta^+} = \frac{1}{2} (\beta^+ + \beta^-) + O(\kappa^2),$$

and the expansions of the eigenvalues and eigenvectors follow. \( \square \)

Next, we prove the key lemma for the sensitivity of eigenvalues of the matrix $\tilde{M}_{\kappa,\pm}$ with respect to the perturbation $\delta \tilde{M}_{\pm} := \tilde{M}_{\kappa,\pm} - \tilde{M}_{\kappa,\pm}$. 

19
Lemma 4.7 Let \( \{\lambda_{j,\pm}\}_{j=1}^{2} \) and \( \{\hat{\lambda}_{j,\pm}\}_{j=1}^{2} \) be the eigenvalues of \( M_{\kappa,\pm} \) and \( \hat{M}_{\kappa,\pm} \) respectively, then
\[
\lambda_{j,\pm}(k;\kappa,\varepsilon) = (1 + r_{j}(k;\kappa,\varepsilon)) \cdot \hat{\lambda}_{j,\pm}(k;\kappa,\varepsilon) + r_{j,h}(k;\kappa,\varepsilon), \quad j = 1,2,
\] (4.27)
where \( r_{j} = O(\varepsilon) \) and \( r_{j,h} = O(\varepsilon^{2}) \).

Proof. A direct comparison of (4.8) and (4.19) gives
\[
\delta M_{+} = \varepsilon \left[ \frac{\langle L_{\kappa}^{-1}e_{1},e_{1} \rangle - \alpha}{\langle L_{\kappa}^{-1}e_{2},e_{2} \rangle} - \frac{\langle L_{\kappa}^{-1}e_{2},e_{1} \rangle}{\langle L_{\kappa}^{-1}e_{1},e_{2} \rangle - \alpha} \right] \left[ \begin{array}{cc} \beta + \hat{\beta} & \beta^{-} \\ \beta^{+} & \beta + \hat{\beta} \end{array} \right].
\] (4.28)

Let \( \delta \lambda_{j,\pm} = \lambda_{j,\pm}(k;\kappa,\varepsilon) - \hat{\lambda}_{j,\pm}(k;\kappa,\varepsilon) \) and \( \delta v_{j,+} = v_{j,+} - \hat{v}_{j,+} \) be the perturbation of the eigenvalues and eigenvectors. It follows from Lemma 4.2 that
\[
\langle L_{\kappa}^{-1}e_{k},e_{j} \rangle - \alpha \delta \ell_{j} = O(\varepsilon),
\] (4.29)
where \( \delta \ell_{j} \) is Kronecker delta, and consequently, \( \|\delta M_{+}\| = O(\varepsilon) \). An application of the Bauer-Fike theorem for the perturbation of eigenvalues (cf. [9]) yields
\[
|\delta \lambda_{j,+}| = O(\varepsilon), \quad \text{and} \quad \|\delta v_{j,+}\| = O(\varepsilon).
\]

Now from the relation \( M_{\kappa,\pm}v_{j,+} = \lambda_{j,+}v_{j,+} \), we obtain
\[
\hat{\lambda}_{j,+} \cdot \delta v_{j,+} + \delta \lambda_{j,+} \cdot \hat{v}_{j,+} = \hat{M}_{\kappa,\pm} \delta v_{j,+} + \delta M_{+} \hat{v}_{j,+} + O(\varepsilon^{2}).
\]

Multiplying by the left-eigenvector \( \hat{w}_{j,+}^{T} \) leads to
\[
\delta \lambda_{j,+} \cdot (\hat{w}_{j,+}^{T} v_{j,+}) = \hat{w}_{j,+}^{T} \delta M_{\kappa} \hat{v}_{j,+} + O(\varepsilon^{2}).
\] (4.30)

Since \( \hat{\lambda}_{j,+} \) is an eigenvalue of \( \hat{M}_{\kappa,\pm} \), in light of (4.28), we see that
\[
\delta M_{+} \hat{v}_{j,+} = \frac{1}{\alpha} (\hat{\lambda}_{j,+} - \varepsilon) \left[ \frac{\langle L_{\kappa}^{-1}e_{1},e_{1} \rangle - \alpha}{\langle L_{\kappa}^{-1}e_{2},e_{2} \rangle} - \frac{\langle L_{\kappa}^{-1}e_{2},e_{1} \rangle}{\langle L_{\kappa}^{-1}e_{1},e_{2} \rangle - \alpha} \right] \hat{v}_{j,+}.
\] (4.31)

The assertion follows by combining (4.29)–(4.31) and the expansion for the eigenvectors in Lemma 4.6. The sensitivity of the eigenvalues for \( \lambda_{j,-} \) is analyzed parallelly. \( \square \)

Remark 7 If \( k \) is real and \( 0 < k < 2\pi/d \), then in the above lemma, \( r_{2} = O(\varepsilon) + iO(\kappa\varepsilon) \) and \( r_{2,h} = O(\varepsilon^{2}) + iO(\kappa\varepsilon^{2}) \), where the \( O(\cdot) \) terms are real. This can be shown by observing that \( \langle L_{\kappa}^{-1}e_{k},e_{j} \rangle - \alpha \delta \ell_{j} = O(\varepsilon) + iO(\kappa\varepsilon) \) when \( j = 2 \).

If \( (\kappa,k) \in D_{1} \), it follows from the explicit expressions (3.2)–(3.5) that
\[
\text{Im} \beta(k,\kappa) + \frac{1}{2} (\text{Im} \beta^{+}(k,\kappa) + \text{Im} \beta^{-}(k,\kappa)) = O(1),
\] (4.32)
\[
\text{Im} \beta(k,\kappa) - \frac{1}{2} (\text{Im} \beta^{+}(k,\kappa) + \text{Im} \beta^{-}(k,\kappa)) = \frac{\cos(\kappa d_{0} - 1)}{\zeta_{0}(k) \cdot d} = O(\kappa^{2}).
\] (4.33)

Consequently, we have the following proposition deduced from the previous two lemmas.
Proposition 4.8 If \((\kappa, k) \in D_1\), then \(\text{Im} \lambda_{1,\pm}(k) = O(\varepsilon)\) and \(\text{Im} \lambda_{2,\pm}(k) = O(\kappa^2 \varepsilon)\).

Now we are ready to present the perturbation of embedded eigenvalues and resonances when \(\kappa\) becomes nonzero. This is given in the following theorem.

Theorem 4.9 If \(\kappa = O(\varepsilon^\rho)\) with \(0 < \rho < \frac{1}{2}\), then the scattering problem (1.2)–(1.6) admits two groups of complex-valued resonances given by

\[
k^{(1)}_m = m\pi + 2m\pi \left[ \frac{1}{\pi} \ln \varepsilon + \left( \frac{1}{\alpha} + \gamma(m\pi, \kappa) + \frac{1}{2} (\beta^- (m\pi) + \beta^+ (m\pi, \kappa)) \right) \varepsilon \right] + O(\varepsilon^2 \ln^2 \varepsilon),
\]

\[
k^{(2)}_m = m\pi + 2m\pi \left[ \frac{1}{\pi} \ln \varepsilon + \left( \frac{1}{\alpha} + \gamma(m\pi, \kappa) - \frac{1}{2} (\beta^- (m\pi) + \beta^+ (m\pi, \kappa)) \right) \varepsilon \right] + O(\varepsilon^2 \ln^2 \varepsilon)
\]

for \(m < 2/d\). Furthermore,

\[
\text{Im} k^{(1)}_m = O(\varepsilon) \quad \text{and} \quad \text{Im} k^{(2)}_m = O(\kappa^2 \varepsilon).
\]

Proof. With Lemmas 4.6 and 4.7, the proof is analogous to that of Theorem 4.5. First, from Rouche’s theorem, there exists a simple root \(k^{(j)}_m\) of \(\lambda_{j,+}(k; \kappa, \varepsilon)\) for odd integer \(m\) close to \(k_{m,0} := m\pi\), the root of the leading-order term \(\frac{1}{\tan \kappa} + \frac{1}{\kappa \sin k}\).

To obtain the asymptotics of \(k^{(j)}_m\), we first consider a root of \(\hat{\lambda}_{j,+}(k; \kappa, \varepsilon)\), which is an eigenvalue of \(\hat{M}_{\kappa,+}\). Note that \(\hat{\lambda}_{j,+}(k; \kappa, \varepsilon)\) attains the expansion (4.24). An application of the Taylor expansion for \(\hat{\lambda}_{j,+}(k; \varepsilon)\) at \(k = k_{m,0}\) yields

\[
\hat{\lambda}_{j,+}(k; \varepsilon) = \varepsilon + \left[ -\frac{1}{(2k_{m,0})} \cdot (k - k_{m,0}) + O(k - k_{m,0})^2 + \frac{1}{\pi} \ln \varepsilon + \varepsilon \gamma(k_{m,0}, \kappa) 
\right. 
+ \varepsilon \cdot (-1)^{j+1} \cdot \frac{1}{2} \left( \beta^+(k_{m,0}, \kappa) + \beta^-(k_{m,0}, \kappa) \right)
+ \varepsilon \cdot O(k - k_{m,0}) \right] \cdot \alpha + O(\kappa^2 \varepsilon).
\]

In the above, it follows from (4.32) and (4.33) that

\[
\text{Im} \gamma(k_{m,0}, \kappa) + \frac{1}{2} (\text{Im} \beta^+(k_{m,0}, \kappa) + \text{Im} \beta^-(k_{m,0}, \kappa)) = O(1), \quad (4.34)
\]

\[
\text{Im} \gamma(k_{m,0}, \kappa) - \frac{1}{2} (\text{Im} \beta^+(k_{m,0}, \kappa) + \text{Im} \beta^-(k_{m,0}, \kappa)) = O(\kappa^2). \quad (4.35)
\]

Hence the root of \(\hat{\lambda}_{j,+}\) can be expanded as

\[
k^{(j)}_{m,1} = k_{m,0} + k_{m,0} \left[ \frac{1}{\pi} \ln \varepsilon + \left( \frac{1}{\alpha} + \gamma(k_{m,0}, \kappa) + (-1)^{j+1} \cdot \frac{1}{2} (\beta^+(k_{m,0}, \kappa) + \beta^-(k_{m,0}, \kappa)) \right) \varepsilon \right] + k^{(j)}_{m,h},
\]

in which

\[
\text{Re} k^{(1)}_{m,h} = O(\varepsilon^2 \ln^2 \varepsilon), \quad \text{Im} k^{(1)}_{m,h} = O(\varepsilon^2 \ln \varepsilon),
\]

\[
\text{Re} k^{(2)}_{m,h} = O(\varepsilon^2 \ln^2 \varepsilon), \quad \text{Im} k^{(2)}_{m,h} = O(\kappa^2 \varepsilon).
\]

To obtain the high-order term of the roots, from Lemma 4.7 we have

\[
\lambda_{j,+}(k) - \hat{\lambda}_{j,+}(k) = O(\varepsilon) \cdot \hat{\lambda}_{j,+}(k) + O(\varepsilon^2).
\]
Therefore, for a certain constant \( C \),
\[
|\lambda(k) - \hat{\lambda}_{j,+}(k)| < |\hat{\lambda}_{j,+}(k; \kappa, \varepsilon) |
\]
for all \( k \) satisfying \(|k - k_{m,1}^{(j)}| = C\varepsilon^2 \ln^2 \varepsilon \), and the asymptotic expansion of \( k_{m}^{(j)} \) follows from Rouche’s theorem. Since \( \kappa = O(\varepsilon^\rho) \) with \( 0 < \rho < \frac{1}{2} \), in view of (4.34) and (4.35), it follows that
\[
\text{Im} k_{m}^{(1)} = O(\varepsilon) \quad \text{and} \quad \text{Im} k_{m}^{(2)} = O(\kappa^2 \varepsilon).
\]
Finally, investigating the roots of \( \lambda_{j,-}(k; \kappa, \varepsilon) \) yields resonances close to \( m\pi \) with even integers \( m \).

\[ \square \]

5 Fano resonance and field enhancement

We present quantitative analysis for the solution to the scattering problem (1.2) - (1.6) and transmission anomaly through the slab near \( \kappa = 0 \) and \( k = \text{Re} k_m^{(2)} \). In particular, the expressions of reflected and transmitted field are obtained in Section 5.2, which allow for a rigorous proof of Fano resonance near the frequency \( k = \text{Re} k_m^{(2)} \). Additionally, we analyze quantitatively the field amplification at Fano resonance in Section 5.3.

5.1 Asymptotics of the solution to scattering problem

Decompose the system \( T\varphi = \varepsilon^{-1}f \) into its even and odd subsystems
\[
T\varphi_{\text{even}} = \varepsilon^{-1}f_{\text{even}}, \quad T\varphi_{\text{odd}} = \varepsilon^{-1}f_{\text{odd}},
\]
in which \( \varphi = \varphi_{\text{even}} + \varphi_{\text{odd}} \) and \( f = f_{\text{even}} + f_{\text{odd}} \), and
\[
\begin{align*}
\varphi_{\text{even}} &= [\varphi_+, \varphi_+]^T, \\
\varphi_{\text{odd}} &= [\varphi_-, -\varphi_-]^T.
\end{align*}
\]
These two subsystems are equivalent to the two smaller systems
\[
T_+\varphi_+ = \varepsilon^{-1}\tilde{f} \quad \text{and} \quad T_-\varphi_- = \varepsilon^{-1}\tilde{f},
\]
where \( T_+ = \hat{T} + \bar{T} \) and \( T_- = \hat{T} - \bar{T} \), and \( \tilde{f} = [f^-, f^+]^T \). Define
\[
\begin{align*}
\mu_+(\kappa) &= e^{i\kappa d_0/2} + (1 + \eta)e^{-i\kappa d_0/2}, \\
\mu_-(\kappa) &= e^{i\kappa d_0/2} - (1 + \eta)e^{-i\kappa d_0/2},
\end{align*}
\]
where \( \eta = O(\kappa) \) is defined in Lemma 4.6.

Lemma 5.1 The following asymptotic expansion holds for the solutions \( \varphi_+ \) and \( \varphi_- \) in \( V_1 \times V_1 \):
\[
\begin{align*}
\begin{bmatrix}
\langle \varphi_+, e_1 \rangle \\
\langle \varphi_+, e_2 \rangle
\end{bmatrix}
&= -\left( \alpha + O(\varepsilon) \right) \frac{\mu_+}{2\lambda_1} \begin{bmatrix} \frac{1}{1 + \eta} \\ 1 \end{bmatrix} + O(\varepsilon + \kappa^2) \\
&\quad + \left( \alpha + O(\varepsilon) \right) \frac{\mu_-}{2\lambda_2} \begin{bmatrix} \frac{1 + \eta}{1 - \eta} \\ -1 \end{bmatrix} + O(\varepsilon + \kappa^2) \end{align*}, \quad (|\kappa|, \varepsilon \to 0) \quad (5.2)
\]
in which \( \alpha := \langle S^{-1}, 1 \rangle \). In addition,

\[ \varphi_{\pm} = \varepsilon^{-1} L^{-1}_\kappa \tilde{f} - \left[ L^{-1}_\kappa e_1 \quad L^{-1}_\kappa e_2 \right] \begin{bmatrix} \beta + \tilde{\beta} \\ \beta + \tilde{\beta} \end{bmatrix} \begin{bmatrix} \langle \varphi_+ \rangle e_1 \\ \langle \varphi_+ \rangle e_2 \end{bmatrix}. \tag{5.3} \]

**Proof.** We consider \( T_+ \varphi_+ = \varepsilon^{-1} \tilde{f} \), and the proof for \( T_- \varphi_- = \varepsilon^{-1} \tilde{f} \) is parallel. Using the decomposition \( T_+ = P_\kappa + L_\kappa \), the equation reads \((P_\kappa + L_\kappa) \varphi_+ = \varepsilon^{-1} \tilde{f} \), which can be expressed as

\[ L^{-1}_\kappa P_\kappa \varphi_+ + \varphi_+ = \varepsilon^{-1} L^{-1}_\kappa \tilde{f}. \tag{5.4} \]

Evaluating \( P_\kappa \varphi_+ \) explicitly yields \((5.3)\). By a calculation similar to that in Section 4.1, we obtain

\[ M_{\kappa,+} \begin{bmatrix} \langle \varphi_+, e_1 \rangle \\ \langle \varphi_+, e_2 \rangle \end{bmatrix} = \begin{bmatrix} \langle L^{-1}_\kappa \tilde{f}, e_1 \rangle \\ \langle L^{-1}_\kappa \tilde{f}, e_2 \rangle \end{bmatrix}. \tag{5.5} \]

Recall that the matrix \( M_{\kappa,+} \) has eigenvalues \( \lambda_{1,+}(k, \varepsilon) \) and \( \lambda_{2,+}(k, \varepsilon) \), which are associated with the eigenvectors \( v_{1,+} \) and \( v_{2,+} \). By virtue of Lemmas 4.6 and 4.7,

\[ M_{\kappa,+}^{-1} = \frac{1}{2\lambda_{1,+}} \left( \begin{bmatrix} 1 \\ 1 + \eta \end{bmatrix} \right) + O(\varepsilon + k^2) + \frac{1}{2\lambda_{2,+}} \left( \begin{bmatrix} 1 \\ -1 \end{bmatrix} \right) + O(\varepsilon + k^2). \tag{5.6} \]

On the other hand, note that

\[ \tilde{f} = [-e^{-i k d / 2}, -e^{i k d / 2}]^T + O(\kappa \varepsilon). \]

Thus it follows from Lemma 4.2 that

\[ \begin{bmatrix} \langle L^{-1}_\kappa \tilde{f}, e_1 \rangle \\ \langle L^{-1}_\kappa \tilde{f}, e_2 \rangle \end{bmatrix} = \left( - e^{-i k d / 2} + e^{i k d / 2} + O(\kappa \varepsilon) \right) (\alpha + O(\varepsilon)), \tag{5.7} \]

The proof is completed by substituting \((5.6)\) and \((5.7)\) into \((5.5)\). \(\square\)

**Proposition 5.2** Let \( \varphi = [\varphi^{-1}_+, \varphi^+_1, \varphi^+_2, \varphi^+_2]^T \) be the solution of the system \( T \varphi = \varepsilon^{-1} \tilde{f} \). If \( 0 < |\kappa| \ll 1 \), then \( \varphi = [\varphi_+ + \varphi_-, \varphi_+ - \varphi_-]^T \), where \( \varphi_\pm \) are given in \((5.3)\). The following asymptotic expansion holds:

\[ \begin{bmatrix} \langle \varphi^{-1}_- \rangle 1 \\ \langle \varphi^+_1 \rangle 1 \\ \langle \varphi^-_2 \rangle 1 \\ \langle \varphi^+_2 \rangle 1 \end{bmatrix} = - \mu_+(\kappa) (\alpha + O(\varepsilon + k^2)) \begin{bmatrix} \frac{1}{2\lambda_{1,+}} & \frac{1}{1 + \eta} \\ \frac{1}{1 + \eta} & 1 \end{bmatrix} + \frac{1}{2\lambda_{1,-}} \begin{bmatrix} \frac{1}{1 + \eta} \\ -1 \end{bmatrix} \]

\[ + \mu_-(\kappa) (\alpha + O(\varepsilon + k^2)) \begin{bmatrix} \frac{1}{2\lambda_{2,+}} & \frac{1}{1 + \eta} \\ \frac{1}{1 + \eta} & -1 \end{bmatrix} + \frac{1}{2\lambda_{2,-}} \begin{bmatrix} \frac{1}{1 + \eta} \\ -1 \end{bmatrix} \]

\(|\kappa, \varepsilon \to 0\), where \( \alpha := \langle S^{-1}, 1 \rangle \) and \( \mu_\pm(\kappa) \) are defined in \((5.1)\).
5.2 Fano-type transmission anomalies

Let us now consider the field above and below the metallic slab. Define reflection and transmission coefficients \( r^\pm \) and \( t^\pm \) by

\[
\begin{align*}
    r^- &= -\frac{\mu_+}{2(1 + \eta)} \left( \frac{1}{\lambda_{1,+}} + \frac{1}{\lambda_{1,-}} \right) + \frac{\mu_-}{2(1 + \eta)} \left( \frac{1}{\lambda_{2,+}} + \frac{1}{\lambda_{2,-}} \right), \\
    r^+ &= -\frac{\mu_+}{2} \left( \frac{1}{\lambda_{1,+}} + \frac{1}{\lambda_{1,-}} \right) - \frac{\mu_-}{2} \left( \frac{1}{\lambda_{2,+}} + \frac{1}{\lambda_{2,-}} \right), \\
    t^- &= -\frac{\mu_+}{2(1 + \eta)} \left( \frac{1}{\lambda_{1,+}} - \frac{1}{\lambda_{1,-}} \right) + \frac{\mu_-}{2(1 + \eta)} \left( \frac{1}{\lambda_{2,+}} - \frac{1}{\lambda_{2,-}} \right), \quad (5.8) \\
    t^+ &= -\frac{\mu_+}{2} \left( \frac{1}{\lambda_{1,+}} - \frac{1}{\lambda_{1,-}} \right) - \frac{\mu_-}{2} \left( \frac{1}{\lambda_{2,+}} - \frac{1}{\lambda_{2,-}} \right). \quad (5.9)
\end{align*}
\]

Lemma 5.3 The solution to the scattering problem (1.2–1.6) admits the forms

\[
\begin{align*}
    u_\varepsilon(x) &= u^{inc} + u^{refl} + \\
    &+ \varepsilon \left( \alpha + O(\varepsilon + \kappa^2) \right) \left\{ \frac{r^-}{g^\alpha(x, -(d_0/2, 1)) + O(\varepsilon)} + \frac{r^+}{g^\alpha(x, (d_0/2, 1)) + O(\varepsilon)} \right\} \\
    u_\varepsilon(x) &= \varepsilon \left( \alpha + O(\varepsilon + \kappa^2) \right) \left\{ t^- \left[ g^\alpha(x, -(d_0/2, 0)) + O(\varepsilon) \right] + t^+ \left[ g^\alpha(x, (d_0/2, 0)) + O(\varepsilon) \right] \right\} \\
    &+ \varepsilon \left( g^\alpha(x, -(d_0/2, 1)) + O(\varepsilon) \right) \cdot \langle \varphi^-_1, 1 \rangle + \varepsilon \left( g^\alpha(x, (d_0/2, 1)) + O(\varepsilon) \right) \cdot \langle \varphi^+_1, 1 \rangle + u^{inc} + u^{refl}. \quad (5.10)
\end{align*}
\]

in \( \Omega_1 \) and \( \Omega_2 \) respectively.

Proof From Lemma 2.1 the total field above the grating is

\[
u_\varepsilon(x) = \int_{\Gamma_{1,\varepsilon}^+ \cup \Gamma_{1,\varepsilon}^-} g^\varepsilon(x, y) \frac{\partial u_\varepsilon(y)}{\partial y_2} ds_y + u^{inc} + u^{refl} \quad \text{in } \Omega_1.
\]

Hence, in the scaled interval \( I \),

\[
u_\varepsilon(x) = \varepsilon \int_{-1/2}^{1/2} g^\varepsilon(x, -(d_0/2 + \varepsilon Y, 1)) \varphi^-_1(Y) dY + \varepsilon \int_{-1/2}^{1/2} g^\varepsilon(x, (d_0/2 + \varepsilon Y, 1)) \varphi^+_1(Y) dY + u^{inc} + u^{refl} \\
= \varepsilon g^\varepsilon(x, -(d_0/2, 1)) \cdot \langle \varphi^-_1, 1 \rangle + \varepsilon g^\varepsilon(x, (d_0/2, 1)) \cdot \langle \varphi^+_1, 1 \rangle + u^{inc} + u^{refl}.
\]

By the asymptotic expansion in Proposition 5.2, we obtain the desired expansion for \( u_\varepsilon(x) \). Similarly, for \( x \in \Omega_2 \),

\[
u_\varepsilon(x) = -\int_{\Gamma_{2,\varepsilon}^+ \cup \Gamma_{2,\varepsilon}^-} g^\varepsilon(x, y) \frac{\partial u_\varepsilon(y)}{\partial y_2} ds_y \\
= \varepsilon \int_{-1/2}^{1/2} g^\varepsilon(x, -(d_0/2 + \varepsilon Y, 0)) \varphi^-_2(Y) dY + \varepsilon \int_{-1/2}^{1/2} g^\varepsilon(x, (d_0/2 + \varepsilon Y, 0)) \varphi^+_2(Y) dY \\
= \varepsilon g^\varepsilon(x, -(d_0/2, 0)) \cdot \langle \varphi^-_2, 1 \rangle + \varepsilon g^\varepsilon(x, (d_0/2, 0)) \cdot \langle \varphi^+_2, 1 \rangle
\]

The proof is completed by substituting the expansion in Proposition 5.2

\[\square\]
Now we consider the reflected and transmitted wave above and below the slab. Decompose the Green function $g'(x, y)$ into the propagating and exponentially decaying parts $g'(x, y) = g_{\text{prop}}(x, y) + g_{\text{exp}}(x, y)$. Note that for $(\kappa, k) \in D_1$ ($0 < k < 2\pi/d$ for $\kappa = 0$), only one propagating Fourier mode appears in the Green function. More explicitly,

$$g_{\text{prop}}(x, (\pm d_0/2, 1)) = -\frac{i}{d\zeta_0(k)} e^{i\kappa x_1 \mp d_0/2 + i\zeta_0(x_2 - 1)}$$

and

$$g_{\text{prop}}(x, (\pm d_0/2, 0)) = -\frac{i}{d\zeta_0(k)} e^{i\kappa x_1 \mp d_0/2 - i\zeta_0 x_2}.$$

By substituting the propagating parts of the Green function into the above lemma, we obtain the expansion of the reflected and transmitted fields as follows.

**Proposition 5.4** If $(\kappa, k) \in D_1$ ($0 < k < 2\pi/d$ for $\kappa = 0$), the reflected and transmitted fields admit the forms

$$u^r_\varepsilon(x) = R(k, \kappa, \varepsilon) e^{i\kappa x_1 + i\zeta_0(x_2 - 1)} \quad \text{and} \quad u^t_\varepsilon(x) = T(k, \kappa, \varepsilon) e^{i\kappa x_1 - i\zeta_0 x_2},$$

where the reflection and transmission coefficients are

$$R(k, \kappa, \varepsilon) = 1 - \frac{i \varepsilon (\alpha + O(\varepsilon + \kappa^2))}{2d\zeta_0(1 + \eta)} \left[ -\mu_+^2 \left( \frac{1}{\lambda_{1,+}} + \frac{1}{\lambda_{1,-}} \right) + \mu_-^2 \left( \frac{1}{\lambda_{2,+}} + \frac{1}{\lambda_{2,-}} \right) \right],$$

$$T(k, \kappa, \varepsilon) = -\frac{i \varepsilon (\alpha + O(\varepsilon + \kappa^2))}{2d\zeta_0(1 + \eta)} \left[ -\mu_+^2 \left( \frac{1}{\lambda_{1,+}} - \frac{1}{\lambda_{1,-}} \right) + \mu_-^2 \left( \frac{1}{\lambda_{2,+}} - \frac{1}{\lambda_{2,-}} \right) \right].$$

**Lemma 5.5** For $r > 0$ and a horizontal line $\gamma := \{t + ir ; t \in \mathbb{R} \}$ in the complex plane, the set $\{1/z ; z \in \gamma \} = D \setminus \{0\}$, where $D = \{z ; |z + \frac{i}{2r}| = \frac{1}{2r} \}$ is a disk.

Now we are ready to prove the Fano resonance that occurs in the vicinity of the real resonance frequency $k_0 := \text{Re} k_m^{(2)}$ as shown in the transmission graph in Figure 2.

**Theorem 5.6** For all $c > 0$, define the real interval $I_c := [k_0 - c\kappa^2 \varepsilon, k_0 + c\kappa^2 \varepsilon]$ containing the real resonance frequency $k_0 := \text{Re} k_m^{(2)}$. There exist a positive number $c$ and frequencies $k_1, k_2 \in I_c$ such that $|T(k_1)| \approx \varepsilon$ and $|T(k_2)| \geq 1 - \varepsilon$ for $0 < |\kappa| < 1$.

**Proof.** We give the proof when $m$ is odd, and the argument is analogous if $m$ is even. In view of the asymptotic expansions in Theorem 4.9 and the explicit expression of $\mu_\pm$ in (5.1), we see that in the $O(\kappa^2 \varepsilon)$ neighborhood of $k_0 := \text{Re} k_m^{(2)},$

$$\frac{\varepsilon \mu_+^2}{\lambda_{1,+}} = O(1), \quad \frac{\varepsilon \mu_-^2}{\lambda_{2,+}} = O(1), \quad \frac{\varepsilon \mu_+^2}{\lambda_{1,-}} = O(\varepsilon), \quad \frac{\varepsilon \mu_-^2}{\lambda_{2,-}} = O(\kappa^2 \varepsilon).$$

Thus

$$R(k) = 1 - \frac{i \varepsilon \alpha}{2d\zeta_0(k)(1 + \eta)} \left[ -\frac{\mu_+^2}{\lambda_{1,+}} + \frac{\mu_-^2}{\lambda_{2,+}} \right] + O(\varepsilon),$$

$$T(k) = -\frac{i \varepsilon \alpha}{2d\zeta_0(k)(1 + \eta)} \left[ -\frac{\mu_+^2}{\lambda_{1,+}} + \frac{\mu_-^2}{\lambda_{2,+}} \right] + O(\varepsilon),$$
and it follows that \( R = 1 + T + O(\varepsilon) \). On the other hand, from the conservation of energy, we have \(|R|^2 + |T|^2 = 1\), which yields
\[
|T(k) + 1|^2 + |T(k)|^2 = 1 + O(\varepsilon).
\]
This shows that the trajectory \( \gamma_\varepsilon(k) \) of the transmission coefficient \( T(k) \) on the complex plane for fixed \( \varepsilon \) lies close to the fixed circular trajectory \( \gamma_0(k) \),
\[
\gamma_\varepsilon(k) = \gamma_0(k) + O(\varepsilon), \quad \text{with } \gamma_0(k) \subset D_0 := \{ z : |z + \frac{1}{2}| = \frac{1}{2} \}, \tag{5.14}
\]
namely, \( \gamma_0 \) lies on a circle of radius \( \frac{1}{2} \) centered at \((-\frac{1}{2}, 0)\) (cf. Figure 3 right).

In fact, the assertion of the theorem holds as long as
\[
\left[-\pi, -\frac{\pi}{2}\right] \text{ or } \left[\frac{\pi}{2}, \pi\right] \subset \{ \arg \gamma_0(k) : k \in I_\varepsilon \}. \tag{5.15}
\]

To show this, write \( T(k) = t_1(k) + t_2(k) + O(\varepsilon) \), where
\[
t_1(k) = -a(k) \frac{\varepsilon \mu_1^+(k)}{\lambda_{1,+}(k)}, \quad t_2(k) = a(k) \frac{\varepsilon \mu_2^-(k)}{\lambda_{2,+}(k)}, \quad a(k) = -\frac{i \alpha}{2d(1 + \eta)\zeta_0(k)}. \tag{5.16}
\]

From a perturbation argument parallel to the proof of Theorem 4.9, it is known that \( \text{Re} \lambda_{2,+}(k) \) attains a root \( \tilde{k}_s \) in the vicinity of \( k_s \). Since \( \lambda_{2,+}(k_s) = 0 \) and \( \text{Im} \lambda_{2,+}(k) = O(\kappa^2\varepsilon) \) (cf. Proposition 4.8), we deduce that \( |\tilde{k}_s - k_s| = O(\kappa^2\varepsilon) \). Now expand all the terms of (5.16) in the \( O(\kappa^2\varepsilon) \) neighborhood of \( \tilde{k}_s \):
\[
a(k) = a(\tilde{k}_s) + O(\kappa^2\varepsilon), \quad \mu_{\pm}(k) = \mu_{\pm}(\tilde{k}_s) + O(\kappa^2\varepsilon), \quad \lambda_{1,+}(k) = \lambda_{1,+}(\tilde{k}_s) + O(\kappa^2\varepsilon), \quad \lambda_{2,+}(k) = c_1(k - \tilde{k}_s) + ic_2\kappa^2\varepsilon + O(\kappa^4\varepsilon^2),
\]
where \( c_1 \) and \( c_2 \) are real-valued constants and \( c_2 > 0 \). By setting \( k - \tilde{k}_s = s \cdot k^2 \varepsilon \), it follows that

\[
T(k) = t_1(\tilde{k}_s) + \frac{\varepsilon a(\tilde{k}_s)\mu_2^2(\tilde{k}_s)}{c_1(k - \tilde{k}_s) + i c_2 k^2 \varepsilon} + O(\varepsilon),
\]

\[
= t_1(\tilde{k}_s) + \frac{e^{\theta_0}}{\hat{c}_1 s + i \hat{c}_2} + O(\varepsilon),
\]

in which

\[
c_0 := \frac{a(\tilde{k}_s)\mu_2^2(\tilde{k}_s)}{k^2} = O(1), \quad \hat{c}_1 = \frac{c_1}{|c_0|}, \quad \hat{c}_2 = \frac{c_2}{|c_0|}, \quad \theta_0 = \arg c_0.
\]

From Lemma \([5,5]\) we deduce that the trajectory of \( T(k) \) is given by

\[
\gamma_\varepsilon(k) = t_1(\tilde{k}_s) + e^{i \theta_0} \tilde{\gamma}_0(s) + O(\varepsilon), \quad \text{where} \quad \tilde{\gamma}_0 := \{ \gamma : |\gamma + \frac{i}{2\varepsilon} | = 1 \}.
\]

In addition,

\[
[\pi + \theta_c, 2\pi - \theta_c] \subset \{ \arg \tilde{\gamma}_0 \left( \frac{k - \tilde{k}_s}{k^2 \varepsilon} \right) ; k \in I_\varepsilon \}
\]

for certain \( \theta_c \in (0, \pi/2) \) depending on the constant \( c \) (see Figure \([3,\text{left}])\).

A combination of \((\ref{5.14})\) and \((\ref{5.17})\) leads to the relation

\[
\gamma_0(k) = t_1(\tilde{k}_s) + e^{i \theta_0} \tilde{\gamma}_0(s) + O(\varepsilon).
\]

Geometrically, up to \( O(\varepsilon) \), \( \gamma_0 \) is obtained from a rotation and translation of the curve \( \tilde{\gamma}_0 \) as shown in Figure \([3,\text{right}])\), and it follows that \( \hat{c}_2 = 1 \). A direct calculation shows that \( \text{Im} t_1(\tilde{k}_s) = O(1) \) and is nonzero, hence by choosing sufficiently large \( c \) such that \( \theta_c < \theta_1 := \tan^{-1}(|\text{Im} t_1(\tilde{k}_s)|/|\text{Re} t_1(\tilde{k}_s)|) \), the claim \((\ref{5.15})\) holds and the proof is complete.

\[\square\]

### 5.3 Field enhancement

Fano resonance is usually associated with field amplification around the resonance frequencies \([11,28]\). This also applies to the periodic structure considered here. See Figure \([4]\) for a plot of the field inside the slits at Fano resonance frequencies.

We investigate the field enhancement in the slits at frequencies around the real part \( \text{Re} k^{(2)}_m \) of a complex resonance that is the perturbation of a real eigenvalue. It is known that the field amplification at Fabry-Perot resonance frequencies \( \text{Re} k^{(1)}_m \) is of order \( O(1/\varepsilon) \) \([20]\). As shown below, field amplification with an order of \( O(1/(\kappa \varepsilon)) \) occurs at the Fano resonance frequencies \( \text{Re} k^{(2)}_m \), which is much stronger than that of Fabry-Perot resonance. This results in more complicated scattering behavior, as the field enhancement depends on both small \( \varepsilon \) and \( \kappa \).

Since \( u_\varepsilon \) is quasi-periodic, we analyze the field in the reference slit \( S^{(0)}_\varepsilon \). The field \( u_\varepsilon \) satisfies the Helmholtz equation in \( S^{0,\pm}_\varepsilon \) with homogeneous Neumann boundary conditions on the slit walls, and thus it admits the following expansion there.

\[
u_\varepsilon(x) = a_0^\pm \cos k x_2 + b_0^\pm \cos k(1-x_2) + \sum_{m \geq 1} \left(a_m^\pm e^{-i k^{(m)}_{2,\varepsilon} x_2} + b_m^\pm e^{i k^{(m)}_{2,\varepsilon} (1-x_2)}\right) \cos \frac{m \pi x_1^\pm}{\varepsilon},
\]

where \( x_1^\pm = x_1 \mp d_0/2 + \varepsilon/2 \) and \( k^{(m)}_{2,\varepsilon} = \sqrt{(m \pi/\varepsilon)^2 - k^2} \).
Figure 4: The wave field inside the slits $S_0^{0,+}$ at the first two Fano resonance frequencies $\Re k_2^{(2)}$ and $\Re k_2^{(2)}$. $d_1 = 0.4$, $\varepsilon = 0.05$, $\kappa = 0.1$.

**Lemma 5.7** In the slit region $\tilde{S}_0^{0,\pm} := \{x \in S_0^{0,\pm} ; x_2 \gg \varepsilon, 1 - x_2 \gg \varepsilon\}$, the solution $u_\varepsilon(x)$ of the scattering problem (1.2–1.6) admits the following asymptotic form.

$$u_\varepsilon(x) = -\frac{\alpha}{k \sin k} + O\left(\varepsilon + \kappa^2\right) \left(r^\pm \cos k x_2 + t^\pm \cos k(1 - x_2)\right) + O\left(e^{-1/\varepsilon}\right),$$

where the coefficients $r^\pm$ and $t^\pm$ are given in (5.8)–(5.11).

**Proof.** Taking the derivative of the expansion (5.18) with respect to $x_2$ and integrating over the slit apertures, one has

$$-a_0^\pm k \sin k = \frac{1}{\varepsilon} \int_{\Gamma_{1,\varepsilon}^\pm} \frac{\partial u_\varepsilon}{\partial x_2} ds = \langle \varphi_1^\pm, 1 \rangle, \quad b_0^\pm k \sin k = \frac{1}{\varepsilon} \int_{\Gamma_{2,\varepsilon}^\pm} \frac{\partial u_\varepsilon}{\partial x_2} ds = -\langle \varphi_2^\pm, 1 \rangle.$$  

Applying Proposition 5.2, we obtain the expansion coefficients $a_0^\pm$ and $b_0^\pm$ as follows:

$$a_0^\pm = \frac{r^\pm (\alpha + O(\varepsilon + \kappa^2))}{k \sin k}, \quad b_0^\pm = \frac{t^\pm (\alpha + O(\varepsilon + \kappa^2))}{k \sin k}.$$  

(5.19)

For $m \geq 1$, the coefficients $a_m$ and $b_m$ can be obtained similarly by taking the inner product of $\partial_{x_2} u$ with $\cos \frac{m \pi x^\pm}{\varepsilon}$ over the slit apertures. In view of Proposition 5.2, a direct estimate leads to

$$|a_m| \leq O(1/\sqrt{m}), \quad |b_m| \leq O(1/\sqrt{m}), \quad \text{for } m \geq 1.$$  

(5.20)

The proof is complete.

Now the shape of resonant wave modes in the slits and their enhancement orders at the Fano resonance frequency $k = \Re k_m^{(2)}$ are characterized in the following theorem.

**Theorem 5.8** In the slit region $\tilde{S}_0^{0,\pm} := \{x \in S_0^{0,\pm} ; x_2 \gg \varepsilon, 1 - x_2 \gg \varepsilon\}$, the solution $u_\varepsilon(x)$ of the scattering problem (1.2–1.6) admits the following asymptotic form at the resonant frequencies $k = \Re k_m^{(2)}$.

$$u_\varepsilon(x) = \left[\pm \frac{c_{\text{odd}}}{\kappa \varepsilon} + O\left(\frac{1}{\varepsilon}\right)\right] \cos(k(x_2 - 1/2)) + O(1), \quad (k = \Re k_m^{(2)}, m \text{ even})$$  

(5.21)

$$u_\varepsilon(x) = \left[\pm \frac{c_{\text{even}}}{\kappa \varepsilon} + O\left(\frac{1}{\varepsilon}\right)\right] \sin(k(x_2 - 1/2)) + O(1), \quad (k = \Re k_m^{(2)}, m \text{ odd})$$  

(5.22)

$(|\kappa|, \varepsilon \to 0)$, in which $c_{\text{odd}}$ and $c_{\text{even}}$ are certain constants independent of $\varepsilon$ and $\kappa$.  

28
Proof. We only derive the calculations when \( m \) is odd, and the calculations for even \( m \) are similar. From Lemma 5.7 and the explicit expressions (5.8–5.11) for the coefficients \( r^\pm \) and \( t^\pm \), we obtain that in the regions \( S_{\varepsilon}^{0,-} \) and \( S_{\varepsilon}^{0,+} \),

\[
    u_{\varepsilon}(x) = -\alpha + O(\varepsilon + \kappa^2) \left( \frac{r^- \cos k x_2 + t^- \cos k(1 - x_2)}{k \sin k} \right) + O\left( \varepsilon^{1/\varepsilon} \right),
\]

\[
    = \left( \alpha + O(\varepsilon + \kappa^2) \right) \left( \frac{\mu_+}{\lambda_{1,+}} - \frac{\mu_-}{\lambda_{2,+}} \right) \frac{\cos k x_2 + \cos k(1 - x_2)}{2(1 + \eta)k \sin k} \right) \right) + O\left( \varepsilon^{1/\varepsilon} \right) \right)
\]

and

\[
    u_{\varepsilon}(x) = -\alpha + O(\varepsilon + \kappa^2) \left( \frac{r^+ \cos k x_2 + t^+ \cos k(1 - x_2)}{k \sin k} \right) + O\left( \varepsilon^{1/\varepsilon} \right),
\]

\[
    = \left( \alpha + O(\varepsilon + \kappa^2) \right) \left( \frac{\mu_+}{\lambda_{1,+}} + \frac{\mu_-}{\lambda_{2,+}} \right) \frac{\cos k x_2 + \cos k(1 - x_2)}{2k \sin k} \right) \right) \right) + O\left( \varepsilon^{1/\varepsilon} \right) \right)
\]

respectively. From the asymptotic expansions in Theorem 4.9 and the definition of \( \mu_\pm \) in (5.1), we see that at resonant frequencies \( k = \text{Re} k_m^{(2)} \),

\[
    \frac{1}{\lambda_{1,+}} = O\left( \frac{1}{\varepsilon} \right), \quad \frac{1}{\lambda_{2,+}} = O\left( \frac{1}{\kappa^2 \varepsilon} \right) \quad \text{and} \quad \mu_+ = 1 + O(\kappa), \quad \mu_- = O(\kappa). \quad (5.25)
\]

On the other hand, in view of Lemmas 4.6 and 4.7,

\[
    \lambda_{1,-} = \left( \frac{\cos k - 1}{k \sin k} \right) \alpha + O(\varepsilon) \quad \text{and} \quad \lambda_{2,-} = \left( \frac{\cos k - 1}{k \sin k} \right) \alpha + O(\varepsilon). \quad (5.26)
\]

We obtain the desired expansions by substituting (5.25) and (5.26) into (5.23)–(5.24). □

Appendix A

Appendix A.1 Proof of Lemma 3.2

Recall that

\[
    C_{\varepsilon}(X, Y) = \frac{1}{\varepsilon} \sum_{m=0}^{\infty} \left( \sum_{n=0}^{\infty} c_{mn} \alpha_{mn} \right) \cos \left( m \pi \left( X + \frac{1}{2} \right) \right) \cos \left( m \pi \left( Y + \frac{1}{2} \right) \right). \quad (A.1)
\]

Let \( C_m = \sum_{n=0}^{\infty} c_{mn} \alpha_{mn} \). From the representation of elementary functions by series, it can be shown that

\[
    C_0(k) = \sum_{n=1}^{\infty} \left( \frac{2}{k^2 - (n\pi)^2} + \frac{1}{k^2} \right) = \frac{\cot k}{k},
\]

29
\[ C_m(k, \varepsilon) = \sum_{n=1}^{\infty} \frac{4}{k^2 - (m\pi/\varepsilon)^2 - (n\pi)^2} + \frac{2}{k^2 - (m\pi/\varepsilon)^2} \]
\[ = -\frac{2}{\sqrt{(m\pi/\varepsilon)^2 - k^2}} \coth \left( \sqrt{(m\pi/\varepsilon)^2 - k^2} \right) \]
\[ = -\frac{2\varepsilon}{m\pi} - \frac{k^2\varepsilon^3}{m^3\pi^3} + O \left( \frac{\varepsilon^5}{m^5} \right), \quad m \geq 1. \]

Substituting into (A.1) yields the desired expansion for \( G_i^\varepsilon(X, Y) \) as follows:
\[ G_i^\varepsilon(X, Y) = \frac{1}{\varepsilon} \left[ C_0(k) - \sum_{m \geq 1} \frac{2\varepsilon}{\pi m} \cos(m\pi X) \cos(m\pi Y) - \sum_{m \geq 1} \frac{k^2\varepsilon^3}{m^3\pi^3} \cos(m\pi X) \cos(m\pi Y) \right. \]
\[ + O(\varepsilon^5) \sum_{m \geq 1} \frac{1}{m^5} \cos(m\pi X) \cos(m\pi Y) \]
\[ = \cot \frac{k}{k\varepsilon} + \left( \frac{2}{\pi} \right) \left[ -\ln 2 - \frac{1}{2} \ln \left| \sin \left( \frac{\pi(X + Y + 1)}{2} \right) \right| - \frac{1}{2} \ln \left| \sin \left( \frac{\pi(X - Y)}{2} \right) \right| \right] \]
\[ + r_{i,1}(|X - Y|) + r_{i,2}(|X + Y + 1|), \]
where \( r_{i,1} = O(\varepsilon^2) \) and \( r_{i,2} = O(\varepsilon^2) \), and it holds that \( r_{i,1}(t + 2) = r_{i,1}(t) \).

Similarly, note that
\[ \tilde{G}_i^\varepsilon(X, Y) = \frac{1}{\varepsilon} \sum_{m=0}^{\infty} \left( \sum_{n=0}^{\infty} (-1)^n c_m c_{mn} \right) \cos \left( m\pi (X + \frac{1}{2}) \right) \cos \left( m\pi (Y + \frac{1}{2}) \right). \]

Let \( \tilde{C}_m = \sum_{n=0}^{\infty} (-1)^n c_m c_{mn} \). Again the representation of elementary functions as series yields
\[ \tilde{C}_0(k) = \sum_{n=1}^{\infty} \frac{2(-1)^n}{k^2 - (n\pi)^2} + \frac{1}{k^2} = \frac{1}{k \sin k}, \]
\[ \tilde{C}_m(k, \varepsilon) = \sum_{n=1}^{\infty} \frac{(-1)^n \cdot 4}{k^2 - (m\pi/\varepsilon)^2 - (n\pi)^2} + \frac{2}{k^2 - (m\pi/\varepsilon)^2} \]
\[ = -\frac{2}{\sqrt{(m\pi/\varepsilon)^2 - k^2}} \sinh \left( \sqrt{(m\pi/\varepsilon)^2 - k^2} \right) \]
\[ = O \left( \frac{\varepsilon}{m\pi} e^{-m\pi/\varepsilon} \right). \]

for \( k\varepsilon \ll 1 \) and \( m \geq 1 \). Therefore,
\[ \tilde{G}_i^\varepsilon(X, Y) = \frac{1}{(k \sin k)\varepsilon} + O(\exp (-1/\varepsilon)) + \tilde{r}_{i,1}(|X - Y|) + \tilde{r}_{i,2}(|X + Y + 1|), \]
where \( \tilde{r}_{i,1} = O(e^{-1/\varepsilon}) \) and \( \tilde{r}_{i,2} = O(e^{-1/\varepsilon}) \), and it holds that \( \tilde{r}_{i,1}(t + 2) = \tilde{r}_{i,1}(t) \).
Appendix A.2 Proof of Lemmas 3.3

To show (1), note that \( \ln \left| \sin \left( \frac{\pi t}{2} \right) \right| \) is a periodic function with period 2. If \( \tilde{\varphi}(X) = \varphi(-X) \), setting \( \tilde{X} = -X \) and \( \tilde{Y} = -Y \), then

\[
[S\tilde{\varphi}](X) = \int_{-1}^{1} \frac{1}{\pi} \left[ \ln |X - Y| + \ln \left| \sin \left( \frac{\pi (X - Y)}{2} \right) \right| + \ln \left| \sin \left( \frac{\pi (X + Y + 1)}{2} \right) \right| \right] \varphi(-Y) dY
\]

\[
= \int_{-1}^{1} \frac{1}{\pi} \left[ \ln |\tilde{X} - \tilde{Y}| + \ln \left| \sin \left( \frac{\pi (\tilde{X} - \tilde{Y})}{2} \right) \right| + \ln \left| \sin \left( \frac{\pi (\tilde{X} + \tilde{Y} + 1)}{2} \right) \right| \right] \varphi(\tilde{Y}) d\tilde{Y}
\]

\[
= [S\varphi](\tilde{X}).
\]  

(A.2)

The proof of (2) can be found in [5]. The invertibility of the operator \( S + S_0^\infty + \hat{S}^\infty \) is evident from (2) and the fact that \( \|S_\kappa^\infty\| \lesssim \varepsilon \) and \( \|\hat{S}^\infty\| \lesssim e^{-1/\varepsilon} \). Let \( \varphi \) and \( \tilde{\varphi} \) satisfy

\[
(S + S_0^\infty + \hat{S}^\infty)\varphi = g \quad \text{and} \quad (S + S_0^\infty + \hat{S}^\infty)\tilde{\varphi} = \tilde{g},
\]

in which \( \tilde{g}(X) = g(-X) \). Recall that the kernels of \( S_0^\infty \) and \( \hat{S}^\infty \) are given by (cf. (3.21)–(3.22) and (3.10))

\[
\rho_\infty(0; X, Y) = \tilde{r}_\kappa(|X - Y|) + r_{1,1}(\varepsilon; |X - Y|) + r_{1,2}(\varepsilon; |X + Y + 1|),
\]

\[
\tilde{\rho}_\infty(X, Y) = \tilde{r}_{1,1}(\varepsilon; |X - Y|) + \tilde{r}_{1,2}(\varepsilon; |X + Y + 1|).
\]

If \( \tilde{\varphi}(X) = \varphi(-X) \), in view of the periodicity of the functions \( r_{1,2}(t) \) and \( \tilde{r}_{1,2}(t) \) (cf. (3.20)), a parallel derivation as in (A.2) yields

\[
[S_0^\infty\tilde{\varphi}](X) = [S_0^\infty\varphi](\tilde{X}) \quad \text{and} \quad [\hat{S}^\infty\tilde{\varphi}](X) = [\hat{S}^\infty\varphi](\tilde{X}).
\]  

(A.3)

A combination of (A.2) and (A.3) leads to

\[
[(S + S_0^\infty + \hat{S}^\infty)\tilde{\varphi](X) = [(S + S_0^\infty + \hat{S}^\infty)\varphi](\tilde{X}) = g(-X).
\]

The assertion (3) holds by the uniqueness of the solution to the integral equation.

References


