(hapter 3

Nonlinear Equations in One
Variable

This chapter is concerned with finding solutions to the scalar, nonlinear equation

fx) =0,

where the variable x runs in an interval [a,b]. The topic provides us with an opportunity to discuss
various issues and concepts that arise in more general circumstances.
={ There are many canned routines that do the job of finding a solution to a nonlinear scalar
equation; the one in MATLAB is called fzero; type help fzero to see how this function is
used and what input parameters it requires.

Following an extended introduction to our topic in Section 3.1 are three sections, 3.2-3.4,each
._!i_t_'.vme_d to a different method or a class of methods for solving our nonlinear equation. A closely
itlited problem is that of minimizing a function in one variable, and this is discussed in Section 3.5.

31 Solving nonlinear equations

.'i'ntgf to our prototype problem introduce above, f(x) = 0, let us further assume that the function

g lmfms on the interval, denoted f € Cla,b]. Throughoutour discussion we denote a solution
H&Equation (called root, or zero) by x*.

Why introduce nonlinear equations before introducing their easier comrades, the

57! Because one linear equation in one unknown is just too easy and not particu-

ll.ﬂﬁnfiting. and systems of equations bring a wave of complications with them. We

N interest in solving scalar nonlinear equations not only because such problems

uently in many applications, but also because it is an opportunity to discuss var-

$ and concepts that arise in more general circumstances and highlight ideas that
Sible well beyond just one equation in one unknown.

39

Chapter 3. Nonlinear Equations in One Variable

Figure 3.1. Graphs of three functions and their real roots (if there are any): @) fx)
sin(x) on [0,4x], (i) fx)= %3 —30x%24-2552 0n [0,20), and (i) fx)= 10cosh(x/4) — ¥4

[—10,101.

2. fx)= sin(x).

Since sin(ns) = 0 for any integer n, we have

(a) On the interval [a,b1 =17, 521] there is one root, x* = 7.

(b) On the interval [a,b] = [0,47] there are five roots; s Figure 3.1.

 f)=x—30x2+2552, 0=x= 20.
In general, a cubic equation with complex coefficients has three complex roots. But
polynomial coefficients are real and x is restricted to be real and lie in a specific interV
there is no general a priori rule as to how many (real) roots to expect. A rough plot!
function on the interval [0,20] is given in Figure 3.1. Based on the plot we suspec e

precisely one root x* in this interval.

L fx)= 10cosh(x/4)—x, —0O0<X < 00,
where the function cosh is defined by cosh(f) = e +2e"

Not every equation has a solution. This one has no real roots.

Figure 3.1 indicates that the function ¢(x) = 10cosh(x/4) —x has a minimum.
minimum we differentiate and equate 100. Let f(x)=¢'(x)= 2.5 sinh(x /4) — 1 (wher® e

. ‘ . | i n
{o cosh, we define sinh(f) = ¢ =¢). This function should have a zero in the interval (0.4

on finding a function’s minimum, see Section 3.5.

3.1.

—

Solving nonlinear equations

gxample 3.2. Here is the MATLAB script that generates Figure 3.1.

t = 0:.1:4+pi;

tt = sin(t);

ax = zeros(l,length(t));

xrt = 0:pi:d+pi;

yrt = zeros(1,5);

subplot (3,1,1)
plot(t,tt,’b',t,ax,'k’,xrt,yrt,’rx’)-
xlabel ('x") !
ylabel (* £(x) ")

t = 0:.1:20;

tt = £.73 - 30xt.”2 + 2552;

ax zeros (1, length(t)) ;

subplot (3,1,2)
plot(t,tt,’b’,t,ax,’k',11.8615,0,’rx’)-
xlabel ('x') ’
ylabel (' £(x) ")

-10:.1:10;
£t = 10 » cosh(t ./4) -
ax = zeros(l,length(t)) ;
#Hubplot (3,1,3)
Cplot(t,tt, 'b’ ,t,ax,'k’);
*label (' x') '
ylabel (‘£ (x) ')
=l

- This script should not b i
i _ e too difficult to read like text. Note th
) in defining the array tt in terms of the array t. Wl st i e

t;

Ve methods for finding roots

listic to e i i
e lﬁge()c:,ae;fsgé (1jn special cases, tq find a solution of a nonlinear equation by using
i ure that has a'ﬁmte, small number of steps. Indeed, it is enough
for b oo o p(())lynoml_als to realize how rare closed formulas are: they practically
Bl o ot hp()dyI::lmlals. Thus, one has tf’ resort to iterative methods: starting with
N g‘ erates a‘sequence of‘ iterates x1,Xx2,...,X%k, ... that (if all works
e given, continuous function. In general, our methods will require

£e of the root’ i
t’s location. To find
il . m
f;&mnl . ore than one root, we can fire up the same method
TOXimale locati .
. . ; e gillt;;)ns of roots we can roughly plot the function, as done in Exam-
m“’.mmiveiy o C;/rtlt, bu;} sor}?etlmes complicated things can be made simple by one
: > robe t ion, i i i
(x) c(l;ange s sign, p e function, i.e., evaluate it at several points, looking for
=Y e, f
» Le., f ch i i
n 8¢ 10 thare isa:ies sign on the ‘mterval [a,b], then by the Intermediate Value
DAZine (ryig 1 o humbelr ¢ = x* in this interval for which f(c) =s =0. To see
S6 the fllnctionIi)S :oscglar function from a positive to a negative value, without
_FOEe e for . ntinuous): somewhere the curve has to cross the x-axis!

\ oughl i
SeVeral unkﬂOWnSg y locating roots are unfortunately not easy to generalize to

42 Chapter 3. Nonlinear Equations in One Variable

Stopping an iterative procedure

Typically, an iterative procedure starts with an initial iterate xo and yields a sequence of iterates
X1, X2 eeesXkooonr Note that in general we do not expect the iterative procedure to produce the exac|
solution x* exactly. We would conclude that the series of iterates converges if the values of | f(xk)|
and/or of |xx — xk—1] decrease towards 0 sufficiently fast as the iteration counter k increases. i

Correspondingly, one or more of the following general criteria are used to terminate such aj
iterative process successfully after n iterations:

|y — xn—1l < atol and/or
|xn — Xn—t] < rtollx,| and/or
| f(xn)l < £EOL,

where atol, rtol, and ftol are user—speciﬁed constants.
Usually, but not always, the second, relative criterion is more robust than the first, absolu
one. A favorite combination uses one tolerance value tol, which reads

1Xn —xp—1] < tol(l 4 |xaD.

The third criterion is independent of the first two; it takes the function yalue into account.
function f(x) may in general be very flat, or very steep, Of peither, near its root.

Desired properties of root finding algorithms

When assessing the qualities of a given root finding algorithm, a key property is its efficiencyd
determining an algorithm’s efficiency it is convenient to concentrate on the number of funoll
evaluations, i.e., the evaluations of f(x) at the iterates {xx}, required to achieve convergence i
given accuracy. Other details of the algorithm, which may be considered as overhead, are {l
generally neglected.5 Now, if the function f(x) is as simple to evaluate as those considertd
Example 3.1, then it is hard to understand why we concentrate on this aspect alone. But in Hi8
circumstances any of the algorithms considered in this chapter is very fast indeed. What we 148
keep in the back of our minds is a possibility that the evaluation of f(x) is rather costly. For inst
think of simulating a space shuttle returning to earth, with x being a control parameter that all
the distance f(x) of the shuttle’s landing spot from the location of the reception committee AWHE
this event. The calculation of f(x) for each value of x involves a precise simulation of the
trajectory for the given x, and it may then be very costly. An algorithm that does not requirs
many such function evaluations is then sought.

Desirable qualities of a root finding algorithm are the following:

Efficient—requires a small number of function evaluations.

Robust—fails rarely, if ever. Announces failure if it does fail.

Requires a minimal amount of additional data such as the function’s derivative.
e Requires f to satisfy only minimal smoothness properties.
o Generalizes casily and naturally to many equations in many unknowns.

No algorithm we are aware of satisfies all of these criteria. Moreover, wh
important to honor depends on the application. So we study several possibilities in tl
sections.

nr . e) . 15 T8
5 An exception is the number of evaluations of the derivative f(x) required, for instance, by Newton Sig
Section 3.3.

3.2. Bisection method

—

3.2 Bisection method

The method developed in this section is simple and safe and requires minimal assumptions on the
function f(x). However, it is also slow and hard to generalize to higher dimensions

Suppose that for a given f(x) we know an interval [a,b] where [changes ;;ign ie., fla):
f(b) < 0. The Intermediate Value Theorem given on page 10 then assures us that lilcre'iq-'i.,runi x*
such lhtl'il g _.\:*‘5 h. Now evaluate f(p), where p = 24h i the midpoint, and check [h:e sign of
f(a)- f(p). Iitis negative, then the root is in [«, p] (by the same Intermediate Value 'l"hcort;m) 50
we can set b < p and repeal; else f(a)- f(p) is positive, so the root must be in [p,b], hence we ,clan
seta < p and repeat. (Of course, if f(a): f(p)=0exactly, then p is the root ami wl: are done.)

In e.a(:.h .tauch' ‘teration the interval [a, h] where x* is trapped shrinks by a factor of 2; at lh(’; kth
step, .the point x 18 thebmidpoint p of the kth subinterval trapping the root. Thus, ut'lrcr-;; total of n
iterations, |x* —xp| < —5”— .2~". Therefore, the algorithm is guaranteed to convergcl Moreover, if
required to satisfy . 1

|x* —x,| < atol

for a given .absczlllse er_rgr tolerance atol > 0, we may determine the number of iterations n needed
by demanding %% -27" < atol. Multiplying both sides by 2" /atol and taking log, we see that it

takes
b—a
n=/|1lo -
lr B2 (2 atol)]

iterations to obtain a value p = x, that satisfies
|x* = p| <atol.
The following MATLAB function does the job:

§Unction [p,n] = bisect(func,a,b,fa,fb,atol)

% - .
.‘* functlon [p,n] = blseCt(funcla/b,fa,fb,atol)

:Assuming fa = func(a),

e . ‘fb = func(b), and faxfb < 0,
ol lva ue root in (a,b) such that func (root) =
unction returns in p a value such that
| p - root | < atol

4 and 5
5 n n the number of iterations required.
Gk input
.- (faxfb >= 0) | (atol <= 0)
ething wrong with the input: quitting’ Mo

" j _NaN; n=NaN;
turn

(2+«atol)) ;

Chapter 3. Nonlinear Equations in One Variable

fa =
end
end

P =

fp;
(a+b) /2;

Example 3.3. Using our MATLAB functionbisect for two of the instances appearing in Exams
ple 3.1, we find

e for func(x) = x3 —30x2 + 2552, starting from the interval [0,20] with tolerance 1.e-8 givey
x* 2~ 11.86150151 in 30 iterations;

e for func(x) = 2.5sinh(x /4)— 1, starting from the interval [—10, 10] with tolerance 1.e-10 giveg
x* 2 1.5601412791 in 37 iterations.

Here is the MATLAB script for the second function instance:

format long g
[x,n] = bisect(’fex3’,—10,10,fex3(—10),fex3(10),1.e—10)
function f = fex3(x)
f = 2.5 % sinh (x/4) - 1;

Please make sure that you can produce the corresponding script and results for the first instanc
of this example.

The stopping criterion in the above implementation of the bisection method is absolute, rathé
than relative, and it relates to the values of x rather than to those of f. |

Note that in the function bisect, if an evaluated p happens to be an exact root, then the cod
can fail. Such an event would be rather rare in practice, unless we purposely, not to say m aliciousl)
aim for it (e.g., by starting froma = —1, b= 1, for f(x) = sin(x)). Adding the line

if abs(fp) < eps, n = k; return, end

just after evaluating fp would handle this exception. E
We note here that the situation where a root is known to be bracketed so decisively as withili
bisection method is not common.

Recursive implementation

The bisection method is a favorite example in elementary computer programming courses, be
in addition to its conceptual simplicity it admits a natural presentation in recursive form. In'
LAB this can look as follows:

function [pl =
p = (a+b)/2;
if b-a < atol
return
else
fp = feval (func,p);
if fa » fp < O
b = p;
fb = fp;
else
a =

bisect recursive (func,a,b, fa,fb,atol)

pi

3.3. Fixed point iteration

P

fa =
end
p = bisect recursive (func,a,b, fa, fb,atol);
end

tp;

Here then is an incredibly short, yet complete, method im plementation. However, what makes
recursion unappealing for effective implementation in general is the fact that it is wasteful in terms of
storage and potentially suboptimal in terms of CPU time. A precise characterization of the reasons
for that is beyond the scope of our discussion, belonging more naturally in an introductory book on
programming techniques.

Specific exercises for this section: Exercises 1-2.

3.3 Fixed point iteration

The methods discussed in the present section and in the next two, unlike the previous one, have
direct extensions to more complicated problems, e.g., to systems of nonlinear equations and to more
complex functional equations.

Our problem

fx)=0

can be written as

x = g(x).

WﬂWIll discuss how this can be done in a moment. Given the latter formulation, we are looking for
Wfixed point, i.e., a point x* satisfying
S

x*=gx*).

2 fixed point iteration process we define a sequence of iterates x1,X2,...,Xks--- DY

xer1 = gxk), k=0,1,...,

9!!1 an initial iterate xo. If such a sequence converges, then the limit must be a fixed point.
Bako °°“Verg€!1§:e- properties of the fixed point iteration depend on the choice of the function g.
SWe see how, it is important to understand that for a given problem f(x) = 0, we can define

,a.ﬁ“““ g (not all of them “good,” in a sense that will become clear soon). For instance, we
‘any of the following, and more:

=X f(x),

X2 (x),

=X — FG)/f' (x) (assuming f’ exists and f'(x) # 0).

1y considerine
Y Considering not one method but a family of methods. The algorithm of fixed

AHIor findin
RERILE o (1),

& the roots of f(x) that appears on the following page includes the selection

Chapter 3. Nonlinear Equations in One Variable

Algorithm: Fixed Point Iteration.
Given a scalar continuous function in one variable, f(x), select a function g(x) such that
x satisfies f(x) = 0 if and only if g(x) = x. Then:

1. Start from an initial guess xo.
2. Fork=0,1,2,..., set
X1 = 8(xk)

until x4 satisfies termination criteria.

Suppose that we have somehow determined the continuous function g € Cla,b], and let ug’ tions we have

consider the fixed point iteration. Obvious questions arise:

1. Is there a fixed point x* in [a,b]?

2. If yes, is it unique?

3. Does the sequence of iterates converge to a root x*?
4. If yes, how fast?

5. If not, does this mean that no root exists?

Fixed point theorem

To answer the first question above, suppose that there are two values a < b such that g(a) = @ il

gb)<b. i gla)=aor g(b) = b, then a fixed point has been found, so now assume g(a) > @ al
g(b) < b. Then for the continuous function

d(x)=g(x)—x

we have ¢(a) > 0, ¢(b) < 0. (Note that ¢ does not have to coincide with the function f that we hat
started with; there are lots of ¢’s for a given f.) Hence, by the Intermediate Value Theorem &%
on page 10, just as before, there is a roota < +* < b such that ¢(x*) = 0. Thus, g(x*) = x*, 508
is a fixed point. We have established the existence of aroot: f(x*) = 0. 3

Next, suppose that g is not only continuous but also differentiable and that there is a posis
number p < 1 such that

g <p, a<x<b.

—
=

Then the root x* is unique in the interval [a, b], for if there is also y* which satisfies y*
then

* — ¥ = 1) — g = g E)* =y < plx* =¥,
where & is an intermediate value between x* and y*. Obviously, this inequality can hold with#

only if y* =x*.
We can summarize our findings so far as the Fixed Point Theorem.

3.3. Fixed point iteration

e —

Theorem: Fixed Point.
If g € Cla,b] and a < g(x) < b forallx € [a,b], then there is a fixed point x* in the
interval [a,b].
If, in addition, the derivative g’ exists and there is a constant p < 1 such that the
derivative satisfies
g’ <p Vxe(ab),

then the fixed point x* is unique in this interval.

Convergence of the fixed point iteration

Turning to the fixed point iteration and the third question on the preceding page, similar arguments
establish convergence (now that we know that there is a unique solution): under the same assump-

st — 1] = lg0u) — g1 < plxe =7
This is a contraction by the factor p. So
ka1 —x*| < plog —x*| < PPt —x*| < -oe < pF o — X"

Since p < 1, we have ok — 0as k — oo. This establishes convergence of the fixed point iteration.

Example 3.4. For the function g(x)=e*on[0.2,1.2], Figure 3.2 shows the progression of iterates
towards the fixed point x* satisfying x*=e ",

T

glx)=e"

0.2

re Iy s . . 1 } ')
3.2. Fixed i zterattonforx — e—x, startmgfrom xQ = 1. This ylelds x|y —=¢e 1;
= Convergence is apparent.

the :
_Examg:l?;tlon about the speed of convergence, it should be clear from the bounds
)¢ 3.4 that the smaller p is, the faster the iteration converges. In case of the

48

bisection method, the speed of convergence does not depend on the function f (ot any g, for thal|
matter), and it is in fact identical to the speed of convergence obtained with p = 1/2. In contrast, [‘;jg

the fixed point iteration, there is dependence on | g'(x)|. This, and the (negative) answer to our fifiy
question on page 46, are demonstrated next.

Example 3.5. Consider the function
fx)=«a cosh(x/4) — x,

where « is a parameter. For o = 10 we saw in Example 3.1 that there is no root. But for o =2 theft
are actually two roofs. Indeed, setting

g(x) = 2cosh(x /4)

and plotting g(x) and x as functions of x, we obtain Figure 3.3, which suggests not only that thef
are two fixed points (i.e., roots of f)—let’s call them x} and x;—but also that we can bracket thei

say, by
2 <xj <4, 8 <x; <10.

Next we apply our trusted routine bisect, introduced in the previous section, t0 f(x) with =
This yields

X~ 235755106, x5 ~ 8.50719958,

correct to an absolute tolerance 1.¢-8, in 27 iterations for each root. (You should be able to exp
why precisely the same pumber of iterations was required for each root.)

y=2cosh(x/4)

Figure 3.3. The functions x and 2 cosh(x /4) meet at two locations.

Chapter 3. Nonlinear Equations in One Variablg 3.3- Fixed point iteration

49

Now, it is very tempting, and rather natural here, to use the same function g defined above in
a fixed point iteration, thus defining

Xkyl =2 cosh(xx/4).

For the first root, on the interval [2,4] we have the conditions of the Fixed Point Theorem
holding. In fact, near x]", g'(x)| < 0.4, so we expect faster convergence than with the bisection
method (Why?). Indeed, starting from xo = 2 the method requires 16 iterations, and starting from
xo = 4 it requires 18 iterations to get to within 1.e-8 of the root e ‘

For the second root, however, on the interval [8, 10] the conditions of the Fixed Point Theorem
do not hold! In particular, |g'(x3)| > 1. Thus, a fixed point iteration using this g will not converge
to the root X3 Indeed, starting with xo = 10 the iteration diverges quickly, and we obtain overflow
after 3 iterations, whereas starting this fixed point iteration with xo = 8 we do obtain convergence,
but to x} rather than to x3.

It is important to realize that the root x3 is there, even though the fixed point iteration with the
ofbrural g~ does not converge to it. Not everything natural is good for you! There are other choices
\of g for the purpose of fixed point iteration that perform better here.

I}Iote: A discussion of rates of convergence similar to that appearing here is also given in
;Secliou 7 3. There it is more crucial, because here we will soon see methods that converge
‘faster than a rate of convergence can suitably quantify.

!gté-of convergence

jse now that at a particular root of a given fixed point iteration, p = |g'(x*)| satisfies 0<p<l
ling with x sufficiently close to +* we can write xg — x* & g (™) (xk—1 — x*). Hence we get

bee — x*| A plag—1 —XT| A A pklxo—x*|.

lify the speed of convergence in terms of p we can

the error by a fixed factor, say, 10?
answer this we set |xx —x*| =~ 0.1]|xo —

ask, how many iterations does it take to
x*|, obtaining
ok~ 0.1
gmjul’ both sides yields klog;op &~ —1. Let us define the rate of convergence as
rate = —logyo 0.

3.1)

b_‘i::_‘- k = [1/rate] iterations (o reduce the error by more than an order of magni-
t‘i()ne smal_ler o the higher the convergence rate and correspondingly, the smaller the
§ required to achieve the same error reduction effect.

od ofulsbiec};on methgd is not exactly a fixed point iteration, but it corresponds to an
914 similar sort with p = 0.5. Thus its convergence rate according to (3.1) is
rate = —log; 0.5 ~ 0.301.

and inde .)
deed the error reduction factor with this many bisections is 16, which is

Chapter 3. Nonlinear Equations in One Variable' 3 4. Newton’s method and variants
e

For the root x] of Example 3.5 we have p &~ 0.3121 and
rate = —log 903121~ 0.506.

Here it takes only two iterations to roughly reduce the error by a factor of 10 if starting close to x ',

For the root x3 of Example 3.5 we obtain from (3.1) a negative 1ate of convergence, as i

appropriate for a case where the method does not converge.

Of course, it makes no sense to calculate p or the convergence rate so precisely as in Exs

ample 3.6: we did this only so that you can casily follow the algebra with a calculator. Indeed

such accurate estimation of p would require knowing the solution first! Moreover, there is nothing

magical about an error reduction by a particularly precise factor. The rate of convergence should
be considered as a rough indicator only. It is of importance, however, to note that the rate becomes!
negative for o > 1, indicating no convergence of the fixed point iteration, and that it becomes inﬁni_'
for p =0, indicating that the error reduction per iteration is faster than by any constant factor, W
encounter such methods next.

Specific exercises for this section. Exercises 3—4-

3.4 Newton’s method and variants

The bisection method requires the function f to be merely continuous (which is good) and maki
no further use of further information on f such as availability of its derivatives (which causes|
to be painfully slow at times). At the other end of the scale is Newton’s method, which requi

more knowledge and smoothness of the function f but which converges much faster in approprif
circumstances.

Newton’s method

Newton’s method is the most basic fast method for root finding. The principle we use below!
derive it can be directly extended to more general problems. 4

Assume that the first and second derivatives of f exist and are continuous: f € C- I
Assume also that f" can be evaluated with sufficient ease. Let xi be a current iterate. By Ta:
expansion on page 5 we can wrile

F) = fa)+ fe)& —x0+ FIECNE —x10 /2

where £(x) is some (unknown) point between x and xy- Y,
Now, set x = x*, for which f(x*) = 0. If f were linear, ie., f" =0, then W€ coul '
the root by solving 0= flxp)+ JET) xp), ylelding x*=xr— f(xk)/f’(xk). For a NONES
function we therefore define the next iterate by the same formula, which gives

Xkt =Xk — SOF) , k=0,1,2,....
fxx)
This corresponds to neglecting the term f/(E(x*N(x* — xi)?/2 when defining the next jterat® g
ever, if xy is already close to x*, then (x* — xi)? is very small, so we would expect xg+1 8
closer to x* than xi is. &
A geometric interpretation of Newton’s method is that X1 is the x-intercept of the™=
line to f at xg; see Figure 3.4.

1.5 T—'_'_I'-_-_r_-——ﬂ—-—-_l’_—_-'_._'_'

04 06 08

i Figure 3.4. Newton’s method: the next iterate is the x-intercept of the tangent line to f at
the current iterate.

rithm: Newton’s Method.
n a scalar differentiable function in one variable, f(x):

Fxe)

S = =
K+ =Tk T ey

Consider the same function as in Example 3.5, given by

fix)= 2.cosh(x/4) —x.
‘teration here is
2 cosh(xk/4) — Xk
Kl = XS
" 0.5sinh(xg/4) — 1
solute tolerance of 1.e-8 and the same four initial iterates as in Example 3.5.

0 = 2 requires 4 iterations to reach x] to within the given tolerance.

m_ xO — . g N
. 4 requires 5 iterations to reach xj to within the given tolerance.

OM %) = § requi : . . .
. equires 5 iterations to reach x3 to within the given tolerance.

01 xg = 10 -] .
Tequires 6 iterations to reach x3} to within the given tolerance.

