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Jan P. Boroński . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Jeremy Brazas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Alex Clark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Jerzy Dydak . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Robert D Edwards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Paul Fabel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Steven Hurder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Daniel Ingebretson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
James Keesling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Olga Lukina . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

i



Matthew Lynam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Aura Lucina Kantn Montiel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Oleg R Musin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Piotr Oprocha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Leonard R. Rubin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Petra Staynova . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Marilyn Vazquez . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Thomas Weighill . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Continuum Theory (dedicated to Janusz Prajs) . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Hussam Abobaker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Roshan Adikari . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Maria Elena Aguilera . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Ameen A Alhassan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
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Invited Speakers (Plenary, Semi-plenary)

PL Morse theory and applications
Mladen Bestvina
University of Utah
bestvina@math.utah.edu

The goal of the talk is to introduce PL Morse theory. This theory is concerned with describing the
homotopy type of a simplicial complex equipped with a real valued PL function, based on the local
information at the vertices. I will also give some applications, coming from my paper with Noel Brady
(published some time ago). For example, I intend to explain why the kernel of the homomorphism
F2 × F2 → Z that sends all 4 standard generators of the product of two free groups of rank 2 to a
generator of Z is finitely generated but not finitely presented. The talk will also serve as a starting point
for a workshop, where further applications by others in geometric group theory will be given.

Some Counterexamples to the Bing-Borsuk Conjecture
John Bryant
Department of Mathematics, Florida State University
jbry98@comcast.net

Coauthors: Steve Ferry, Department of Mathematics, Rutgers University

An n-dimensional ANR homology manifold X is resolvable if there is a topological n-manifold M and a
cell-like map f : M → X. A space X has the disjoint disks property, or DDP, if every two maps of a 2-cell
into X can be approximated by maps with disjoint images. A space X is topologically homogeneous,
if, for every pair of points x, y ∈ X, there is a homeomorphism h : X → X such that h(x) = y. We
present a variant of the construction of non-resolvable homology n-manifolds, n ≥ 6, by Bryant-Ferry-
Mio-Weinberger (Topology of homology manifolds, Ann. of Math. 143 (1996)) that produces a class of
homology manifolds with the DDP that are topologically homogeneous. We also prove that every n-
dimensional ANR homology manifold, n ≥ 6, is the cell-like image of a space in this class. In particular,
for every n ≥ 6 and every integer k ∈ 1 + 8Z there is a topologically homogeneous homology n-manifold
X with the DDP such that X is homotopy equivalent to the n-sphere Sn and the Quinn resolution
obstruction σ(X) = k. If k 6= 1, then X is not resolvable; hence, is a counterexample to a conjecture of
R.H. Bing and K. Borsuk (Some remarks concerning topologically homogeneous spaces, Ann. of Math. 81
(2) (1965)) that a topologically homogeneous euclidean neighborhood retract is a topological manifold.
We do not know whether every connected homology n-manifold, n ≥ 6, with the DDP is topologically
homogeneous.
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Delay-coordinate maps and the spectra of Koopman operators
Suddhasattwa Das
Courant Institute of Mathematical Sciences, New York University
dass@cims.nyu.edu

Coauthors: Dimitrios Giannakis

The Koopman operator associated to every invertible dynamical system is an unitary operator acting
on the space of L2 functions. It provides an alternate method of studying many properties of the
dynamics, like mixing, ergodicity, forecasting etc, as a linear operator. Koopman eigenfunctions represent
the non-mixing component of the dynamics. They factor the dynamics, which can be chaotic, into
quasiperiodic rotation on tori. Here, we describe a kernel integral operator acting on L2 functions, which
has the property of commuting with the Koopman operator and thus has common eigenfunctions. This
is constructed by incorporating infinitely many delay coordinates in the kernel of this integral operator.
As a by product, it also annihilates the continuous spectrum and thus maps into the subspace associated
to the pure-point spectrum. This enables efficient approximation of Koopman eigenfunctions from high-
dimensional data in systems with point or mixed spectra, using just the information provided by a single,
generic trajectory.

Recurrence on abelian cover. Application to closed geodesics in manifolds of negative
curvature.
Albert Fathi
Georgia Institute of Technology
afathi30@gatech.edu

If h is a homeomorphism on a compact manifold which is chain-recurrent, we will try to understand
when the lift of h to an abelian cover (i.e. the covering whose Galois group is the first homology group of
the manifold) is also chain-recurrent. This is related to the proof by John Franks of the Poincar-Birkhoff
theorem. It has new consequences on density of classes of closed geodesics in a manifold of negative
curvature.
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Some Counterexamples to the Bing-Borsuk Conjecture
Steve Ferry
Rutgers University
steveferry@gmail.com

Coauthors: John Bryant

This will be a lead-in to John Bryant’s talk. Topics will include as many as possible of the following:

1. Classical characterizations of the 1- and 2-spheres.

2. Sobering examples in dimension 3. S3/Fox-Artin arc.

3. Definition and properties of ANR homology manifolds.

4. Cannon’s Conjecture and Edwards’ Theorem.

5. Definition of the Quinn invariant and introduction to controlled topology.

6. Controlled surgery exact sequence.

7. Bryant-Ferry-Mio-Weinberger construction of counterexamples to Cannon’s Conjecture in the spe-
cial case of the sphere (or torus).

8. Statement of new results.

Compact sets - order, topology and mirrors
Paul Gartside
University of Pittsburgh
gartside@math.pitt.edu

Coauthors: Ana Mamatelashvili, Andrea Medini, Lyubomyr Zdomskyy

We investigate the order and topological structure of compact subsets of separable metric spaces.

Topology in Data Science
Boris Goldfarb
University at Albany, SUNY
bgoldfarb@albany.edu

This is a survey of some established applications of algebraic topology to data science. Persistent
homology leverages linear algebra to compute geometric features of discrete, even if large, data sets by
the use of Vietoris-Rips complexes associated to a range of parameter values. I will draw some parallels
with the subject of Jerzy Dydak’s workshop at the conference. Another application of topology is based
on the Mapper algorithm. These are some methods that came from topology and are finding a rapidly
increasing number of practical applications. I will make a point that behind these accomplishments and
beyond them there is a valuable collection of instincts and habits that allow topologists to generate new
ideas in statistical data science.
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Derivations and cohomologies of Lipschitz algebras over compact Riemannian manifolds
Kazuhiro Kawamura
Institute of Mathematics, University of Tsukuba
kawamura@math.tsukuba.ac.jp

For a compact Riemannian manifold M with the induced metric (or more generally a compact metric
space with the local-unique-geodesics-property), Lip(M) denotes the commutative Banach algebra of
complex-valued Lipschitz functions on M . Motivated by a classical work due to de Leeuw, we introduce
a compact (non-metrizable) Hausdorff space M̂ , an analogue of the space of directions and show that,
for each n ≥ 1, the Hochschild cohomology Hn(Lip(M), C(M̂)) (in the sense of B.E. Johnson and A.Y.
Helemskii) has the infinite rank as a Lip(M)-module, where C(M̂) is the Lip(M)-module of all complex-
valued continuous functions on M̂ . In particular, the global dimension of Lip(M) is infinite, an analogue
of a result on C1-function algebras over smooth manifolds due to Pugach and Kleshchev. The coefficient
module C(M̂) is rather big and a more natural module for the study would be C(M), for which we have
H1(Lip(M), C(M)) = 0.

Polyhedra with finite depth
Danuta Ko lodziejczyk
Warsaw University of Technology
dakolodz@gmail.com

In this talk every polyhedron is finite and every ANR is compact. Recall that a map f : X → Y is a
homotopy domination if there exists a map g : Y → X such that fg is homotopic to idY . Then we say
that Y is homotopy dominated by X, and we write X ≥ Y .

Given a polyhedron P , one may ask, is it true that each sequence P ≥ X1 ≥ X2 ≥ . . . contains only
finitely many different homotopy types of Xi or, does there exist an integer lP (depending only on P )
such that each sequence of this kind contains only ≤ lP different homotopy types of Xi? In the second
case, P have finite depth. These questions are closely related to a famous problem of K. Borsuk (1967):
Is it true that two ANR′s, X and Y , homotopy dominating each other have the same homotopy type?

The answer is known to be positive for all the polyhedra (ANR′s) with virtually-polycyclic fundamen-
tal groups [DK, Top. Appl. 153, 2005; Fund. Math. 197, 2007], and clearly, for 1-dimensional polyhedra.
On the other hand, as we showed earlier, there exist polyhedra homotopy dominating infinitely many
different homotopy types [DK, Fund. Math. 96; Proc. Amer. Math. Soc. 2002].

We proved that for some classes of polyhedra P these questions can be reduced to the same questions
for the fundamental group π1(P ) with retractions. We will present some positive results and interesting
related problems (also on finitely presented groups) which remain unsolved.

For similar classes of ANR′s we get a positive answer to an other open question of K. Borsuk: Are
the homotopy types of two quasi-homeomorphic ANR′s equal?
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Compactifying connected spaces: 2 problems
David Lipham
Auburn University
dsl0003@auburn.edu

This talk will address dense embeddings of two types of connected spaces into compact Hausdorff
spaces. Through examples and partial results, we will explore dual problems on preserving irreducibility
and destroying cut points:

Let X be a connected Tychonoff space.
Problem 1. If X is irreducible between every two of its points, is there a compact Hausdorff space

Y = X that is irreducible between some two of its points?
Problem 2. If every point of X is a cut point, is there some point x ∈ X and a compact Hausdorff

space Y = X such that Y \ {x} is connected?

Polyhedra inscribed in quadrics and their geometry
Sara Maloni
University of Virginia
sm4cw@virginia.edu

Coauthors: J. Danciger, J.M. Schlenker

In 1832 Steiner asked for a characterization of polyhedra which can be inscribed in quadrics. In 1992
Rivin answered in the case of the sphere, using hyperbolic geometry. In this talk, I will describe the
complete answer to Steiner’s question, which involves the study of interesting analogues of hyperbolic
geometry including anti de Sitter geometry. Time permitting, we will also discuss future directions in
the study of convex hyperbolic and anti de Sitter manifolds.

Lozi-like maps
Micha l Misiurewicz
Indiana University-Purdue University Indianapolis
mmisiure@math.iupui.edu

Coauthors: Sonja Štimac

We define a broad class of piecewise smooth plane homeomorphisms which have properties similar
to the properties of Lozi maps, including the existence of a hyperbolic attractor. We call those maps
Lozi-like. The basic structure of such a map is determined by the set of kneading sequences, or each of
the two equivalent objects: the folding pattern and the folding tree.
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Open Problems in the Study of Homogeneous Continua
Janusz R. Prajs
California State University, Sacramento
prajs@csus.edu

In this talk, I will present and discuss published and unpublished open problems and partial results
I have encountered in my study. Most of these problems are in the area of homogeneous continua.

Action dimension of simple complexes of groups
Kevin Schreve
University of Michigan
schreve@umich.edu

Coauthors: Mike Davis and Giang Le

The geometric dimension of a discrete group G is the minimal dimension of a model for the classifying
space BG. The action dimension of G is the minimal dimension of a manifold model. I will talk about
some computations of the action dimensions for certain complexes of groups, including Artin groups,
graph products, and fundamental groups of complex hyperplane complements.

Surfaces in Seifert fibered spaces
Jennifer Schultens
UC Davis
jcs@math.ucdavis.edu

Coauthors: Yoav Moriah

Seifert fibered spaces are a family of 3-manifolds whose members are classified by a finite set of
invariants. The structure of these manifolds allows us to concretely describe surfaces embedded in them.
We will discuss two types of surfaces in Seifert fibered spaces (incompressible surfaces and Heegaard
surfaces), their interaction with each other, and new results concerning isotopy of these types of surfaces.
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Compact Spaces and Logic
Slawomir Solecki
Cornell University
ssolecki@cornell.edu

Fräıssé theory is a method in classical Model Theory of producing canonical limits of certain families
of finite structures. For example, the random graph is the Fräıssé limit of the family of all finite graphs.
It turns out that this method can be dualized, with the dualization producing projective Fráıssé limits,
and applied to the study of compact metric spaces. I will describe recent results, due to several people,
on connections between projective Fräıssé limits and the structure of some canonical compact spaces and
their homeomorphism groups (the pseudoarc, the Menger curve, the Lelek fan, simplexes with the goal
of developing a projective Fräıssé homology theory).

Number-theoretic and algorithmic aspects of surface homeomorphisms
Balzs Strenner
Georgia Tech
bstrenner7@gatech.edu

The first half of the talk will be a survey of results connecting surface homeomorphisms with number
theory. The starting point of these connections is the fact that many surface homeomorphisms have an
associated stretch factor which is an algebraic integer. In the second half, we will discuss algorithms to
compute the stretch factor (and other data corresponding to surface homeomorphisms). The talk will
not assume much background in either topology or number theory, so it should be accessible to a broad
audience.

Cohomology of arithmetic groups and characteristic classes of manifold bundles
Bena Tshishiku
Harvard University
bena@math.harvard.edu

A basic problem in the study of fiber bundles is to compute the ring H*(BDiff(M)) of characteristic
classes of bundles with fiber a smooth manifold M. When M is a surface, this problem has ties to
algebraic topology, geometric group theory, and algebraic geometry. Currently, we know only a very
small percentage of the total cohomology. In this talk I will explain some of what is known and discuss
some new characteristic classes (in the case dim M >>0) that come from the unstable cohomology of
arithmetic groups.
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Symplectic embeddings of ellipsoids into polydisks
Michael Usher
University of Georgia
usher@uga.edu

Symplectomorphisms describe the possible evolutions of the phase space of a conservative physical
system according to the laws of classical mechanics. Gromov’s non-squeezing theorem from 1985 showed,
surprisingly, that a ball in R2n can be embedded into a cylinder by a symplectomorphism only if the radius
of the cylinder is at least the radius of the ball, and over time it has become clear that the question of
when one region in R2n embeds into another is extremely delicate, with connections to complex algebraic
geometry and elementary number theory. I will discuss some what is known about which four-dimensional
ellipsoids symplectically embed into which products of disks, including some new results showing that
qualitative features of the answer depend sensitively on the ratio of the areas of the disks.

Fixed points of continuous group actions on compact metrizable spaces
Benjamin Vejnar
Charles University, Prague
benvej@gmail.com

In the late 60’s Boyce and Huneke independently solved a twenty years old question of Isbell by giving
an example of a pair of commuting continuous functions of the closed unit interval into itself which do
not have a common fixed point. It follows that the action of the free commutative semigroup with two
generators need not to have a fixed point when acting on the closed interval.

In this talk we study the conditions under which every continuous action of a topological (semi)group
on a continuum (that is usually one-dimensional in its nature) has a fixed point. We are dealing e.g. with
commutative or compact (semi)groups and with the classes of continua including dendrites, dendroids,
uniquely arcwise connected continua or tree-like continua.

Graphs, Links and Mahler Measure
Susan Williams
University of South Alabama
swilliam@southalabama.edu

Coauthors: Daniel Silver

The relationship between plane graphs and knots is both well known and striking. Plane graphs with
edge weights ±1 correspond to arbitrary link diagrams via the medial construction. Combinatorial graph
invariants can yield knot invariants. We define the complexity of the graph to be the count of spanning
trees, with each tree counted as the product of its edge weights. Then the complexity of a plane graph
coincides with the determinant of the associated link.

An infinite graph G is d-periodic if it has a free Zd-action by graph automorphisms with finite quotient
graph. For these a Laurent polynomial invariant L(x1, . . . , xd) can be defined. Its Mahler measure is the
exponential growth rate of the complexities of an expanding sequence of finite quotients of G. When G
is a plane 1-periodic graph, or 2-periodic graph with all edge weights 1, the Mahler measure is a growth
rate of link determinants.
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Lehmer’s question, an 80-year-old open question about the roots of monic integral polynomials, is
equivalent to a question about complexity growth of edge-weighted 1-periodic graphs. We do not know
if the graphs can be assumed to be planar.

A direct solution to the generic point problem
Andy Zucker
Carnegie Mellon University
andrewz@andrew.cmu.edu

We provide a new proof of a recent theorem of Ben-Yaacov, Melleray, and Tsankov. If G is a Polish
group and X is a minimal, metrizable G-flow with all orbits meager, then the universal minimal flow
M(G) is non-metrizable. In particular, we show that given X as above, the universal highly proximal
extension of X is non-metrizable.
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Workshops

PL Morse theory and applications
Mladen Bestvina
University of Utah
bestvina@math.utah.edu

The workshop is a followup to the plenary talk with the same title. Further applications of PL Morse
theory in geometric group theory will be given. Several classes of groups standard in the subject will be
introduced, e.g. Thompson’s group, right angled Artin groups. Some of the examples will be presented
by Matt Zaremsky and Robert Kropholler.

Topological aspects of coarse geometry
Jerzy Dydak
University of Tennessee
jdydak@utk.edu

The workshop will be devoted to topics of interest to topologists that arise in coarse geometry:

1. Ends of spaces

2. Compactifications

3. Extension theorems

4. Embedding theorems

Thomas Weighill will present a unified approach via neighborhood operators to extension theorems in
three categories: topological, uniform, and coarse. He will also discuss Holloway’s criterion for coarse
embeddings into Hilbert spaces.
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Algebraic Topology and Applications

Minimal Sets of Torus Homeomorphisms without Minimal Squares
Jan P. Boroński
AGH University of Science and Technology&IT4Innovations University of Ostrava
jBoroński@wms.mat.agh.edu.pl

Coauthors: Alex Clark and Piotr Oprocha

In my talk I shall revisit our construction from [BCO], and focus on a particular family of minimal
spaces without minimal Cartesian squares, that arise as minimal sets of torus homeomorphisms homo-
topic to the identity. Namely,
Theorem. There exists a torus homeomorphism ϕ : T2 → T2 homotopic to the identity with a minimal
set Y , such that Y × Y does not admit a minimal homeomorphism.

One can picture these spaces as modifications of Denjoy minimal continua, that result from a blow-up
of a single orbit to a null sequence of pseudo-arcs. Each of the uncountable collection of Denjoy continua
gives rise to an uncountable collection of nonconjugate homeomorphisms with the properties as above.

References

[BCO] Boroński J.P.; Clark A.;Oprocha P., A compact minimal space Y such that its square Y × Y is
not minimal (2017) arXiv:1612.09179

Continuity of the π1-action
Jeremy Brazas
West Chester University
jbrazas@wcupa.edu

The homotopy groups of a space can be endowed with a variety of topologies that distinguish local
properties. When πn(X) is equipped with the natural quotient topology, πn(X) has the structure of
a quasitopological group, however, Paul Fabel has shown the group operation of πn(X) can fail to be
continuous. For each n ≥ 1, we show there exists a space X for which the natural action of π1(X) on
πn(X) fails to be continuous. The talk will conclude with a discussion of the analogous question for the
coarser τ -topology.

The Homology Core
Alex Clark
University of Leicester
Alex.Clark@leicester.ac.uk

Coauthors: John Hunton (Durham)

In this talk I will discuss a topological invariant we introduced for spaces that admit especially nice
representations as inverse limits. Tiling spaces that arise from aperiodic tilings and similar foliated spaces
provide a rich source of examples for which the invariant can be used. We will discuss the general theory
and how the homology core can be applied to classify specific classes of spaces.
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Profinite structures on residually finite groups
Jerzy Dydak
University of Tennessee
jdydak@utk.edu

Coauthors: Joanna Furno (University of Houston) and James Keesling (University of Florida)

Given a countable group G one can put a large scale (coarse) structure on it by selecting an increasing
sequence {Fn}n≥1 of finite subsets of G whose union is G and declaring a cover U of G to be uniformly
bounded if and only if there is n ≥ 1 such that U refines {g · Fn}g∈G. It is well-known and easy to show
that the coarse structure obtained that way is unique and is equal to the bounded metric structure given
by any word metric on G if G is finitely generated.

In this talk we consider a dual situation in case of residually finite countable groups G. Given a
decreasing sequence {Gn}n≥1 of subgroups of G of finite index whose intersection consists of the neutral
element eG only, we define a small scale (uniform) structure on G (which we call a profinite structure on
G) by declaring a cover U of G to be uniform if and only if there is n ≥ 1 such that {g ·Gn}g∈G refines
U . One can give a characterization of profinite structures on G in terms of topological group structures
on G.

A natural question is if profinite structures are unique on countable groups. It turns out the answer is
no. However, in case of finitely generated residually finite groups G there is only one profinite structure.

This is joint work with Joanna Furno (University of Houston) and James Keesling (University of
Florida).

Two of My Favorite Conjectures
Robert D Edwards
UCLA
rde@math.ucla.edu

Both are related to the Hilbert-Smith Conjecture, which may be stated as: Any locally compact
subgroup of the homeomorphism group of a manifold must be a Lie group. This is a fundamental open
problem in topology, dating from the late 1930s. But as great as the HSC is, I think it is the “wrong”
conjecture, because it puts too much focus on manifolds. Imho a better (and stronger) conjecture is the
Free-Set Z-Set Conjecture (google it; I first posed it in 1991), the key special case of which is: A locally
compact topological group which acts freely on an ENR must be a Lie group.

My second conjecture, also stronger than the HSC, might be named the Doubly-Small Manifold-
Homeomorphism Conjecture: Any homomorphism Z → Homeo(Manifold) (or Diffeo(Manifold)) which
1) has sufficiently small image, i.e. has image sufficiently close to Iden(M), and 2) accumulates at Iden(M),
must be the trivial homomorphism.

In my talk I will flesh out these conjectures, with explanations and examples.
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Topological R-trees as ‘covers’ of Peano spaces
Paul Fabel
Mississippi State University
fabel@math.msstate.edu

Coauthors: Jeremy Brazas

We discuss a fundamental example which is also a plausible counterexample to a question posed by
J.Dydak at the summer 2011 topology conference in Strobl, Austria. If D2 is the closed unit disk, if X
is a connected, locally path connected, metrizable space, and if Π : X → D2 is a map such that all based
paths in D2 have unique based lifts in X, must Π be a homeomorphism? We manufacture a topological
R-tree X satisfying all the mentioned properties with the plausible exception of unique lifting. Unique
lifting lives or dies by the answer to a fundamental question concerning dendrites (the 1-dimensional
retracts of D2). Suppose both the loop α : S1 → D2 and the concatenated loop α ∗ β : S1 → D2 can be
lifted to respective loops in respective dendrites. Can β; be lifted to a loop in some dendrite?

Shape and periodic pseudo-orbits for Kuperberg flows
Steven Hurder
University of Illinois at Chicago
hurder@uic.edu

The main result of this talk relates the growth rates for the periodic pseudo-orbits in a Kuperberg
aperiodic flow of a compact 3-manifold, with the shape of its minimal set and the slow entropy of the
flow. This work is part of the study of the chain recurrent sets for Kuperberg flows, a project joint with
Ana Rechtman and Daniel Ingebretson.

Dimension and differential structures on Cantor sets
Daniel Ingebretson
University of Illinois at Chicago
dingeb2@uic.edu

Each differential structure on a Cantor set is determined by a scaling function on its dual. For Cantor
sets that are attractors of smooth iterated function systems, we study the relation between differential
structures, scaling functions, and the Hausdorff dimension of the Cantor set.
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The algebraic topology of βX with applications
James Keesling
University of Florida
kees@ufl.edu

We present techniques that allow computation of the Cech-cohomology of the Stone-Cech compactifi-
cation. The approach allows one to discover geometric features of this compactification as well. We give
several theorems as examples.

Manifold-like matchbox manifolds
Olga Lukina
University of Illinois at Chicago
lukina@uic.edu

Coauthors: Alex Clark, Steven Hurder

A matchbox manifold is a compact connected metrizable space where every point has a neighborhood
homeomorphic to the product of a Euclidean disk and a Cantor set. A matchbox manifold is manifold-like
if for every ε > 0, there is a surjection onto a compact manifold with preimages of diameter less than
ε. In the talk, we show that if a matchbox manifold is manifold-like, then it is homeomorphic to a weak
solenoid, that is, the inverse limit of finite-to-one coverings of a manifold.

Approximate Inverse Limits and (m,n)-dimension
Matthew Lynam
East Central University, Ada, OK
mlynam@ecok.edu

Coauthors: Leonard R. Rubin

In this talk we are going to consider (m,n)-dimension which was introduced by V. Fedorchuk as a
generalization of covering dimension. Approximate inverse systems of metric compacta Xa were defined
and applied in dimension theory by S. Mardešić and L. Rubin. The limit of such a system is always a
compact Hausdorff space, and every compact Hausdorff space X can be represented as the limit of such
a system in which each Xa is a compact polyhedron with dimXa ≤ dimX. Moreover, if X is the limit
of an approximate inverse system of metric compacta Xa, and dimXa ≤ k for each a, then dimX ≤ k.
Similarly if G is an abelian group and dimGXa ≤ k for each a, then dimGX ≤ k. We show that the same
result is true for Fedorchuk’s dimension, that is, if the (m,n)-dimension of Xa is ≤ k for each a, then the
(m,n)-dimension of X is also ≤ k.
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G-fibrations induced by the functor of twisted product via α
Aura Lucina Kantn Montiel
Papaloapan University, Mexico
alkantun@yahoo.com

By a G-fibration, we mean the equivariant version of a Hurewicz fibration: an equivariant map with
the right lifting property respect to the G-embeddings X × {0} ↪→ X × I.

Given a continuous homomorphism of topological groups α : G′ → G, every G-space and every G-map
can be regarded as G′-space and G′-map respectively,so we get the restriction functor res : G-Top→ G′-
Top. This functor preserves equivariant fibrations, in other words, every G-fibration is also a G′-fibration
via α.

The functor of twisted product G×α − : G′-Top→ G-Top is right adjoint of the restriction functor.
We will show that this functor also preserve equivariant fibrations, that is to say, if p : E → B is a
G′-fibration, then the induced G-map p̃ : G×α E → G×α B is a G-fibration.

Borsuk-Ulam type theorems for G-spaces
Oleg R Musin
University of Texas Rio Grande Valley
oleg.musin@utrgv.edu

In this talk we consider spaces with free actions of a finite group G for which theorems of Borsuk-Ulam
type (BUT) are true. There are several equivalent definitions for BUT-spaces that can be considered as
their properties. To study BUT-spaces, one of the main tools is Yang’s cohomological index. For mani-
folds the BUT-property depending on the free equivariant cobordism class of a manifold. In particular,
necessary and sufficient conditions will be considered for a manifold with a free involution to be a Borsuk-
Ulam type. Tucker and Ky Fan’s lemma are combinatorial analogs of the Borsuk–Ulam theorem (BUT).
We consider generalizations of these lemmas for BUT–manifolds. Proofs rely on a generalization of the
odd mapping theorem and on a lemma about the doubling of manifolds with boundaries that are BUT–
manifolds. In this talk we also present Tucker’s type lemmas for G-simplicial complexes and manifolds.

Dynamical properties of maps on quasi-graphs
Piotr Oprocha
AGH University, Poland
oprocha@agh.edu.pl

Coauthors: Jian Li and Guohua Zhang

Quasi-graphs are natural generalizations of topological graphs. The simplest example of such space
is the Warsaw circle. Even from this simplest example it is clear that the structure of ω-limit set can be
richer than is possible in graph maps. On the other hand, some similarities still exist. In this talk we
will focus mainly on topological entropy and properties of invariant measures.
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Topological n-cells and Hilbert cubes in Inverse Limits
Leonard R. Rubin
University of Oklahoma
lrubin@ou.edu

It has been shown by S. Mardešić that if a compact metrizable space X has dimX ≥ 1 and X
is the inverse limit of an inverse sequence of compact triangulated polyhedra with simplicial bonding
maps, then X must contain an arc. We prove that if X = (|Ka|, pba, (A,≤)) is an inverse system in
set theory of triangulated polyhedra |Ka| with simplicial bonding functions pba and X = lim X, then
there exists a uniquely determined sub-inverse system XX = (|La|, pba

∣∣|Lb|, (A,�)) of X where for each

a, La is a subcomplex of Ka, each pba
∣∣|Lb| : |Lb| → |La| is surjective, and lim XX = X. We shall use

this to generalize the Mardešić result by characterizing when the inverse limit of an inverse sequence of
triangulated polyhedra with simplicial bonding maps must contain a topological n-cell and do the same
in the case of an inverse system of finite triangulated polyhedra with simplicial bonding maps. We shall
also characterize when the inverse limit of an inverse sequence of triangulated polyhedra with simplicial
bonding maps must contain an embedded copy of the Hilbert cube. In each of the above settings, all the
polyhedra have the weak topology or all have the metric topology (these topologies being identical when
the polyhedra are finite).

The Ellis Semigroup of Generalized Morse Sequences
Petra Staynova
University of Leicester
petra.staynova@gmail.com

In 1997, Haddad and Johnson prove that the Ellis semigroup of any generalised Morse sequence has
four minimal idempotents. They base their proof on a proposition stating that any IP cluster point along
an integer sequence can be represented as an IP cluster point along either a wholly positive or wholly
negative integer IP sequence. In this note, we provide large class of counterexamples to that proposition.
We also provide a proof of their main theorem via the algebra of the Ellis semigroup.

Persistence in Data Clustering
Marilyn Vazquez
George Mason University
mvazque3@masonlive.gmu.edu

Coauthors: Tim Sauer, Tyrus Berry

Data clustering is an important task for discovering patterns in data. In our approach, we assume
data lives in a manifold and is sampled according to some probability measure. Clusters are connected
components of the superlevel set of a density, but non-uniform sampling of data can cause problems such
the presence of artificial clusters. In our work, we use ideas from persistent 0-homology to solve these
problems. We discuss applications to image segmentation.

16



Warped spaces and the maximal Roe algebra
Thomas Weighill
University of Tennessee
tweighil@vols.utk.edu

Coauthors: Logan Higginbotham

Let G be a finitely generated group acting on a proper metric space X. The warped space, introduced
by Roe, can be viewed as a kind of large scale quotient of X by the action of G. For example, warped
cones (i.e. where X is a metric cone over a compact space) provide many examples of spaces with exotic
large scale behaviour. In this talk we generalize this construction to the setting of large scale spaces and
an arbitrary group G, and introduce the notion of a coarsely discontinuous action by coarse equivalences.
For such actions, one can recover G as a kind of deck transformation group when X satisfies a large
scale connectedness condition. We also give a relation between the maximal Roe algebra of the warped
space and the crossed product of the maximal Roe algebra of X with G. This is joint work with Logan
Higginbotham.
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Continuum Theory (dedicated to Janusz Prajs on the occasion
of his 60th birthday)

On thin continua
Hussam Abobaker
Missouri University of Science and Technology
haq3f@mst.edu

Coauthors: W lodzimierz J. Charatonik

We introduce a notion of a thin continuum. A continuum is thin provided every nondegenerate
subcontinum has nonempty interior. We prove that thin continua are hereditarily locally connected,
we provide some characterizations, we discuss maps of thin continua, and universal thin dendrites with
bounded order of ramification points.

Endpoints of nondegenerate hereditarily decomposable chainable continua.
Roshan Adikari
Texas Tech University
roshan.adikari@ttu.ecu

We use the concept of “pseudo-endpoints” to investigate properties of endpoints of nondegenerate
hereditarily decomposable chainable continua.

Whitney blocks and m-mutual aposyndesis
Maria Elena Aguilera
Missouri University of Science and Technology
maria.aguilera78@gmail.com

Let C(X) the hyperspace of subcontinua of a continuum X. A Whitney block is a set of the form
µ−1([s, t]), where µ : C(X) → [0, 1] is a Whitney map and 0 ≤ s < t ≤ 1. This presentation reports the
following theorem: if X is m-mutually aposyndetic, for m ≥ 2, then each Whitney block also has this
property.

Properties of Endpoints and Opposite Endpoints of Hereditarily Decomposable Chainable
Continua
Ameen A Alhassan

ameen9696@gmail.com

Let X be an hereditarily decomposable chainable continuum such that X is the union of two proper
subcontinua H and K and their intersection is nondegenerate. Properties of endpoints and opposite
endpoints of such continuum X and the subcontinua H and K will be considered.
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Planar embeddings of chainable continua
Ana Anušić
University of Zagreb
ana.anusic@fer.hr

Coauthors: Henk Bruin and Jernej Cinc (Vienna)

We study planar embeddings of chainable continua. Using the theorem of Mazurkiewicz we show that
every indecomposable chainable continuum has uncountably many non-equivalent planar embeddings.
This answers the question by Mayer from 1982.

Possible insights into homogeneous indecomposable continua
David P Bellamy
University of Delaware
argenthorn@yahoo.com

J T Rogers, Jr asked more than thirty years ago whether there are homogeneous indecomposable
continua of dimension greater than one. I will present two theorems, or perhaps they are more properly
called lemmas, which will restrict to some extent what such examples might look like. The results could
perhaps be summarized by saying that a higher dimensional homogeneous indecomposable continuum
has subcontinua with properties that seem extremely far-fetched.

Ample Continua in Cartesian Products of Continua
Jan P. Boroński
AGH University of Science and Technology&IT4Innovations University of Ostrava
jan.Boroński@osu.cz

Coauthors: D.R. Prier, and M. Smith

Recall that the notion of an ample continuum was introduced by Prajs and Whittington in [PW]. In
[BL] Bellamy and Lysko showed that a compact and connected topological group has ample diagonal in
G × G if and only if G is locally connected. They asked if the product of a Knaster continuum K and
solenoid S has the property that any subcontinuum of K ×S, that projects onto both coordinate spaces,
has arbitrarily small connected open neighborhoods. Taking advantage of a result of Illanes [I] we answer
their question in the affirmative (see [BPS]).

References
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A characterization of hereditarily contractible continua
W lodzimierz J. Charatonik (4:30-5:00 Wednesday)
Missouri University of Science and Technology
wjcharat@mst.edu

We will sketch a proof of a characterization of hereditarily contractible continua as pointwise smooth
dendroids. The definition of a pointwise smooth dendroid and a proof that every hereditarily contractible
continuum is a pointwise smooth dendroid are due to Stanislaw T. Czuba given in his work from the
1980’s. The opposite implication requires a lot of preparation and use of Michael’s selection Theorem.

Janusz R. Prajs - an ample mathematician
W lodzimierz J. Charatonik (4:00-4:30 Thursday)
Missouri University of Science and Technology
wjcharat@mst.edu

We will recall ample discoveries in mathematics done by Janusz R. Prajs, pointing out that the
inhomogeneity of his body of work adds spice to an already flavorful career.

n-ods, strong n-ods and weak n-ods
Alejandro Illanes
Instituto de Matematicas, UNAM
illanes@matem.unam.mx

Coauthors: Norberto Ordoñez

A continuum X is: (a) an n-od if there exists a subcontinuum A of X such that X \A has at least n
components, (b) a strong n-od if there exists a subcontinuum A of X such that X \ A is the union of n
nonempty pairwise disjoint subsets whose closures are pairwise disjoint, and (c) a weak n-od if there exist
n subcontinua K1, . . . ,Kn of X such that the common intersection of all Ki’s is nonempty and no Ki is
contained in the union of the others. In this talk we will discuss some relations among these concepts.
In the case that X is a finite graph, we also show how to see if X is an n-od or a weak n-od.
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Continua that are Subcontinuum-like or Hereditarily Self-like
Matt Insall
Missouri University of Science and Technology
insall@mst.edu

Coauthors: W lodzimierz J. Charatonik

A (non-degenerate) continuum X is hereditarily self-like provided that each of its non-degenerate
subcontinua are X-like, while a (non-degenerate) continuum X is subcontinuum-like iff for every
non-degenerate subcontinuum K of X, X is K-like. This presentation reports on progress from our
introduction of these notions last year, answering some of the problems that were open then. In particular,
we construct a hereditarily self-like continuum that is not tree-like.

Markov set-valued functions and their inverse limits
James Kelly
Christopher Newport University
james.kelly@cnu.edu

Coauthors: Lori Alvin

We introduce the definition of a Markov set-valued function and show that the inverse limits of two
similar Markov set-valued functions are homeomorphic. This generalizes results of S. Holte, I. Banič,
M. Črepnjak, and T. Lunder. The definition we present differs from previous definitions of Markov
interval functions in that we allow for points outside of the Markov partition to have non-degenerate
images. Additionally, our definition focuses on the structure of the inverse of our function; we require
that the inverse is a union of continuous mappings with specified restrictions on the domains, ranges, and
points of intersection.

A Surprising Example for Topological Entropy
Judy Kennedy
Lamar University
kennedy9905@gmail.com

Coauthors: Goran Erceg

We define topological entropy for closed subsets of the unit square. Then we give an example of a
closed subset of the square with 0 entropy, but if any other point of the square is added, the new set has
infinite entropy.
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An upper semicontinuous function f whose graph is homeomorphic to the inverse limit of
closed unit intervals with f as a bonding function
Bostjan Lemez
University of Maribor
bostjan.lemez@gmail.com

We construct a nontrivial family of upper semicontinuous functions f : [0, 1]→ 2[0,1] with the property
that the graph of f is homeomorphic to the inverse limit of the inverse sequence of closed unit intervals
[0, 1] with f as the bonding function. As a special case, we use this construction to produce the Gehman
dendrite as a graph of such function.

Homeomorphisms of the pseudo-arc
Wayne Lewis
Texas Tech University
wayne.lewis@ttu.edu

We present a few known results and a larger number of open questions about the topological group
of homeomorphisms of the pseudo-arc

On Jones’ and Prajs’ decomposition theorems
Sergio Macias
Institute of Mathematics, National University of Mexico
sergiom@matem.unam.mx

A continuum is a compact connected metric space. A continuum X is homogeneous provided that for
each pair of points x1 and x2 of X, there exists a homeomorphism h : X → X such that h(x1) = x2. We
show:

Theorem. Given a homogeneous continuum X, let G = {TX({x}) | x ∈ X} be Jones’ decomposition,
let XJ = X/G and let qJ : X → XJ be the quotient map. Let Q = {Qx | x ∈ X} be Prajs’ decomposi-
ton, let XP = X/Q and let qP : X → XP be the quotient map. For XJ , let QJ = {Qζ | ζ ∈ XJ} be
Prajs’ decomposition, let XJP = XJ/QJ and let qJP : XJ → XJP be the quotient map. Then XJP is
homeomrophic to XP .
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A fixed point theorem for conical shells
Marcus Marsh
Calif St Univ, Sacramento, Emeritus Professor
mmarsh@csus.edu

Coauthors: Andras Domokos

We prove a fixed point theorem for mappings f defined on a conical shell F in Euclidean n-space,
where the image of f need not be a subset of F , nor even a subset of the cone that contains F . Sufficiency
for fixed points of f is dependent only on the behavior of f on the boundary of F , and is related to notions
of compressing or extending F as defined by Krasnoselskii. We also discuss possible extensions of our
theorem to infinite dimensional Banach spaces.

Symmetric Products and n-Fold Hyperspaces as Cones
Verónica Mart́ınez de la Vega
Instituto de Matemáticas, UNAM
vmvm@matem.unam.mx

Coauthors: Alejandro Illanes, Daria Michalik

For a continuum X, let Fn(X) be the hyperspace of all nonempty subsets of X with at most n points.
We prove that if X is a locally connected curve, then the following conditions are equivalent: (a) X is
a cone, (b) Fn(X) is a cone for some n ≥ 2, and (c) Fn(X) is a cone for each n ≥ 2. For a continuum
X, let Cn(X) be the hyperspace of nonempty closed subsets of X with at most n components. We prove
that if X is a fan and n is different from 2, then Cn(X) is a cone if and only if X is a cone.

Locally connected generalized inverse limits
Faruq Mena
Missouri University of Science and Technology
famdn2@mst.edu

Coauthors: W lodzimierz J. Charatonik

We prove a theorem that under some conditions local connectedness is preserved under set-valued
inverse limits. The theorem generalizes Capel’s theorem that local connectedness is preserved under
(single-valued) inverse limits with monotone bonding functions and its set-valued analogue by James Kelly
(see J. Kelly, Monotone and weakly confluent set-valued functions and their inverse limits, Topology Appl.
228 (2017), 486-500). As a consequence we can characterize some set-valued inverse limits on intervals.

23



Homogeneity degree of some Cartesian products
Daria Michalik
Cardinal Stefan Wyszyński University, Poland
d.michalik@uksw.edu.pl

Let H(X) denote the group of homeomorphisms of X onto itself. By an orbit of X we mean an orbit
under the action of H(X) on X. We say that the homogeneity degree of X is n if X has exactly n orbits,
in symbols dH(X) = n.

Obviously, for every pair of topological spaces X and Y ,

dH(X × Y ) ≤ dH(X) · dH(Y )

and the equality, in general, doesn’t hold.
In my talk I shall determine the homogeneity degree of the Cartesian product C×M in terms of that

of C and M , for C being a locally connected curve and M being a manifold.

Reversible properties of inverse limits with a single set valued function.
Van Nall
University of Richmond
vnall@richmond.edu

If f is an upper semi-continuous set valued function from a compact set X into the closed subsets of
X and the inverse limit of f is connected, then the inverse limit of f−1 is connected. So we say being
connected is a reversible property. We will explore other reversible properties but with restrictions on
the bonding functions and the factor spaces since there do not appear to be any properties as broadly
reversible as connectedness.

Commuting maps on triods, intervals, and related spaces that do or do not have coincidence
and/or common fixed points.
Jeffrey Norden
Tennessee Tech University
jeff@math.tntech.edu

In early 80’s, as a new grad student, I read a preprint of the now famous Oversteegen-Rogers version
of Bellamy’s example, and decided to work on the following innocent looking question:

Do there exist a pair of maps on a simple triod which commute and are coincidence-point free?
(I.e, f ◦ g = g ◦ f and f ∩ g = ∅.)
Fortunately (for me) I eventually found a less innocent looking problem that I was able to solve and

write a dissertation about. On the other hand, I never lost interest in the the triod problem. In this talk
I’ll survey what I have and (mostly) haven’t been able to figure out about commutativity questions in
the past 35 or so years.
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Dendroids with low homogeneity degree.
Yaziel Pacheco Juárez
Facultad de Ciencias Exactas, Universidad Juárez del Estado de Durango.
yazi28@hotmail.com

The homogeneity degree of a topological space X is the number of orbits of the action of the homeomor-
phism group of X on X. A dendroid is an arcwise connected and hereditarily unicoherent continuum, and
a fan is a dendroid with exactly one ramification point. In this talk we will discuss fans with homogeneity
degree four, and smooth dendroids with homogeneity degree less than or equal to three.

Menger curve as a set-valued inverse limit
Şahika Şahan
Missouri University of Science and Technology
ssxx4@mst.edu

Coauthors: W lodzimierz J. Charatonik

We show that the Menger Curve can be represented as a set-valued inverse limit of intervals [0, 1]
with a single bonding function. The graph of the function is homeomorphic to the Sierpiński Carpet.
This answers a question by M. Hiraki and H. Kato.

Generalized Inverse Limits that Banish their Graphs
Scott Varagona
University of Montevallo
svaragona@montevallo.edu

Suppose f : [0, 1] → 2[0,1] is a set-valued surjective function, and suppose that K, the inverse limit
with the single bonding function f , is a continuum. Then let us say the inverse limit K banishes the
graph of f if K contains no copy of the graph of f . Moreover, the inverse limit K completely banishes
the graph of f if K contains no non-degenerate subcontinuum of the graph of f . We will construct some
generalized inverse limits that banish (or completely banish) their graphs, and discuss the implications
of this phenomenon to the theory of inverse limits.

On hyperspaces C(p,X)
Hugo Villanueva
Universidad Autónoma de Chiapas
hvillam@gmail.com

Given a metric continuum X, let C(X) be the hyperspace of subcontinua of X. For each p ∈ X, let
C(p,X) be denote the hyperspace of all subcontinua of X containing p, and let K(X) be the family of all
hyperspaces C(p,X). In this talk, we present some results concerning hyperspaces C(p,X) and K(X).
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Dynamical Systems

Endpoints of inverse limits for a family of set-valued functions
Lori Alvin
Bradley University
lalvin@bradley.edu

Coauthors: James Kelly

Given a set-valued upper semi-continuous function whose inverse is the union of mappings, J. Kelly
was able to characterize the collection of endpoints of the inverse limit assuming the following definition
of an endpoint: p is an endpoint of a continuum X if for any two subcontinua H,K ⊆ X which both
contain p, either H ⊆ K or K ⊆ H. It remained an open question as to whether this characterization
would hold using other definitions of an endpoint. We provide an example where the characterization
does not hold using Lelek’s definition: p is an endpoint of a continuum X if p is an endpoint of any
arc in X containing p. We then extend the example to study the collection of endpoints for a family of
set-valued functions obtained by attaching an arc to the critical point of a symmetric tent map.

Models of some spaces of complex polynomials of arbitrary degree
Alexander Blokh
UAB
ablokh@math.uab.edu

Coauthors: L. Oversteegen (UAB), V. Timorin (Higher School of Economics, Moscow, Russia)

Consider the family of all polynomials P of degree d with connected Julia set and such that (1) all
their periodic points are repelling, and (b) there exists a fixed point at which all invariant external rays
of P land. Using the original ideas of Thurston and relying upon our recent results we construct a model
of this family of polynomials.
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The Denjoy-Rees construction on the pseudo-circle
Jan P. Boroński
AGH University of Science and Technology&IT4Innocations University of Ostrava
jBoroński@wms.mat.agh.edu.pl

Coauthors: Judy Kennedy, Xiaochuan Liu, and Piotr Oprocha

In 1981 Rees constructed a minimal homeomorphism of the n-torus with positive topological entropy,
by enriching the dynamics of an irrational rotation [R]. Her construction was generalized and further
developed by Béguin, Crovisier, and Le Roux [BCL]. We apply their results to exhibit minimal nonin-
vertible maps on the pseudo-circle. This resolves a conjecture from [BKS], [S] and adds to the recent
results on minimal noninvertible maps obtained in [BCO].

References
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Dynamical systems on N∗ and their quotients
Will Brian
UNC Charlotte
wbrian.math@gmail.com

A “mod-finite permutation” of N is a bijection from one co-finite subset of N to another. If p is a
mod-finite permutation of N, then it induces a self-homeomorphism p∗ on the space N∗ of non-principal
ultrafilters on N. In this talk, I will try to convince you that the dynamical systems of the form (N∗, p∗)
are important. Then I will present a recent theorem that characterizes exactly when a dynamical system
(X, f) is a quotient of a dynamical system of the form (N∗, p∗).
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Matching for translated β-transformations.
Henk Bruin
University of Vienna
henk.bruin@univie.ac.at

Coauthors: Charlene Kalle (University of Leiden) Carlo Carminati (University of Pisa)

This talk is about the parameter space of a family of shifted β-transformations T in regard to the
property of matching. This means that at some iterate Tn(0) = Tn(1), and this has a bearing on the
invariant density of T . The prevalence of matching is proved under specific number-theoretic conditions:
the slope β is a (specifically quadratic) Pisot number.

Lakes of Wada rotational attractor
Jernej Cinc
Nipissing University
jernejc@nipissingu.ca

Coauthors: Jan P. Boroński

A topological attractor is called rotational attractor, if its external prime ends rotation number is
nonzero. In this talk I will give a construction of a rotational attractor of the 2-sphere that is Lakes
of Wada continuum (i.e. the complement of the continuum has three connected components and the
continuum is the boundary of each of them separately).

Volumes of Bounded Remainder Sets for Rotations on the Adelic Torus
Joanna Furno
University of Houston
jfurno@math.uh.edu

Coauthors: Alan Haynes, Henna Koivusalo

In joint work with Alan Haynes and Henna Koivusalo, we determine the volumes of bounded remainder
sets for irrational rotations on the Adelic torus. The first part uses Fourier analysis to restrict the possible
volumes of bounded remainder sets. The second part uses a cut-and-project construction to show that
these possible volumes are realized. This cut-and-project construction on the Adelic torus is an adaptation
of the construction for irrational rotations on the torus, developed by Alan Haynes, Michael Kelly, and
Henna Koivusalo.
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Characterising the sets of periodic points for solenoidal automorphisms.
Sharan Gopal
Assistant Professor, BITS-Pilani, Hyderabad campus, India.
sharanraghu@gmail.com

Characterisation of the sets of periodic points of a family of dynamical systems is a well studied prob-
lem in the literature. Here, we consider this problem for the family of automorphisms on a solenoid. By
definition, a solenoid is a compact connected finite dimensional abelian group. Equivalently, a topological
group Σ will be a solenoid if its Pontryagin dual is a subgroup of Qn and also contains Zn as a subgroup
for some positive integer n. When the dual is equal to Zn, the solenoid is actually an n−dimensional
torus.

The sets of periodic points of automorphisms on a 2-dimensional torus was published in J. Math.
Anal. Appl. in 2010. In a recent paper, that appeared in Topology Proceedings (Gopal, Raja; Vol. 50
(2017), 49-57), we considered the problem for general solenoids. First, the characterization is done for
higher dimensional toral automorphisms and then follows the one-dimensional solenoids. The main reason
behind dealing with the one-dimensional solenoids separately was the availability of a neat description of
subgroups of Q. This helped us in giving a nice form to one-dimensional solenoids and thus characterizing
the sets of periodic points of automorphisms on it. However, the general problem is still incomplete. In
this talk, I will show all the above results giving a brief idea of some proofs and then discuss some ideas
that probably will help in solving the general problem. As a part of this, an another approach to this
problem by considering a one-dimensional solenoid as the inverse limit of an inverse system of circles will
also be discussed.

2-manifolds and inverse limits of set-valued functions on intervals
Sina Greenwood
University of Auckland
sina@math.auckland.ac.nz

Coauthors: Rolf Suabedissen

Suppose for each n ∈ N, fn : [0, 1]→ 2[0,1] is a function whose graph Γ(fn) =
{

(x, y) ∈ [0, 1]2 : y ∈ fn(x)
}

is closed in [0, 1]2 (here 2[0,1] is the space of non-empty closed subsets of [0, 1]). We show that the gen-
eralized inverse limit lim←−(fn) =

{
(xn) ∈ [0, 1]N : ∀n ∈ N, xn ∈ fn(xn+1)

}
of such a sequence of functions

cannot be an arbitrary continuum, answering a long-standing open problem in the study of generalized
inverse limits. In particular we show that if such an inverse limit is a 2-manifold then it is a torus and
hence it is impossible to obtain a sphere.
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Markov-like set-valued functions and their inverse limits
Hayato Imamura
Waseda University
hayato-imamura@asagi.waseda.jp

The same pattern of Markov maps on intervals was introduced by S. Holte (2002) and she showed that
any two inverse limits with Markov bonding maps with the same pattern are homeomorphic. I. Banič and
T. Lunder (2013) extended the notation of Markov map from continuous maps to set-valued functions,
called generalized Markov interval functions, and applied the theory of generalized inverse limits with
set-valued functions. In this talk, we introduce Markov-like functions as a generalization of generalized
Markov interval functions and show that any two generalized inverse limits with Markov-like bonding
functions having the same pattern are homeomorphic. Consequently, we can give a generalization of S.
Holte, I. Banič, and T. Lunder. Recently we can have a generalization to Markov-like functions on finite
graphs.

Silent circulation of polio
James Keesling
University of Florida
kees@ufl.edu

Coauthors: Celeste Vallejo, Jim Koopman, Burt Singer

We present a stochastic dynamical system for the silent circulation of polio. Simulations of the system
indicate that live polio virus can persist in a small isolated community for longer than was thought. This
has implications for the eradication of the disease.

Arboreal Cantor actions
Olga Lukina
University of Illinois at Chicago
lukina@uic.edu

The asymptotic discriminant is an invariant of actions of discrete groups on Cantor sets, recently
introduced by the speaker in a joint work with Hurder. The asymptotic discriminant arises as a sequence
of surjective group homomorphisms of certain profinite groups, associated to the action.

An arboreal representation of the absolute Galois group of a field is a profinite group, acting on the
boundary of a spherically homogeneous rooted tree. In this talk, we show how one can compute the
asymptotic discriminant for such representations. We give examples of arboreal representations with
stable and wild asymptotic discriminant.
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Weak mixing in general semiflows implies multi-sensitivity, but not thick sensitivity
Alica Miller
University of Louisville
alica.miller@louisville.edu

Research on relations between the mixing properties and sensitivity in semiflows has a long history.
Let us mention some recent papers. In 2004 it was proved by L. He, X. Yan and L. Wang that weak
mixing implies sensitivity in the context of Ergodic Theory. In 2006 it was proved by S. Lardjane that
strong mixing implies sensitivity for topological semiflows. In 2007 T. S. Moothathu introduced the
notion of multi-sensitivity for semiflows and mentioned that: (1) every weakly mixing compact cascade is
multi-sensitive, and (2) every multi-sensitive compact cascade is thickly sensitive. (Note that in compact
cascades every transition map is surjective.) In 2017 it was proved by T. Wang, J. Yin and Q. Yan
that any semiflow on a compact metric space (with an arbitrary acting topological monoid) whose every
transition map is surjective is thickly sensitive, thus generalizing Moothathu’s comments. In this talk
we will consider what happens if we do not have the assumptions of compactness of the phase space
and surjectivity of the transition maps. We will show that the semiflow is still multi-sensitive, but that,
however, it does not have to be thickly sensitive. We will thus generalize Moothathu’s first comment to
the case of general semiflows and show that his second comment does not hold in general semiflows.

Continuous-wise distal homeomorphisms
C.A. Morales
Federal University of Rio de Janeiro, Brazil
morales@impa.br

Coauthors: D. Carrasco-Olivera.

We incorporate the distal homeomorphisms into the continuum theory through the notion of continuum-
wise distal homeomorphism. The cw-distal homeomorphisms constitute a class much larger than that
of distal homeomorphisms. We study several properties of cw-distal homeomorphisms. Some results
concerning distal homeomorphisms will be generalized to the case of cw-distal homeomorphisms. Notions
of cw-distality for measures are also introduced and discussed.

Exact maps of the pseudo-arc
Christopher Mouron
Rhodes College
mouronc@rhodes.edu

A pseudo-arc is an hereditarily indecomposable chainable continuum. A map f : X −→ X is exact if
for every nonempty open set U ⊂ X, there exists an n such that fn(U) = X. In this talk I will construct
an exact map on the pseudo-arc. Then I will show that every exact map of the pseudo-arc that can be
realized with commuting maps on the bonding maps of the inverse limit construction of the pseudo-arc
must have infinite entropy.
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Mixing properties in expanding Lorenz maps
Piotr Oprocha
AGH University, Poland
oprocha@agh.edu.pl

Coauthors: P. Potorski and P. Raith

In this talk we provide sufficient conditions when expanding Lorenz map is topologically mixing and
fully characterize this property for T(x)=βx+α (mod 1) within some range of parameters α, β. Further-
more, relations between renormalizability and Lorenz map being locally eventually onto are considered,
and some gaps in classical results on the dynamics of Lorenz maps are corrected.

Perfect subspaces of quadratic laminations
Lex Oversteegen
UAB
overstee@uab.edu

Coauthors: A. Blokh and V. Timorin

The combinatorial Mandelbrot set is a continuum in the plane, whose boundary is defined as the
quotient space of the unit circle by an explicit equivalence relation. This equivalence relation was described
by Douady and, separately, by Thurston who used quadratic invariant geolaminations as a major tool.
We showed earlier that the combinatorial Mandelbrot set can be interpreted as a quotient of the space
of all limit quadratic invariant geolaminations with the Hausdorff distance topology. In this paper, we
describe two similar quotients. In the first case, the identifications are the same but the space is smaller
than that used for the Mandelbrot set. The resulting quotient space is obtained from the Mandelbrot set
by “unpinching” the transitions between adjacent hyperbolic components. In the second case we identify
renormalizable geolaminations that can be “unrenormalised” to the same hyperbolic geolamination while
no two non-renormalizable geolaminations are identified.

Periodic orbits in a chaotic attractor introduced by Clark Robison
Michael Sullivan
Southern Illinois University - Carbondale
mikesullivan@math.siu.edu

Coauthors: Ghazwan Alhashimi - University of Diyala, Iraq

We show that the periodic orbits in a chaotic attractor introduced by Clark Robinson are fibered
knots.
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Zero-temperature measures, entropy and rotation sets
Christian Wolf
Department of Mathematics, The City College of New York, NY, NY, 10031
cwolf@ccny.cuny.edu

Coauthors: Michael Burr and Yun Yang

Zero-temperature measures are limits of equilibrium states when the temperature goes to zero. They
play an important role in statistical physics. In this talk we consider subshifts of finite type and discuss a
topological classification of locally constant potentials via their zero-temperature measures. Our approach
is to analyze the relationship between the distribution of the zero-temperature measures and the boundary
of higher dimensional generalized rotation sets. If time permits we also discuss computability results for
the entropy of zero-temperature measures. The material presented in this talk combines joint works with
Yun Yang and Michael Burr.

Topological transitivity and representability of surfaces flows
Tomoo Yokoyama
Kyoto University of Education, Japan
tomoo@kyokyo-u.ac.jp

In this talk, we present a necessary and sufficient condition for the existence of dense orbits of continu-
ous flows on compact connected surfaces, which is a generalization of a necessary and sufficient condition
on area-preserving flows obtained by H. Marzougui and G. Soler López. Moreover, we consider what
class of flows on compact surfaces can be characterized by finite labeled graphs. We show that a class of
surface flows, up to topological conjugacy, which contains both the set of Morse Smale flows and the set
of area-preserving flows with finite singular points can be characterized. In other words, we construct a
complete invariant for surface flows of “finite type”. In fact, although the set of topological equivalent
classes of minimal flows on a torus is uncountable, we enumerate the set of topological equivalent classes
of flows with non-degenerate singular points and with at most finitely many limit cycles but without
non-closed recurrent orbits on a compact surface using finite labelled graphs.
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Geometric Group Theory

Group trisections and smooth 4-manifolds
Aaron Abrams
Washington and Lee University
abramsa@wlu.edu

Coauthors: David Gay, Rob Kirby

The theory of 4-manifold trisections pioneered by Gay and Kirby offers a new and exciting approach to
the study of smooth 4-dimensional topology. We will discuss a group-theoretic interpretation of trisections
which in principle allows the transport of problems (e.g. the 4-dimensional Poincar conjecture) from
smooth topology to group theory.

Embedding Right-Angled Artin Groups into Brin-Thompson Groups
Jim Belk
Bard College
belk@bard.edu

Coauthors: Collin Bleak, Francesco Matucci

The Brin-Thompson groups nV are a family of higher-dimensional generalizations of Thompson’s
group V . We show that any right-angled Artin group can be embedded into nV for sufficiently large
n. It follow that many other groups can also be embedded into Brin-Thompson groups, and indeed the
subgroup structure of these groups is much richer than the subgroup structure for Thompson’s group V .

The topology of representation varieties
Maxime Bergeron
University of Chicago
mbergeron@math.uchicago.edu

Let H be a finitely generated group, let G be a complex reductive algebraic group (e.g. a special linear
group) and let K be a maximal compact subgroup of G (e.g. a special unitary group). I will discuss
exceptional classes of groups H for which there is a deformation retraction of Hom(H,G) onto Hom(H,K),
thereby allowing us to obtain otherwise inaccessible topological invariants of these representation spaces.
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Weakly aperiodic SFTs on lamplighter groups.
David Bruce Cohen
University of Chicago
davidbrucecohen@gmail.com

A subshift of finite type (SFT) is a symbolic dynamical system defined by a finite collection of “local
rules”. For instance, for any natural number k and any group G equipped with a finite generating set
S, the set of all valid k-colorings of the corresponding Cayley graph of G (colorings of the Cayley graph
in which no two adjacent vertices have the same color) forms an SFT. It is clear that any SFT X over
a group G carries a G-action, and X is said to be weakly aperiodic if it is nonempty and has no finite
G-orbits. When G=Z, there are no weakly aperiodic SFTs over G, but when G=Z2 such SFTs do exist,
as was shown by Berger. Carroll and Penland conjectured that a group with no weakly aperiodic SFT
must be virtually cyclic. We will discuss some known obstructions to a group G being a counterexample
to this conjecture (meaning that G is not virtually cyclic, but still admits a weakly aperiodic SFT), and
explain why lamplighter groups were the most natural candidate. Time permitting, we will briefly discuss
our proof that a lamplighter group cannot actually be a counterexample.

Subgroup distortion in hyperbolic groups.
Pallavi Dani
Louisiana State University
pdani@math.lsu.edu

Coauthors: Tim Riley

The distortion function of a subgroup measures the extent to which the intrinsic word metric of the
subgroup differs from the metric induced by the ambient group. Olshanskii showed that there are almost
no restrictions on which functions arise as distortion functions of subgroups of finitely presented groups.
This prompts one to ask what happens if one forces the ambient group to be particularly nice, say, for
example, to be hyperbolic. I will survey which functions are known to be distortion functions of subgroups
of hyperbolic groups. I will then describe joint work with Tim Riley which adds to this list: we construct

free subgroups of hyperbolic groups with distortion functions 2n
p/q

, for all integers p > q > 0.
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Isomorphisms and abstract commensurations of big mapping class groups
Spencer Dowdall
Vanderbilt University
spencer.dowdall@vanderbilt.edu

Coauthors: Juliette Bavard and Kasra Rafi

It is a classic result of Ivanov that the mapping class group of a finite-type surface is equal to its
own automorphism group. Relatedly (aside from low-complexity exceptions), it is well-known that non-
homeomorphic surfaces cannot have isomorphic mapping class groups. In the setting of “big mapping
class groups”, that is of infinite-type surfaces, these considerations are complicated by the fact that their
sheer enormity and variety of behavior prevents group elements from having canonical descriptions in
terms of normal forms. This talk will present work with Juliette Bavard and Kasra Rafi overcoming these
difficulties and extending the above results to big mapping class groups. In particular, we show that any
isomorphism between big mapping class groups is induced by a homeomorphism of the surface and that
each big mapping class group is equal to its abstract commensurator.

Hierarchies of Relatively Hyperbolic Non-Positively Curved Cube Complexes
Eduard Einstein
Cornell University
ee256@cornell.edu

A non-positively curved (NPC) cube complex is a combinatorial complex constructed by gluing Eu-
clidean cubes along faces in a way that satisfies a combinatorial local non-positive curvature condition.
A hierarchy is an inductive method of decomposing the fundamental group of a cube complex. Cube
complexes and hierarchies of cube complexes have been studied extensively by Wise and feature promi-
nently in Agol’s proof of the Virtual Haken Conjecture for hyperbolic 3-manifolds. In this talk, I will give
an overview of the geometry of cube complexes, explain how to construct a hierarchy for a NPC cube
complex, and discuss applications of cube complex hierarchies to hyperbolic and relatively hyperbolic
groups.

Simple closed curves with controlled intersections
Jonah Gaster
McGill University
jbgaster@gmail.com

Coauthors: Tarik Aougab, Ian Biringer

Farb and Leininger asked: How many distinct (isotopy classes of) simple closed curves on an orientable
surface of Euler characteristic χ may pairwise intersect at most k times? Przytycki has shown that this
number grows at most as a polynomial in |χ| of degree k2 + k + 1.

We present improved bounds. The most interesting case is that of k = 1, in which case the size
of a ‘maximal 1-system’ grows no faster than |χ|3/(log |χ|)2. Following Przytycki, the proof uses the
hyperbolic geometry of surfaces essentially. In particular, we make use of bounds for the maximum
size of a collection of curves of length at most L on a hyperbolic surface homeomorphic to S that are
independent of the hyperbolic structure. This is joint work with Tarik Aougab and Ian Biringer.

36



Counting conjugacy classes in Out(FN )
Michael Hull
University of Florida
mbhull@ufl.edu

Coauthors: Ilya Kapovich

We show that if a f.g. group G has a non-elementary WPD action on a hyperbolic metric space X,
then the number of conjugacy classes of loxodromic elements of G coming from a ball of radius R in the
Cayley graph of G grows exponentially in R. As an application we prove that for N ≥ 3 the number of
distinct Out(FN )-conjugacy classes of fully irreducibles φ from an R-ball in the Cayley graph of Out(FN )
with log λ(φ) on the order of R grows exponentially in R.

A uniform McCarthy-type theorem for linearly growing outer automorphisms of a free
group
Edgar A. Bering IV
Temple University
edgar.bering@temple.edu

In his proof of the Tits alternative for the mapping class group of a surface, McCarthy also proved
that given any two mapping classes σ and τ , there exists an integer N such that the group generated by
〈σN , τN 〉 is either free of rank two or abelian. In the setting of Out(Fr), whether or not such a statement
is true remains open, though there are many partial results. Later work in the mapping class group
setting due to Hamidi-Tehrani showed that for Dehn twists the power N is uniform, which Mangahas
used to prove that the mapping class groups have uniform-uniform exponential growth. I will present an
Out(Fr) analog of Hamidi-Tehrani’s result.

The first Betti number of the level 4 braid group
Kevin Kordek
Georgia Institute of Technology
kevin.kordek@math.gatech.edu

Coauthors: Dan Margalit

It is generally a difficult problem to compute the Betti numbers of a given finite-index subgroup of an
infinite group, even when the ambient group is well-understood. In this talk I will describe recent joint
work with Dan Margalit on the rational cohomology of the level 4 braid group, which is the kernel of the
mod 4 reduction of the integral Burau representation. The main result of our work is an explicit formula
for the first Betti number. I will conclude with a few applications to the structure of some closely related
groups.
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Groups of Type FP2

Robert Kropholler
Tufts University
robert.kropholler@tufts.edu

Coauthors: Ian Leary and Ignat Soroko

I will discuss various constructions of groups of type FP2 which are not finitely presented. I will start
with the work of Bestvina and Brady namely, how they applied a version of morse theory to find the
first examples of such groups. I will then move onto more recent work of Leary giving a technique for
constructing uncountably many such groups. Finally, I will look at further work of Leary, Soroko and
myself showing that there are uncountably many such groups up to quasi-isometry.

Homology of finite covers of surfaces and simple closed curves
Justin Malestein
University of Oklahoma
justinmalestein@gmail.com

Coauthors: Andrew Putman

In this talk, I will discuss examples of finite covers of punctured surfaces where the first rational
homology is not spanned by lifts of simple closed curves. Additionally, I will discuss analogous results for
primitive elements and the homology of finite index subgroups of a free group. A couple consequences of
these results include a theorem that Out(Fn) modulo the group generated by kth powers of transvections
often has infinite order elements. This is joint work with Andrew Putman.

Quasi-geodesics in Out(Fn)
Yulan Qing
University of Toronto
yulan.qing@utoronto.ca

Coauthors: Kasra Rafi

We study the behavior of quasi-geodesics in Out(Fn). Given an element Φ ∈Out(Fn) there are several
natural paths connecting the origin to Φ in Out(Fn), for example, a path associate to sequence of Staling
folds and a path associated to standard geodesics in Outer space. We show that neither of these paths
is, in general, a quasi-geodesic in Out(Fn). In fact, we construct examples where any quasi-geodesic
connecting Φ to the origin will have to back-track in some free factor of Fn.
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Boundaries of CAT(0) spaces with Isolated Flats Property
Kim Ruane
Tufts University
kim.ruane@tufts.edu

Coauthors: Chris Hruska

Let G be a one-ended group acting geometrically on a CAT(0) space with the isolated flats property.
Such a group is hyperbolic relative to the class of flat stabilizers, thus we can consider the maximal
peripheral splitting of G. If this splitting satisfies a certain finite index condition, then we can describethe
boundary as a “tree of metric compacta” in the sense of Swiatkowski. We use this to show that the
boundary of such a group is locally connected. I will discuss this theorem and its applications in my talk.

Surface bundles, monodromy, and arithmetic groups
Nick Salter
University of Chicago
salter@math.harvard.edu

Coauthors: Bena Tshishiku

The study of monodromy groups is an age-old problem at the juncture of topology, algebraic geometry,
and the theory of algebraic groups. Some beautiful and poorly-understood monodromy groups have an
intimate connection with the mapping class group. In this talk, I will describe an ongoing project with
Bena Tshishiku studying some examples of monodromy groups arising from surface subgroups of the
mapping class group (or depending on ones taste, arising as complete algebraic curves inside moduli
space). The main result is that these monodromy groups are “as large as number-theoretic constraints
allow them to be’.

Obstructions of Riemannian smoothings of locally CAT(0) manifolds
Bakul Sathaye
The Ohio State University
sathaye.2@osu.edu

In this talk I will focus on obstructions in dimension = 4 to Riemannian smoothings of locally CAT(0)
manifolds. I will discuss how the obstruction given by Davis-Januszkiewicz-Lafont can be extended to
construct more examples of locally CAT(0) 4-manifolds that do not support Riemannian metric with non-
positive sectional curvature. The universal covers of these manifolds satisfy the isolated flats condition
and contain a collection of 2-dimensional flats with the property that their boundaries at infinity form
non-trivial links in the boundary 3-sphere.
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Separating Nekrashevych groups via finiteness properties
Rachel Skipper
Binghamton University
skipper@math.binghamton.edu

Coauthors: Stefan Witzel Matthew C.B. Zaremsky

A group is of finiteness type Fn if it admits a classifying space with compact n-skeleton. We discuss
some recent results about finiteness properties of Nekrashevych groups, a class of groups whose building
blocks are self-similar groups and Higman-Thompson groups. Since these groups are often virtually simple
and since finiteness properties are a quasi-isometry invariant, we use these results to build new examples
of non-quasi-isometric simple groups.

Stable commutator length in right-angled Artin groups
Ignat Soroko
University of Oklahoma
ignat.soroko@gmail.com

Coauthors: Max Forester, Jing Tao (University of Oklahoma)

The stable commutator length (scl) of an element in a group is a remarkable numerical invariant,
which has relevance in several areas of low-dimensional topology, bounded cohomology and dynamics. In
general, scl is very hard to compute, but for many important classes of groups it has been shown that the
spectrum of possible values of scl has a gap above zero. In particular, Culler showed that for an arbitrary
element g of a free group, scl(g) is at least 1/6. By using geometry of hyperplanes in CAT(0) cubical
complexes, we adapt Culler’s approach to the case of right-angled Artin groups (RAAGs). As a result, we
get for arbitrary element g of any RAAG the estimate: scl(g) ≥ 1/6k, where k is the chromatic number
of the defining graph of the RAAG. In addition, for two-dimensional RAAGs, we obtain the lower bound
scl(g) ≥ 1/20.

Fibrations of 3-manifolds and nowhere continuous functions
Balazs Strenner
Georgia Tech
bstrenner7@gatech.edu

We start with a 3-manifold fibering over the circle and investigate how the pseudo-Anosov mon-
odromies change as we vary the fibration. Fried proved that the stretch factor of the monodromies
varies continuously (when normalized in the appropriate sense). In sharp contrast, we show that another
numerical invariant, the asymptotic translation length in the arc complex, does not vary continuously.
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Semiduality in group cohomology
Daniel Studenmund
University of Notre Dame
dstudenm@nd.edu

Coauthors: Kevin Wortman

A duality group has a pairing exhibiting isomorphisms between its homology and cohomology groups.
Examples include solvable Baumslag-Solitar groups and arithmetic groups over number fields, by work
of Borel and Serre. Many naturally occurring groups fail to be duality groups, but are morally very
close. In this talk we make this precise with the notion of a semiduality group, and sketch a proof that
certain arithmetic groups in positive characteristic are semiduality groups. This talk covers work joint
with Kevin Wortman.

A Family of Locally Solvable Subgroups
Amanda Taylor
Alfred University
tayloral@alfred.edu

In this talk, we discuss an uncountable family of distinct elementary amenable subgroups of Thomp-
son’s Group F. The groups are limits of finitely generated wreath products, and their isomorphism types
are determined by countable ordered sets related to their generators.

Approximating simple locally compact groups by their dense subgroups
Phillip Wesolek
Binghamton University, SUNY
pwesolek@binghamton.edu

Coauthors: P.-E. Caprace and C.D. Reid

Simple locally compact groups appear throughout mathematics; examples include many locally com-
pact groups acting on regular trees and the simple algebraic groups over local fields. In this talk, we
explore the relationship between simple locally compact groups and their dense subgroups. We will see
that dense subgroups have a restricted structure and give information on the structure of the simple
group. Additionally, dense subgroups give new examples of simple locally compact groups.
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Geometric Topology

Gromov-Hausdorff hyperspace of nonnegatively curved 2-spheres
Igor Belegradek
Georgia Tech
ib@math.gatech.edu

By Alexandrov realization theorem any nonnegatively curved 2-sphere is isometric to the boundary of a
convex body in the Euclidean 3-space. Up to congruence the space of such convex bodies is homeomorphic
to the Gromov-Hausdorff metric space of nonnegatively curved 2-spheres. I will discuss topological
properties of this metric space.

Decomposition theorems for asymptotic property C and property A
Greg Bell
UNC Greensboro
gcbell@uncg.edu

Coauthors: Andrzej Nagórko

We combine aspects of the notions of finite decomposition complexity and asymptotic property C
into a notion that we call finite APC-decomposition complexity. Any space with finite decomposition
complexity has finite APC-decomposition complexity and any space with asymptotic property C has finite
APC-decomposition complexity. Moreover, finite APC-decomposition complexity implies property A for
metric spaces. We also show that finite APC-decomposition complexity is preserved by direct products of
groups and spaces, amalgamated products of groups, and group extensions, among other constructions.

Cosmic Censorship of Smooth Structures on Spacetimes
Vladimir Chernov
Dartmouth College
vladimir.chernov@dartmouth.edu

Coauthors: Stefan Nemirovski

It is observed that on many 4-manifolds there is a unique smooth structure underlying a globally hyper-
bolic Lorentz metric. For instance, every contractible smooth 4-manifold admitting a globally hyperbolic
Lorentz metric is diffeomorphic to the standard R4. Similarly, a smooth 4-manifold homeomorphic to the
product of a closed oriented 3-manifold N and R and admitting a globally hyperbolic Lorentz metric is
in fact diffeomorphic to N ×R. Thus one may speak of a censorship imposed by the global hyperbolicty
assumption on the possible smooth structures on (3+1)-dimensional spacetimes.
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Topological complexity of surfaces
Daniel C. Cohen
Louisiana State University
cohen@math.lsu.edu

Topological complexity is a numerical homotopy-type invariant introduced by M. Farber about 15
years ago, motivated by the motion planning problem from robotics. For a given space, this invariant
provides a measure of the complexity of navigation in the space. Computing this invariant is sometimes
easy, sometimes hard. I will attempt to illustrate this with surfaces.

Decomposition Complexity Growth
Trevor Davila
University of Florida
trevordavila@ufl.edu

We define a quasi-isometry invariant called decomposition complexity growth which generalizes both
finite decomposition complexity and asymptotic dimension growth. We show that subexponential decom-
position complexity growth implies Property A, and that finite decomposition complexity and subexpo-
nential dimension growth both imply subexponential decomposition growth. We also show that certain
group extensions satisfy subexponential decomposition growth.

Coarse coherence of metric spaces and groups and its permanence properties
Boris Goldfarb
University at Albany, SUNY
bgoldfarb@albany.edu

Coauthors: Jonathan Grossman

We introduce properties of metric spaces and, specifically, finitely generated groups with word metrics
which we call “coarse coherence” and “coarse regular coherence”. They are geometric counterparts of the
classical notion of coherence in homological algebra and the regular coherence property of groups defined
and studied by Waldhausen. The new properties make sense in the general context of coarse metric
geometry and are coarse invariants. In particular, they are quasi-isometry invariants of spaces and groups.
They are in fact a weakening of Waldhausen’s regular coherence but can be used as effectively in K-theory
computations. We show that coarse regular coherence implies weak regular coherence defined by Carlsson
and Goldfarb, yet all groups known to be weakly regular coherent are also coarsely regular coherent. This
is a large class of groups containing all groups with straight finite decomposition complexity defined by
Dranishnikov and Zarichnyi. The new framework allows us to prove structural results by developing
permanence properties for coarse coherence.
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Compactifications of manifolds with boundary
Shijie Gu
University of Wisconsin Milwaukee
shijiegu@uwm.edu

In 1976, Chapman-Siebenmann provided criteria for a Hilbert cube manifold X to admit a Z-
compactification. However, the question of (whether) the extension of their characterization can be
extended to manifolds still remains open: If Mn is a finite dimensional manifold and Mn × Q is Z-
compactifiable, is Mn itself Z-compactifiable? In this talk, the complete characterizations of completable
manifolds and pseudo-collarable manifolds will be given, respectively. As two applications, the former
one implies a best possible stabilization theorem: Mn ×Q (n ≥ 4) is Z-compactifiable iff Mn × [0, 1] is
Z-compactifiable. Applying the latter characterization together with knot theory and group theory, we
prove that there exist Z-compactifiable manifolds with boundary which are not pseudo-collarable. In ad-
dition, the “building block” is an open contractible 3-manifold which embeds in no compact 3-manifolds.

Completions and Z-compactifications of Manifolds
Craig Guilbault
University of Wisconsin-Milwaukee
craigg@uwm.edu

Coauthors: Shijie Gu

This talk is about “nice” compactifications of manifolds. The simplest of these compactifications
is the addition of a boundary to an open manifold (or to a manifold with compact boundary). That
was the topic of Siebenmann’s famous 1965 dissertation. When Mm has noncompact boundary, one
seeks a compactification M̂m that “completes” ∂Mm. That is a more delicate problem. Siebenmann
addressed a very special case in his dissertation and O’Brien extended that work to cases where Mm and
∂Mm are 1-ended. We will present a full characterization, thereby completing an unfinished chapter in
the study of noncompact manifolds. As an application of this work, we obtain some new results about
Z-compactifications of manifolds.

Calculating 5-fold coverings: Not in our lifetimes
Greg Kuperberg
UC Davis
greg@math.ucdavis.edu

Coauthors: Eric Samperton

Eric Samperton and I have recently shown that, given a fixed, finite simple non-abelian group G
and a 3-manifold M regarded as computational input, the number of non-trivial homomorphisms from
the fundamental group of M to G is almost parsimoniously #P-hard. In the time allotted, I will discuss
basically what this result means. Among other things, it means that obtaining any non-trivial information
about the connected 5-sheeted coverings of M is computationally intractable. If M is a reasonably large,
generic example, then even though its 5-sheeted coverings are computable in principle, humanity well
probably never know anything about them.
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Surfaces detected by the character variety of manifolds with symmetries
Jay Leach
Florida State University
jleach@math.fsu.edu

The components of character varieties for hyperbolic 3-manifolds can detect essential surfaces. I
will talk on how some components of the character variety in manifolds with symmetries always detect
surfaces that respect those symmetries. Then I will look at an family of 2-bridge knots that illustrate
this property.

On a metric of J. Nagata
Atish J. Mitra
Montana Tech of the University of Montana
atish.mitra@gmail.com

For positive integers k ≥ 2, J. Nagata considered a metric Nk on a set X with the following property:
for every x, y1, · · · , yk ∈ X there exist indices i 6= j such that d(yi, yj) ≤ d(x, yi), and he showed that
X admits such a metric Nn+2 iff dim (X) ≤ n. In this talk we explore some curious properties of this
metric and some connections with both topology and coarse geometry.

KKM type theorems, homotopy and cobordism classes of maps for spheres
Oleg R Musin
University of Texas Rio Grande Valley
oleg.musin@utrgv.edu

In this talk will be shown how using homotopy classes of maps for spheres to obtain generalizations
of the classic KKM (Knaster-Kuratowski-Mazurkiewicz) and Sperner lemmas. We also show that for
m > n the set of cobordism classes of maps from m-sphere to n-sphere is trivial. The determination of
the cobordism homotopy groups of spheres admits applications to the covers for spheres.

45



Distortion of surfaces in 3manifolds
Hoang Nguyen
University of Wisconsin-Milwaukee
nguyen36@uwm.edu

In the 3manifold theory, a great deal of interest has focused on the study of immersed surfaces in
3manifolds in last decades. One reason is that studying immersed surfaces will help us to understand
the structures of 3manifolds. For instance, cubulation is used in the work of Wise and Agol to resolve
the Virtuallly Haken conjecture on the hyperbolic manifolds. Wise observed that the following problem
is important in the study of of cubulations of 3manifold groups: Determine the distortion of surface
subgroups in 3manifold groups. The answer to this problem has been answered by BonahonThurston in
the hyperbolic case. In this talk, I will give a solution to this problem in the non-geometric 3–manifold
case.

Growth series of CAT(0) cubical complexes
Boris Okun
University of Wisconsin Milwaukee
okun@uwm.edu

Coauthors: Rick Scott (Santa Clara University)

Let X be a CAT(0) cubical complex. The growth series of X at x is gx(t) =
∑
y∈V ert(X) t

d(x,y),

where d(x, y) denotes `1-distance between x and y. If X is cocompact, then gx(t) is a rational function
of t. In the case of when X is the Davis complex of a right-angled Coxeter group it is well-known that
gx(t) = 1/fL(−t/(1 + t)), where fL denotes the f -polynomial of the link L of a vertex of X. We obtain a
similar formula for general cocompact X. We also obtain a simple relation between the growth series of
individual orbits and the f -polynomials of various links. In particular, we get a simple proof of reciprocity
of these series (gx(t) = ±gx(t−1)) for Eulerian X.

Coassembly for representation spaces
Daniel Ramras
Indiana University-Purdue University Indianapolis
dramras@iupui.edu

The deformation K-theory of a space X is the K-theory spectrum of the category of finite-dimensional
unitary representations of the fundamental group of X. This is a ring spectrum, and in fact an algebra
over the connective K-theory spectrum ku. I will give a hands-on description of the universal coassembly
map linking deformation K-theory and topological K-theory, along with some geometric applications.
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Regular Finite Decomposition Complexity
David Rosenthal
St. John’s University
rosenthd@stjohns.edu

Coauthors: Daniel Kasprowski and Andrew Nicas

We introduce the notion of “regular finite decomposition complexity” of a metric family. This gen-
eralizes Gromov’s finite asymptotic dimension and is motivated by the concept of finite decomposition
complexity (FDC) due to Guentner, Tessera and Yu. Regular finite decomposition complexity implies
FDC and has all the permanence properties that are known for FDC, as well as a new one. We show
that for a collection containing all metric families with finite asymptotic dimension all other permanence
properties follow from Fibering Permanence.

On the Lusternik-Schnirelmann category and Topological complexity of the connected sum
of manifolds and free products of groups.
Rustam Sadykov
Kansas State University
sadykov@ksu.edu

Coauthors: Alexander Dranishnikov

We give various estimates for and calculations of the invariants in the title. In particular, for orientable
closed connected manifolds we show that the LS-category of a connected sum is the maximum of the
LS-categories of the summands, and give bounds for the topological complexity of a connected sum. The
LS-category of a discrete group was identified by Eilenberg and Ganea with the cohomology dimension of
a group. Under certain conditions we calculate the topological complexity of the free product of groups.

The topological complexity of moving robots on graphs
Steven Scheirer
Lehigh University
sts413@lehigh.edu

The topological complexity of a path-connected space X, denoted by TC(X), is an integer which can
be thought of as the minimum number of “continuous rules” required to describe how to move between
any two points of X. We will consider the case in which X is the unordered discrete configuration space
of n points on a graph Γ, which is denoted by UDn(Γ). This space can be interpreted as the space of
configurations of n robots which move along a system of one-dimensional tracks. We will discuss methods
to determine TC(UDn(Γ)) for the case in which Γ is a tree.
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Alexander-Briggs Presentations of Knot Groups
Daniel S. Silver
University of South Alabama
silver@southalabama.edu

Coauthors: J. Scott Carter, Susan G. Williams

The fundamental group G of the exterior of a knot the knot group is usually described by a Wirtinger
presentation of a plane diagram. Here generators of G correspond to arcs of the diagram while relations
are read from the crossings. Less common but also well known is the Dehn presentation of G with
generators (resp. relators) corresponding to regions (resp. crossings). We introduce a third type of knot
group presentation inspired by the 1926/27 paper of J.W. Alexander and G.B. Briggs. The Alexander-
Briggs presentation of G has generators corresponding to crossings and relations corresponding to regions
of the diagram.

On strongly quasiconvex subgroups
Hung Cong Tran
The University of Georgia
hung.tran@uga.edu

We introduce the concept of strongly quasiconvex subgroups of an arbitrary finitely generated group.
Strong quasiconvexity generalizes quasiconvexity in hyperbolic groups and is preserved under quasi-
isometry. We prove that strongly quasiconvex subgroups have many properties analogous to those of
quasiconvex subgroups of hyperbolic groups. We study strong quasiconvexity and stability in relatively
hyperbolic groups, two dimensional right-angled Coxeter groups, and right-angled Artin groups. We
note that the result on right-angled Artin groups strengthens the work of Koberda-Mangahas-Taylor on
characterizing purely loxodromic subgroups of right-angled Artin groups.

Spaces of embeddings and diffeomorphisms of discs
Victor Turchin
Kansas State University
turchin@math.ksu.edu

There are several approaches to deloop such spaces. One goes back to Burghelea and uses the smooth-
ing theory. The other one comes from the Goodwillie-Weiss embedding calculus and uses the theory of
operads. I will survey the known results and if time permits tell what the calculus approach says about
the delooping of more general mapping spaces avoiding any type of multisingularity.
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Coarse hyperstructures with applications to groups
Nicol Zava
University of Udine
zava.nicolo@spes.uniud.it

Coauthors: Dikran Dikranjan, University of Udine; Igor Protasov, Kiev State University of Taras
Shevchenko; Ksenia Protasova, Kiev State University of Taras Shevchenko

Let (X,U) be a uniform space. Then the Hausdorff-Bourbaki hyperspace is a well-known classical
topological object, namely, it is the uniform space (P(X),U∗), where U∗ = {U∗ ⊆ P(X)×P(X) | U ∈ U}
and, for every U ∈ U , a pair (A,B) ∈ U∗ if and only if A ⊆ U [B] and B ⊆ U [A]. Extending an idea
of Protasov and Protasova, we show that, if (X, E) is a coarse space, then also (X, E∗) is a coarse space,
called coarse hyperspace. By comparing the two situations, we show some similar results and we justify
the choice of these authors to take into account only the family of all bounded non-empty subsets as a
support of the coarse hyperspace. Moreover, we focus on some special subspaces of coarse hyperspaces of
groups. More precisely, if G is a group, we endow it with the coarse structure EG induced by the ideal of
all finite subsets. We consider the coarse subspace L(G) of E∗G, whose support is the subgroup lattice of
G. We give some interesting properties of those coarse spaces and results that compare them with other
coarse structures on subgroup lattices. This investigation also bring to attention some purely algebraic
properties of groups: for example, two subgroups of a group G belong to the same connected component
of L(G) if and only if they are commensurable. If two groups G,H are isomorphic, then the spaces
L(G) and L(H) are obviously asymorphic, although the converse need not be true in general. Particular
emphasis is given to investigating sufficient conditions for which the opposite implication holds.
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Set-Theoretic Topology

ON M-METRIC SPACES
Samer Assaf
American University of Kuwait
sassaf@auk.edu.kw

We make some observations concerning m-metric spaces and point out some discrepancies in the
proofs found in the literature. To remedy this, we propose a new topological construction and prove that
it is in fact a generalization of a partial metric space.

κ-proximal spaces
Jocelyn Bell
Hobart and William Smith Colleges
bell@hws.edu

The proximal game is a two-player infinite game which takes place in a uniform space. We will intro-
duce a modification of the proximal game and the class of κ-proximal spaces and will discuss properties
of κ-proximal spaces.

An Extension of the Baire Property
Christopher Caruvana
University of North Texas
Christopher.Caruvana@unt.edu

Coauthors: Robert Kallman, University of North Texas

We will define for every Polish space X a class of sets, the extended Baire property EBP (X) sets, to
work out many properties of EBP (X) and to show their usefulness in analysis. For example, a proper
generalization of the Pettis Theorem is provided in this context that furnishes a new automatic continuity
result for Polish groups. The name extended Baire property sets is reasonable since EBP (X) contains the
Baire property sets and it is consistent with ZFC that the containment is proper. We will also consider
a naturally defined ideal of sets related to EBP (X) and show that this ideal is, in general, strictly finer
than the ideal generated by the meager sets and the universally null sets.
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pi-Base: A usable map of the forest
Steven Clontz
University of South Alabama
sclontz@southalabama.edu

Coauthors: James Dabbs

To paraphrase Mary Ellen Ruden in her review of Lynn Arthur Steen and J. Arthur Seebach, Jr.’s
Counterexamples in Topology, “Topology is a dense forest of counterexamples, and a usable map of the
forest is a fine thing.” Inspired by this quote and the work done by Steen and Seebach, the pi-Base serves
as a living database cataloging topological spaces, their properties, and the theorems that connect those
properties. The presenter will give a brief history of the database, as well as ongoing plans for developing
its content and software to support active researchers in general topology. The pi-Base may be accessed
on any computer or smart device by visiting 〈http://pi-base.org〉.

Applications of high dimensional Ellentuck spaces
Natasha Dobrinen
University of Denver
ndobrine@du.edu

We present an overview of some recent works by various authors, including Arias, Dobrinen, Girón,
Hathaway, Mijares, and Zheng, which centrally rely on the Ramsey-theoretic structure inherent in high
dimensional Ellentuck spaces.

The well-known Boolean algebra P(ω)/Fin adds a Ramsey ultrafilter, and its properties with respect
to Rudin-Keisler, Tukey, and L(R)[U ], and preservation under certain forcings have been well-studied.
The natural extension on ω × ω is the Boolean algebra P(ω × ω)/Fin ⊗ Fin. By recursion, a large
hierarchy of such Boolean algebras may be formed, each growing in complexity strength over previous
ones. In the process of determining the exact Tukey structures below these forced ultrafilters, Dobrinen
showed that each of these is forcing equivalent to a topological Ramsey space, which may be viewed as
higher dimensional versions of the Ellentuck space. The Ramsey-theoretic content of these spaces have
provided the structure necessary for several recent results involving new Banach spaces, preservation of
these ultrafilters under Sacks forcging, as well as preservation of properties of L(R)[U ].

sigma-compact density
Alan Dow
UNC Charlotte
adow@uncc.edu

Coauthors: Istvan Juhasz

Arhangelskii and Stavrova introduced and studied generalized notions of tightness, including the
notion of sigma-compact tightness. The major related open problem is whether sigma-compact tightness
implied simply countable tightness in spaces besides compact spaces. This inspired Juhasz and van Mill to
recently study other generalizations of sigma-compact tightness and led van Mill to formulate a problem
asking if a compact space is necessarily separable if every dense subset has a dense sigma-compact subset.
We answer this question affirmatively.
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Spaces with a Q-diagonal
Ziqin Feng
Auburn University
zzf0006@auburn.edu

Let K(M) be the collection of all compact subsets of a topological space M . Then K(M) is a directed
set ordered by set inclusion. For any directed set P , a collection C of subsets of a space X is P -directed if
C can be represented as {Cp : p ∈ P} such that Cp ⊆ Cp′ whenever p ≤ p′. A space X has an M -diagonal
for some separable metric space M if X2 \ ∆ has a K(M)-directed compact cover. We show that any
compact space with a Q-diagonal is metrizable, where Q is the space of rational numbers.

Cardinal inequalities for topological spaces: new results and some open questions
Ivan S. Gotchev
Central Connecticut State University
gotchevi@ccsu.edu

In this talk recent results on cardinal inequalities for topological spaces will be presented and some
old and new open questions will be discussed.

Monotonical Monolithity, Point-countable Almost Subbase and D
Hongfeng Guo
Shandong University of Finance and Economics
guohongfeng17@gmail.com

Coauthors: Ziqin Feng

Tkachuk introduced monotonically monolithic spaces and proved that any monotonically monolithic
space is hereditarily D. We discuss the finite union of monotonically monolithic spaces and show that
any countably tight space which is a finite union of monotonically monolithic subspaces is D.

We will also discuss the relation between point networks and some D-relatives. We show that any
space with an ℵ0-Noetherian point network is thickly covered, hence aD and linearly D.
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Super HS and HL Spaces
Joan Hart
University of Wisconsin Oshkosh
hartj@uwosh.edu

Coauthors: Kenneth Kunen

We introduce super properties, including suHS and suHL, based on the standard separating sequence
characterizations of HS (Hereditarily Separable) and HL (Hereditarily Lindelöf). Given a space X, let U
range over arbitrary sequences 〈(xα, Uα) : α < ω1〉, where each Uα is open and xα ∈ Uα. Then X is HS
iff X has no left separated sequence iff ∀U∃α < β [xα ∈ Uβ ]. To define suHS we replace the pair α, β by
ℵ1 elements of X: So X is super HS (suHS) iff ∀U∃I ∈ [ω1]ℵ1 ∀α, β ∈ I[α < β implies xα ∈ Uβ ] . We
define suHL and suHC likewise, where HC abbreviates Hereditarily CCC.

We note that suHS implies stHS, but suHC does not imply stHC, where, as usual, if P is a property
of spaces, then X is strongly P (stP) iff all finite powers of X have P.

Sets and mappings in βS which are not Borel
Neil Hindman
Howard University
nhindman@aol.com

Coauthors: Dona Strauss

We extend theorems previously proved for N by showing that, if S is a countably infinite right
cancellative and weakly left cancellative discrete semigroup, then the following subsets of βS are not
Borel: the set of idempotents, the smallest ideal, any semiprincipal right ideal defined by an element of
S∗, and S∗S∗. This has the imediate corollary that, if S is any infinite right cancellative and weakly left
cancellative semigroup, the set of idempotents in βS is not Borel.

Calibrating the Size of Complicated Quotients
Jared Holshouser
University of South Alabama
JaredHolshouser@southalabama.edu

Silver’s theorem and the Harrington-Kechris Louveau theorem serve to calibrate the size of co-analytic
and Borel quotients of Polish Spaces. Work of Shelah, Hjorth, and more recently Caicedo and Ketchersid
extend these results, with some limitations. Shelah only extends Silver’s theorem, but obtains an explicit
bound for his quotients and Caicedo and Ketchersid extend both Silver’s theorem and the Harrington-
Kechris Louveau theorem, but lose the explicit bound. We will adapt techniques from infinitary logic to
create a form of light-face pointclasses running parallel to the classes of Suslin sets to get an extension of
both Silver’s theorem and the Harrington-Kechris Louveau theorem which provides explicit bounds for
the quotients.
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Introduction To Typed Topological Spaces
Wanjun Hu
1505 River Pointe
Wanjun.Hu@asurams.edu

Finite topological spaces are discrete when they are T1, which renders them uninteresting. In this
presentation, we will introduce the so-called typed topologies on finite sets, using which fine structures
can be defined.

Uncountable discrete subspaces and forcing
Akira Iwasa
University of South Carolina Beaufort
iwasa@uscb.edu

Suppose that a topological space X has no uncountable discrete subspace. We discuss if X can get
an uncountable discrete subspace in forcing extensions. If X is metrizable, then this is not possible. If
X is hereditarily separable and non-Lindelöf (S-space), then this is possible.

Functional tightness of infinite products
Mikolaj Krupski
University of Pittsburgh
m.krupski@pitt.edu

A classical theorem of Malykhin says that tightness behaves nicely under Cartesian products of com-
pact spaces. In my talk, I will show a counterpart of Malykhin’s theorem for functional tightness. In
particular, it turns out that if there are no measurable cardinals then the functional tightness is preserved
by arbitrarily large products of compacta. Our results answer a question posed by Okunev.

All sufficiently regular sets of reals may be projective
Paul Larson
Miami University
larsonpb@miamioh.edu

Coauthors: Saharon Shelah

We will discuss some open problems about universally measurable sets of real numbers and outline a
proof that, consistently, every universally measurable set of reals is the continuous image of a coanalytic
set.

The proof generalizes to other regularity properties, including the corresponding universal version of
the Baire property.
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Products of topological groups in which all closed subgroups are separable
Arkady Leiderman
Ben-Gurion University of the Negev, Israel
arkady@math.bgu.ac.il

Coauthors: Mikhail G. Tkachenko

We say that a topological group G is strongly separable (briefly, S-separable), if for any topological
group H such that every closed subgroup of H is separable, the product G×H has the same property.

Theorem 1. Every separable compact group is S-separable.
The following problem is open.
Problem. 1) Is every separable locally compact group S-separable? 2) Does there exist a separable

metrizable group which is not S-separable?
Let c be the cardinality of the continuum.

Theorem 2. Assuming 2ω1 = c, there exist:

• pseudocompact topological abelian groups G and H such that all closed subgroups of G and H are
separable, but the product G×H contains a closed non-separable σ-compact subgroup;

• pseudocomplete locally convex vector spaces K and L such that all closed vector subspaces of K
and L are separable, but the product K × L contains a closed non-separable σ-compact vector
subspace.

The problem whether such pairs of spaces exist in ZFC is open.

Pin homogeneity
David Milovich
Texas A&M International University
ultrafilter@gmail.com

This talk introduces a weak form of homogeneity. Call two points a, b in a compact space X pin
equivalent if there exist a compact space Y , a quotient map f : Y → X that is invertible at a and b, and
a homeomorphism g : Y → Y such that g(f−1(a)) = f−1(b). Call X pin homogeneous if every two points
in X are pin equivalent.

Pin homogeneity is strictly weaker than homogeneity and strictly stronger than the property of all
points having the same Tukey type. Assuming CH, infinite compact F-spaces are not pin homogeneous.
On the other hand, every compact space has a pin homogeneous power.

If the above f is required to be a homeomorphism instead of a mere quotient map, then pin homo-
geneity becomes homogeneity. This suggests a strategy for incremental progress towards solving the open
problem of whether every compact space is a quotient of a homogeneous compact space: start with the
positive solution to the analogous problem for pin homogeneous compacts and incrementally require more
of f .
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Butterfly points in compacta
Peter Nyikos
University of South Carolina
nyikos@math.sc.edu

An elementary problem about ultrafilters is equivalent to a classic problem in set theoretic topology
that has resisted a complete solution for over four decades.

Definition 1. A filter on a set S is nowhere maximal if it does not trace an ultrafilter on any subset
of S.

Problem 1. Is every free ultrafilter generated by two nowhere maximal filters?

The equivalent topological problem has to do with what are called butterfly points.

Definition 2. A point p of a space X is a butterfly point of X if there exist two closed subsets F0

and F1 of X whose intersection is {p}, and p is nonisolated in the relative topology of both F0 and F1.

The following classic problem is equivalent to Problem 1:

Problem 1′. Is every point in the Stone-Čech remainder of every discrete space a buttefly point?

A closely related problem is whether the removal of any point in such a remainder gives a non-normal
subspace. The answer to both questions is is Yes under GCH, but it is not known whether the usual
(ZFC) axioms of set theory suffice to show it is Yes for even one infinite set, for either problem. And so,
Problem 1 is also open for all infinite sets S.

It has been known since 1980 that ZFC is enough to show the existence of some butterfly points in
the remainder of ω and hence in all these remainders. On the other hand, the following classic problem
is open:

Problem 2. Does every infinite compact Hausdorff space have a butterfly point?

The problem is worded in this way because not every nonisolated point of every compact Hausdorff
space is a butterfly point. A counterexample is the last point ω1 in ω1 + 1.

V. V. Fedorchuk found counterexamples for Problem 2 under the ZFC-independent axiom ♦, but no
ZFC counterexamples are known.

There are various “translations” of the concept of a butterfly point in analysis and algebra, in the
spirit of the way Problem 1 is a “translation” of Problem 1′. Adequate and inadequate ways of translating
Problem 2 will be outlined.

On GO-spaces with a monotone closure-preserving operator
Strashimir G. Popvassilev
The City College and Medgar Evers College, CUNY (part time)
spopvassilev@ccny.cuny.edu

Coauthors: John E. (Ted) Porter, Murray State University

We generalize results by Bennett, Hart, Lutzer, and Peng, Li, by proving that the following conditions
are equivalent for a GO-space X whose underlying LOTS has a σ-closed-and-discrete dense subset: (1)
X has a monotone open locally-finite operator, (2) X is monotonically metacompact, and (3) X has
a monotone (open or not) closure-preserving operator. Monotonically metacompact GO-spaces have a
monotone open locally-finite operator. A GO-space with a σ-closed-discrete dense subset and a monotone
closure-preserving operator is metrizable. A compact LOTS with a monotone open closure-preserving
operator is metrizable.
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On the metrization of GO-spaces with the NZ(ω)-property.
Ted Porter
Murray State University
jporter@murraystate.edu

In their study of D-spaces, Z. Feng and G. Gruenhage introduced the NZ(κ)-property. A topological
space X is said to satisfy NZ(κ) for a cardinal κ if for any collection N = {(xλ, Uλ) : λ ∈ Λ} with Uλ
being an open neighborhood of xλ for each λ ∈ Λ, there exist a cover {Λα : α < κ} of Λ and open set
Zλ ⊂ Uλ containing xλ for each λ ∈ Λ such that for each α < κ, if {λn : n ∈ ω} ⊂ Λα is any sequence

with xλn
6∈
⋃
i<n

Uλi
for each n ∈ ω, then

⋂
n∈ω

Zλn
= ∅. We will show GO-spaces with the NZ(ω)-property

and a σ-closed-discrete dense subsets are metrizable improving upon results of Peng and Li and Bennett,
Hart, and Lutzer on monotonically metacompact spaces along with results on σ-NSR pair-bases that
the speaker announced at last year’s Spring Topology and Dynamical Systems Conference and Summer
Topology Conference.

Countably compact sequential groups of arbitrary orders.
Alexander Shibakov
Tennessee Tech University
ashibakov@tntech.edu

Coauthors: Dmitri Shakhmatov

We present a construction of a countably compact sequential group topology on a boolean group that
has a prescribed sequential order. A number of open questions (that are finally appropriate to ask) will
be mentioned. This is a joint work with Dima Shakhmatov.

Extension of functions and metrics with variable domains
Ihor Stasyuk
Nipissing University
ihors@nipissingu.ca

Coauthors: T. Banakh, E.D.Tymchatyn and M. Zarichnyi

Let (X, d) be a complete, bounded, metric space. For a nonempty, closed subset A of X denote by
C∗(A×A) the set of all continuous, bounded, real-valued functions on A×A. Denote by

C = ∪{C∗(A×A) | A is a nonempty closed subset of X}

the set of all partial, continuous and bounded functions. We prove that there exists a linear, regular
extension operator from C endowed with the topology of convergence in the Hausdorff distance of graphs
of partial functions to the space C∗(X ×X) with the topology of uniform convergence on compact sets.
The constructed extension operator preserves constant functions, pseudometrics, metrics and admissible
metrics. For a fixed, nonempty, closed subset A of X the restricted extension operator from C∗(A× A)
to C∗(X×X) is continuous with respect to the topologies of pointwise convergence, uniform convergence
on compact sets and uniform convergence considered on both C∗(A×A) and C∗(X ×X).
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Ladder systems after forcing with a Suslin tree
Paul Szeptycki
York University
szeptyck@gmail.com

Coauthors: Cesar Corral

Uniformization and anti-uniformization properties of ladder systems in forcing in models obtained by
forcing with a Suslin tree S over a model of MA(S) are considered.

Discrete selectivity in function spaces
Vladimir Tkachuk
Universidad Autonoma Metropolitana de Mexico
vova@xanum.uam.mx

Given a sequence S = {Un : n ∈ ω} of non-empty open subsets of a space Y , a set {xn : n ∈ ω}
is a selection of S if xn ∈ Un for every n ∈ ω. The space Y is discretely selective if every sequence of
non-empty open subsets of Y has a closed discrete selection. We show that a space X is uncountable if
and only if Cp(X) is discretely selective and study discrete selectivity in spaces Cp(X, [0, 1]).

The SIN Property in Homeomorphism Groups
Keith Whittington
University of the Pacific, Stockton, CA
kwhittin@pacific.edu

It is shown that if G is a group of homeomorphisms of a compact space X, then under fairly general
circumstances, G is SIN if and only if G is compact. The case where X is metric and G is given the
compact-open topology adds to the classical characterization of compactness of G given by S. Eilenberg.
The work is then generalized using uniformities.

Cofinally Polish spaces and domain representability
Lynne Yengulalp
University of Dayton
lyengulalp1@udayton.edu

Coauthors: Jila Niknejad and Vladimir Tkachuk

A space X is said to be cofinally Polish if for every continuous mapping f of X onto a separable metric
space M, there is a Polish space P and continuous onto maps g : X → P and h : P → M such that
f = h ◦ g.

We show that if X has a countable network, then X is cofinally Polish if and only if it is domain
representable.
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