A universal space for Cantor expansive dynamics

Álvaro Lozano

jointly with

Olga Lukina

Contents

- **1** Expansive pseudogroups on the Cantor set
- @ Gromov-Hausdorff space of trees
- **8** Gromov-Hausdorff as a universal space

A **pseudogroup** of transformations of *X* is a family of homeomorphisms between open sets of *X* closed w.r.t.

inversion

composition

restriction to open sets

• gluing of homeomorphisms

A **pseudogroup** of transformations of *X* is a family of homeomorphisms between open sets of *X* closed w.r.t.

inversion

composition

restriction to open sets

• gluing of homeomorphisms

A pseudogroup Γ is generated by Γ^1 if any $\gamma \in \Gamma$ is locally a Γ^1 -word:

A **pseudogroup** of transformations of *X* is a family of homeomorphisms between open sets of *X* closed w.r.t.

inversion

composition

restriction to open sets

gluing of homeomorphisms

A pseudogroup Γ is generated by Γ^1 if any $\gamma \in \Gamma$ is locally a Γ^1 -word:

$$\gamma|_U=w_1\circ w_2\circ \cdots \circ w_n|_U$$
,

with $w_i \in \Gamma^1$ and U covering dom γ .

A **pseudogroup** of transformations of *X* is a family of homeomorphisms between open sets of *X* closed w.r.t.

inversion

composition

restriction to open sets

gluing of homeomorphisms

A pseudogroup Γ is generated by Γ^1 if any $\gamma \in \Gamma$ is locally a Γ^1 -word:

$$\gamma|_U=w_1\circ w_2\circ \cdots \circ w_n|_U$$
,

with $w_i \in \Gamma^1$ and U covering dom γ .

 Γ is **finitely generated** if exists a finite generating set Γ^1

Definition (Compact Generation). A pseudogroup Γ is compactly generated if X contains a relatively compact open set Y meeting all Γ-orbits and the reduced pseudogroup $\Gamma|_Y$ is generated by a finite set Λ_Y of elements of Γ such that each element $\lambda \in \Lambda_Y$ is the restriction of an element $\lambda' \in \Gamma$ with the closure of dom λ contained in dom λ' .

Definition (Compact Generation). A pseudogroup Γ is compactly generated if X contains a relatively compact open set Y meeting all Γ-orbits and the reduced pseudogroup $\Gamma|_Y$ is generated by a finite set Λ_Y of elements of Γ such that each element $\lambda \in \Lambda_Y$ is the restriction of an element $\lambda' \in \Gamma$ with the closure of dom λ contained in dom λ' .

If X is a Cantor (of 0-dimensional)

Definition (Compact Generation). A pseudogroup Γ is compactly generated if X contains a relatively compact open set Y meeting all Γ-orbits and the reduced pseudogroup $\Gamma|_Y$ is generated by a finite set Λ_Y of elements of Γ such that each element $\lambda \in \Lambda_Y$ is the restriction of an element $\lambda' \in \Gamma$ with the closure of dom λ contained in dom λ' .

If X is a Cantor (of 0-dimensional)

Lemma. If Γ is compact generated. There exists a finite generating set with compact and open domains.

Definition (Compact Generation). A pseudogroup Γ is compactly generated if X contains a relatively compact open set Y meeting all Γ-orbits and the reduced pseudogroup $\Gamma|_Y$ is generated by a finite set Λ_Y of elements of Γ such that each element $\lambda \in \Lambda_Y$ is the restriction of an element $\lambda' \in \Gamma$ with the closure of dom λ contained in dom λ' .

If X is a Cantor (of 0-dimensional)

Lemma. If Γ is compact generated. There exists a finite generating set with compact and open domains.

Definition. A pseudogroup Γ is δ -expansive if for all $x \neq x' \in X$ with $d(x, x') < \delta$ there exists $\gamma \in \Gamma$ s.t. $d(\gamma(x), \gamma(x')) \ge \delta$.

Contents

- **1** Expansive pseudogroups on the Cantor set
- @ Gromov-Hausdorff space of trees
- **6** Gromov-Hausdorff as a universal space

The set

A free group with n generators

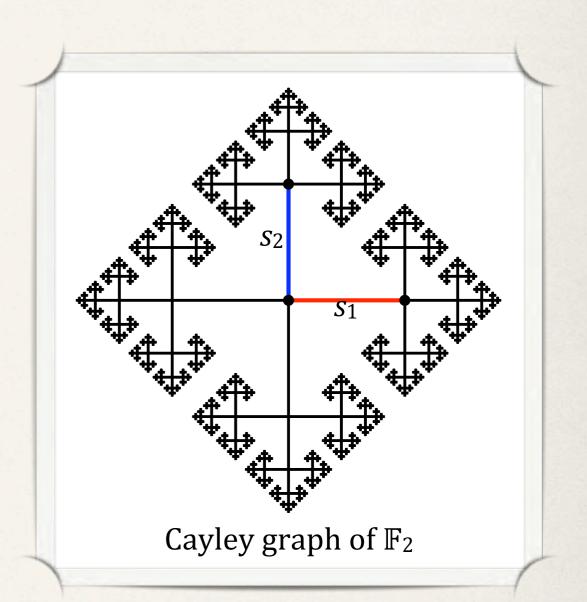
$$\mathbb{F}_n = \langle s_1, s_2, ..., s_n \rangle$$

The set

A free group with n generators

$$\mathbb{F}_n = \langle s_1, s_2, ..., s_n \rangle$$

• G_n is the Cayley graph of \mathbb{F}_n



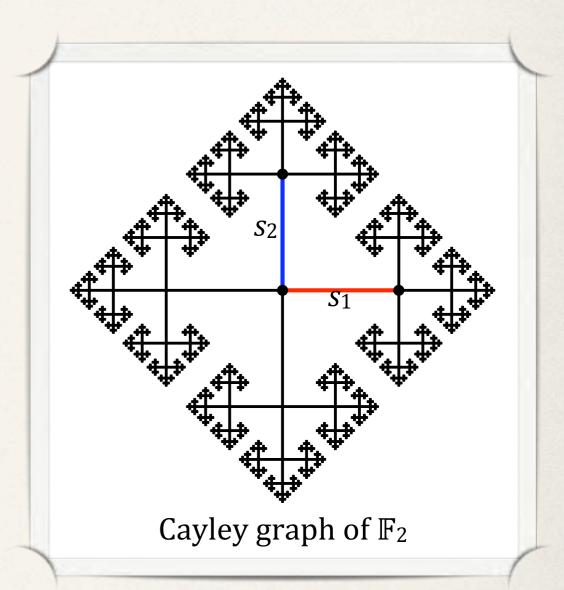
The set

A free group with n generators

$$\mathbb{F}_n = \langle s_1, s_2, ..., s_n \rangle$$

- G_n is the Cayley graph of \mathbb{F}_n
- ullet \mathfrak{X}_n is the space of rooted subtrees of \mathcal{G}_n

$$\mathfrak{X}_n = \{ T \subset \mathcal{G}_n \mid T \text{ is a tree and } 1 \in T \}$$

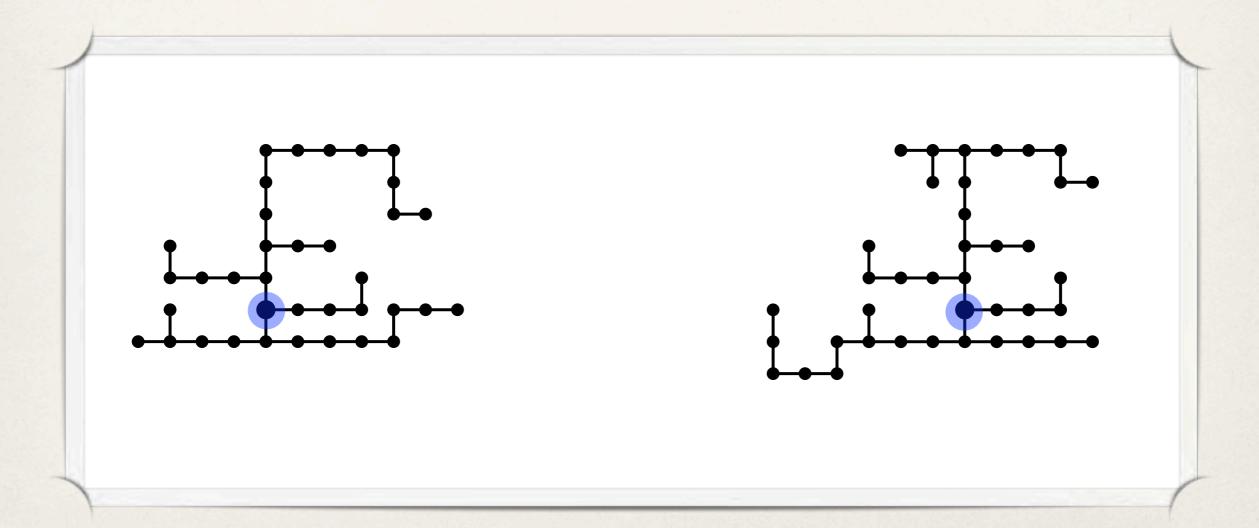


The metric structure

Endow \mathfrak{X}_n with the Gromov-Hausdorff metric

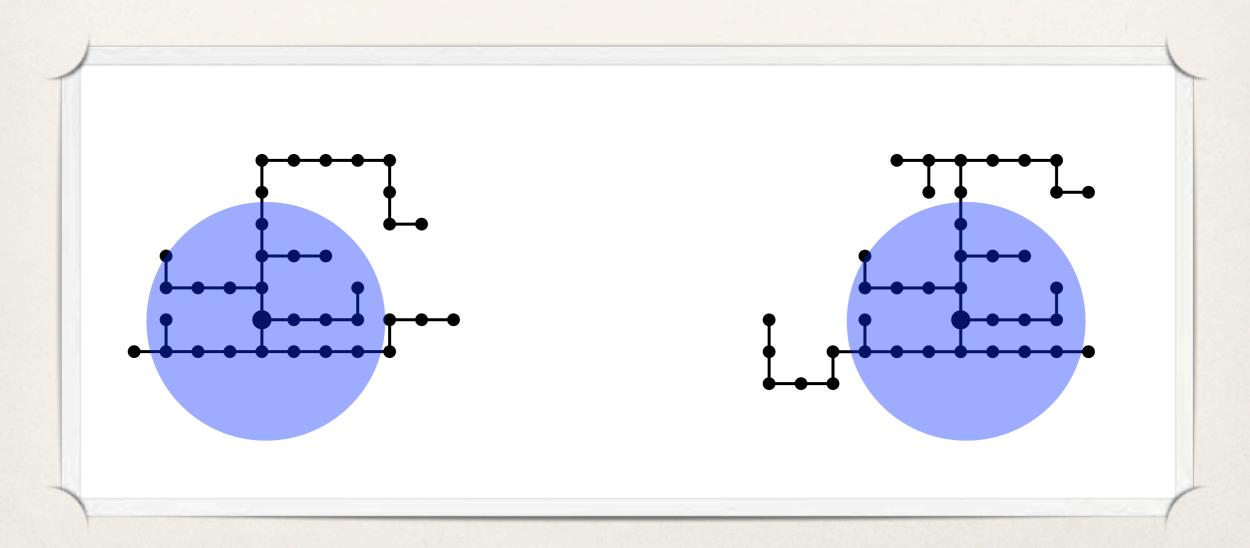
The metric structure

Endow \mathfrak{X}_n with the Gromov-Hausdorff metric



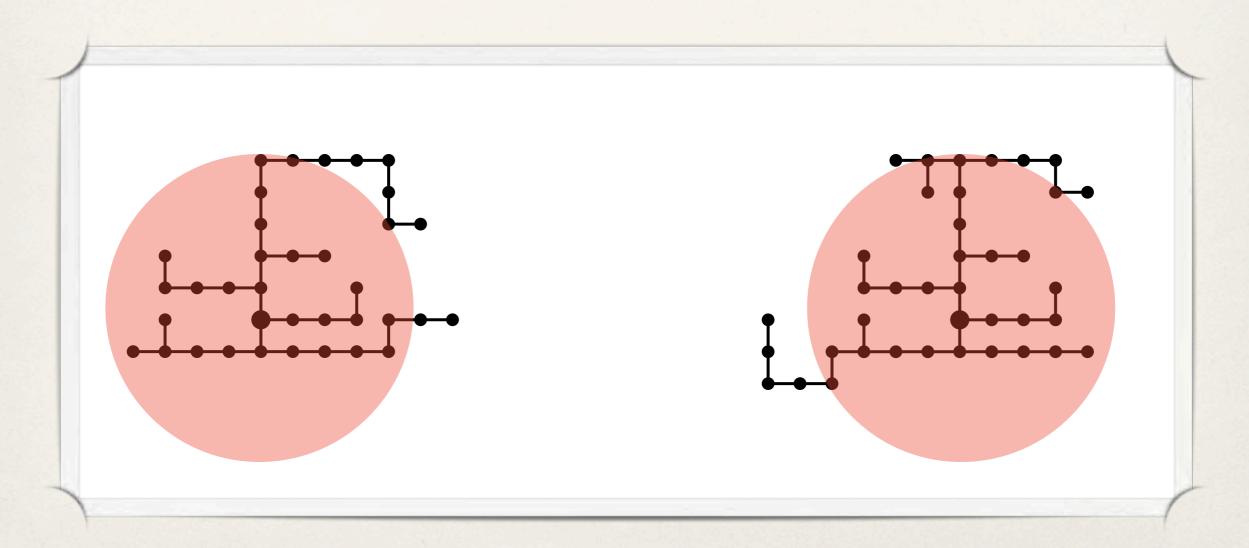
The metric structure

Endow \mathfrak{X}_n with the Gromov-Hausdorff metric



The metric structure

Endow \mathfrak{X}_n with the Gromov-Hausdorff metric



The metric structure

Endow \mathfrak{X}_n with the Gromov-Hausdorff metric

«Two trees are near if they agree in a big ball»

$$d_{\mathrm{GH}}(T,T')=e^{-R(T,T')}$$

where

$$R(T, T') = \sup\{ n \in \mathbb{N} \mid B_T(1, n) = B_{T'}(1, n) \}$$

The topological structure

Lemma. \mathfrak{X}_n is compact and totally disconnected.

The topological structure

Lemma. \mathfrak{X}_n is compact and totally disconnected.

Proof.

Compactness: Finite number of local patterns + Diagonal argument

The topological structure

Lemma. \mathfrak{X}_n is compact and totally disconnected.

Proof.

Compactness: Finite number of local patterns + Diagonal argument

Totally disconnectedness: d_{GH} has countable number of values

The topological structure

Lemma. \mathfrak{X}_n is compact and totally disconnected.

Proof.

Compactness: Finite number of local patterns + Diagonal argument

Totally disconnectedness: d_{GH} has countable number of values

The topological structure

Lemma. \mathfrak{X}_n is compact and totally disconnected.

Proof.

Compactness: Finite number of local patterns + Diagonal argument

Totally disconnectedness: d_{GH} has countable number of values

Lemma. \mathfrak{X}_n without the finite trees is a Cantor set.

The topological structure

Lemma. \mathfrak{X}_n is compact and totally disconnected.

Proof.

Compactness: Finite number of local patterns + Diagonal argument

Totally disconnectedness: d_{GH} has countable number of values

Lemma. \mathfrak{X}_n without the finite trees is a Cantor set.

Proof.

The topological structure

Lemma. \mathfrak{X}_n is compact and totally disconnected.

Proof.

Compactness: Finite number of local patterns + Diagonal argument

Totally disconnectedness: d_{GH} has countable number of values

Lemma. \mathfrak{X}_n without the finite trees is a Cantor set.

Proof.

All infinite trees are limits: $B_T(1, n)$

 \longrightarrow T

The topological structure

Lemma. \mathfrak{X}_n is compact and totally disconnected.

Proof.

Compactness: Finite number of local patterns + Diagonal argument

Totally disconnectedness: d_{GH} has countable number of values

Lemma. \mathfrak{X}_n without the finite trees is a Cantor set.

Proof.

All infinite trees are limits: $B_T(1, n)$ + "some line" \rightarrow T

The partial action of \mathbb{F}_2

For each generator s_i of \mathbb{F}_n there is a translation

 \bullet τ_{s_i} is not globally defined

• $\mathfrak{F}_n = \langle \tau_{s_1}, \tau_{s_2}, ..., \tau_{s_n} \rangle$ pseudogroup generated by them

• \mathfrak{F}_n is expansive

The partial action of \mathbb{F}_2

For each generator s_i of \mathbb{F}_n there is a translation

$$\tau_{s_i}: T \longmapsto s_i^{-1} T$$

 \bullet τ_{s_i} is not globally defined

• $\mathfrak{F}_n = \langle \tau_{s_1}, \tau_{s_2}, ..., \tau_{s_n} \rangle$ pseudogroup generated by them

ullet \mathfrak{F}_n is expansive

The partial action of \mathbb{F}_2

For each generator s_i of \mathbb{F}_n there is a translation

$$\tau_{s_i}: T \longmapsto s_i^{-1} T$$

 \bullet τ_{s_i} is not globally defined

The partial action of \mathbb{F}_2

For each generator s_i of \mathbb{F}_n there is a translation

$$\tau_{s_i}: T \longmapsto s_i^{-1} T$$

 \bullet τ_{s_i} is not globally defined

 τ_{s_i} is defined over trees with the corresponding edge

The partial action of \mathbb{F}_2

For each generator s_i of \mathbb{F}_n there is a translation

$$\tau_{s_i}: T \longmapsto s_i^{-1} T$$

 \bullet τ_{s_i} is not globally defined

 τ_{s_i} is defined over trees with the corresponding edge

• $\mathfrak{F}_n = \langle \tau_{s_1}, \tau_{s_2}, ..., \tau_{s_n} \rangle$ pseudogroup generated by them

The partial action of \mathbb{F}_2

For each generator s_i of \mathbb{F}_n there is a translation

$$\tau_{s_i}: T \longmapsto s_i^{-1} T$$

 \bullet τ_{s_i} is not globally defined

 τ_{s_i} is defined over trees with the corresponding edge

• $\mathfrak{F}_n = \langle \tau_{s_1}, \tau_{s_2}, ..., \tau_{s_n} \rangle$ pseudogroup generated by them

The action \mathbb{F}_n of changes de root

The partial action of \mathbb{F}_2

For each generator s_i of \mathbb{F}_n there is a translation

$$\tau_{s_i}: T \longmapsto s_i^{-1} T$$

 \bullet τ_{s_i} is not globally defined

 τ_{s_i} is defined over trees with the corresponding edge

• $\mathfrak{F}_n = \langle \tau_{s_1}, \tau_{s_2}, ..., \tau_{s_n} \rangle$ pseudogroup generated by them

The action \mathbb{F}_n of changes de root

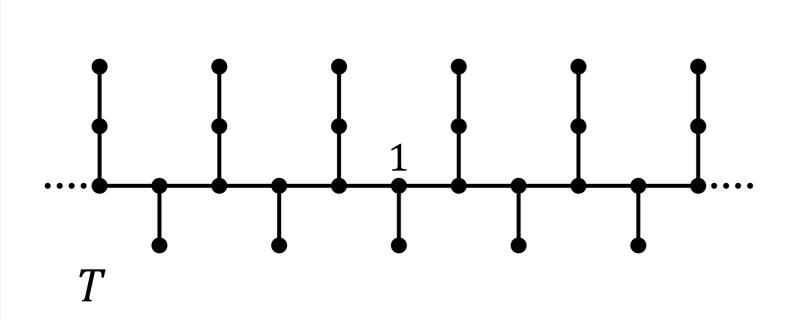
ullet \mathfrak{F}_n is expansive

The graph structure of the orbits

$$\mathfrak{F}_n[T] \simeq T/\mathrm{Iso}(T)$$

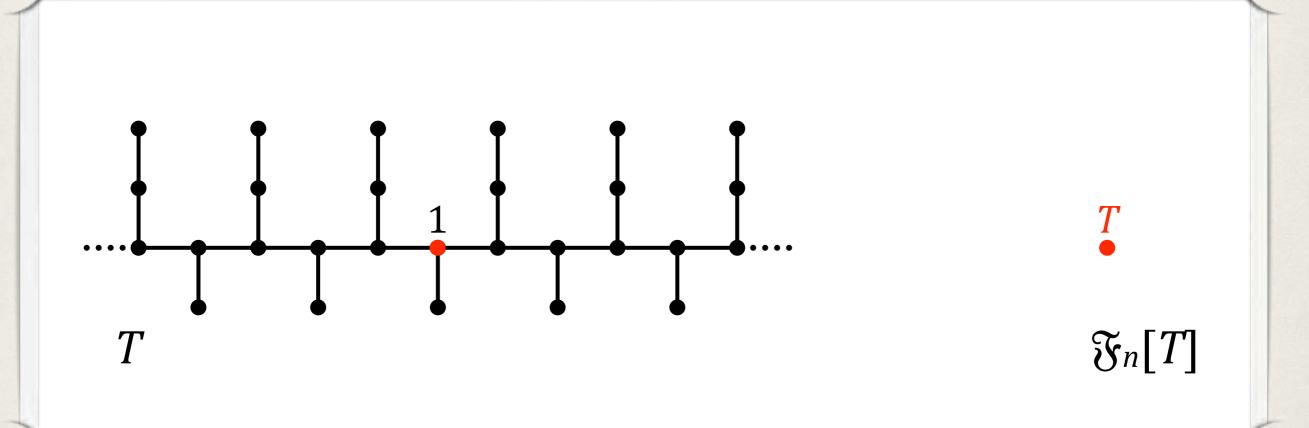
The graph structure of the orbits

$$\mathfrak{F}_n[T] \simeq T/\mathrm{Iso}(T)$$

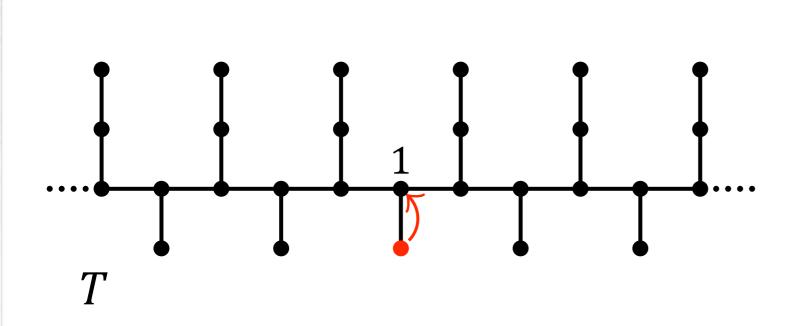


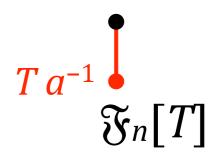
 $\mathfrak{F}_n[T]$

$$\mathfrak{F}_n[T] \simeq T/\mathrm{Iso}(T)$$

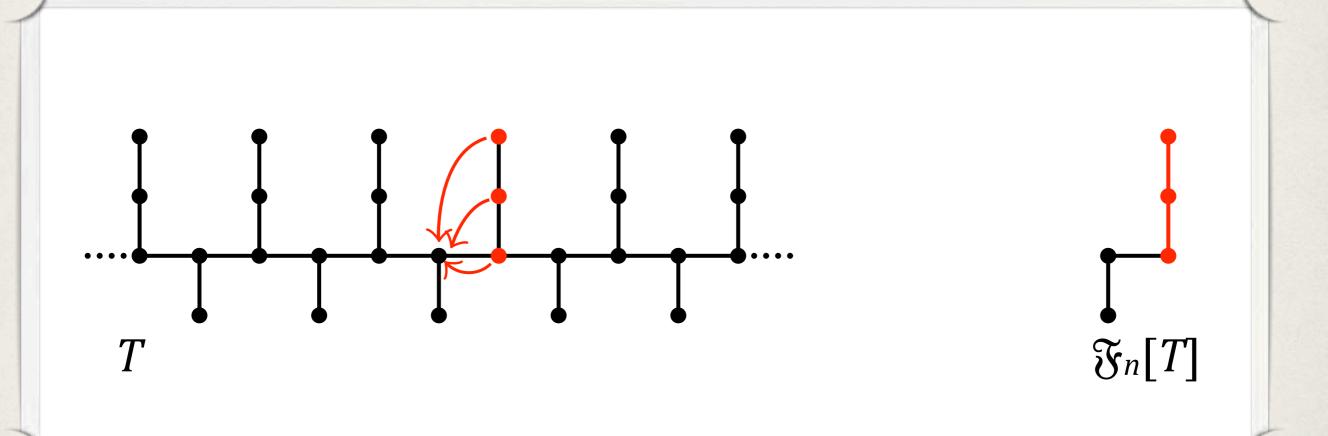


$$\Gamma[T] \simeq T/\mathrm{Iso}(T)$$

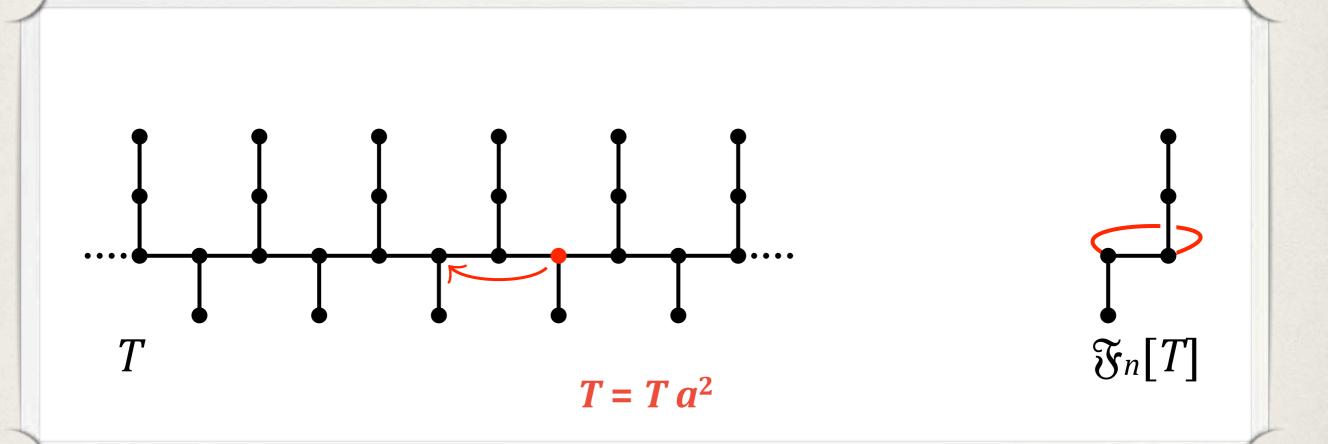




$$\Gamma[T] \simeq T/\mathrm{Iso}(T)$$



$$\Gamma[T] \simeq T/\mathrm{Iso}(T)$$



Contents

- **1** Expansive pseudogroups on the Cantor set
- @ Gromov-Hausdorff space of trees
- **8** Gromov-Hausdorff as a universal space

The Main Theorem

Theorem. (Γ, X) is a finitely generated expansive dynamical system. There exists an equivariant embedding of X in \mathfrak{X}_n .

The Main Theorem

Theorem. (Γ, X) is a finitely generated expansive dynamical system. There exists an equivariant embedding of X in \mathfrak{X}_n .

Proof idea.

The Main Theorem

Theorem. (Γ, X) is a finitely generated expansive dynamical system. There exists an equivariant embedding of X in \mathfrak{X}_n .

Proof idea.

Assign a tree to each point of *X* describing its orbit.

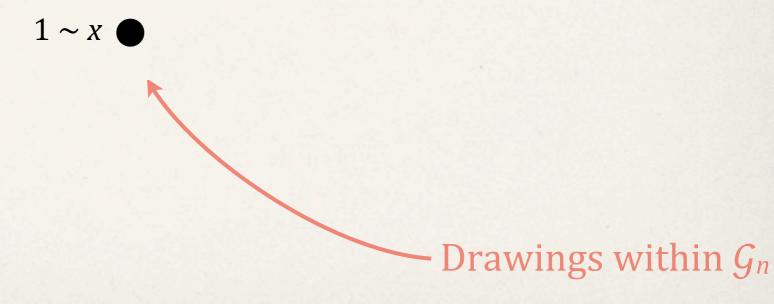
• $\Gamma = \langle \sigma_1, \sigma_2, ..., \sigma_n \rangle$ action on X with dom σ_i compact and open

• $\Gamma = \langle \sigma_1, \sigma_2, ..., \sigma_n \rangle$ action on X with dom σ_i compact and open

Consider the group
$$\mathbb{F}_n = \langle s_1, s_2, ..., s_n \rangle$$

• $\Gamma = \langle \sigma_1, \sigma_2, ..., \sigma_n \rangle$ action on X with dom σ_i compact and open

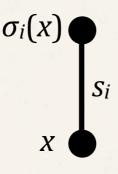
Consider the group
$$\mathbb{F}_n = \langle s_1, s_2, ..., s_n \rangle$$



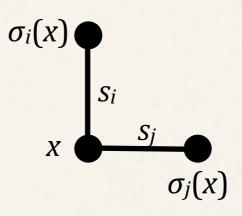
 $\Gamma = \langle \sigma_1, \sigma_2, ..., \sigma_n \rangle$ action on X with dom σ_i compact and open

 $\Gamma = \langle \sigma_1, \sigma_2, ..., \sigma_n \rangle$ action on X with dom σ_i compact and open

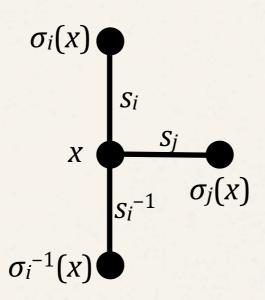
Consider the group
$$\mathbb{F}_n = \langle s_1, s_2, ..., s_n \rangle$$



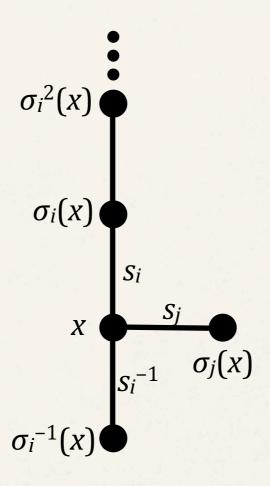
 $\Gamma = \langle \sigma_1, \sigma_2, ..., \sigma_n \rangle$ action on X with dom σ_i compact and open



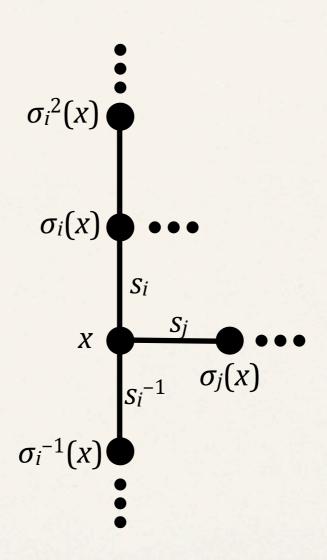
 $\Gamma = \langle \sigma_1, \sigma_2, ..., \sigma_n \rangle$ action on X with dom σ_i compact and open



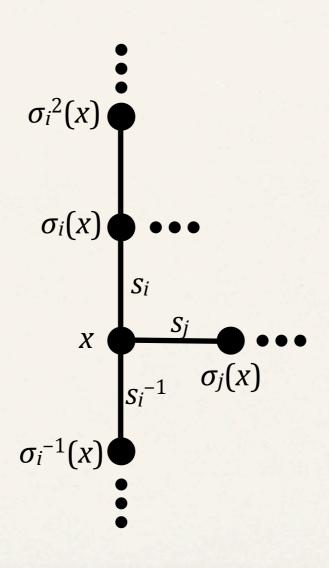
 $\Gamma = \langle \sigma_1, \sigma_2, ..., \sigma_n \rangle$ action on *X* with dom σ_i compact and open



 $\Gamma = \langle \sigma_1, \sigma_2, ..., \sigma_n \rangle$ action on X with dom σ_i compact and open



 $\Gamma = \langle \sigma_1, \sigma_2, ..., \sigma_n \rangle$ action on *X* with dom σ_i compact and open

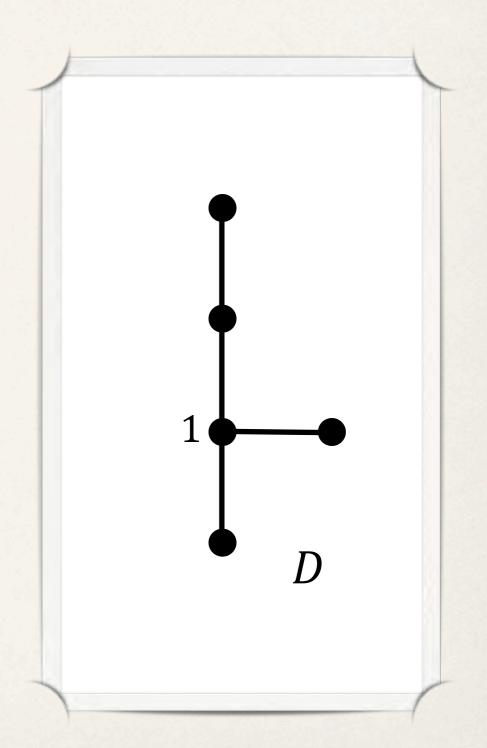


$$\Psi(x) = T_x$$

Ψ is continuous: given finite tree D

Ψ is continuous: given finite tree D

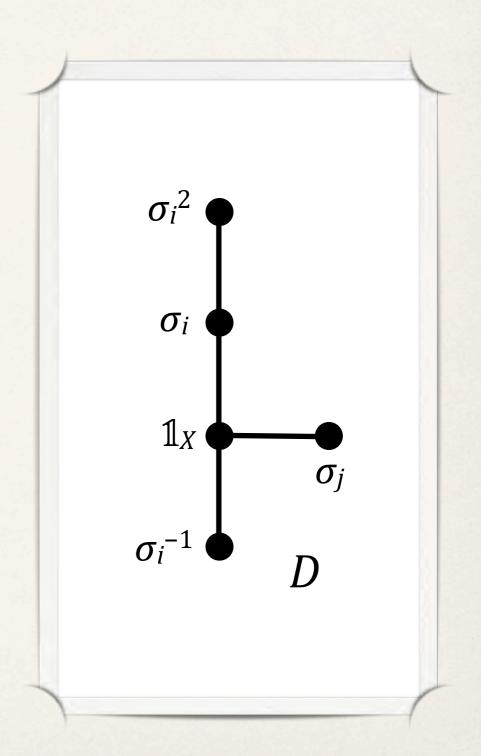
$$O = \{ T \in \mathfrak{X}_n \mid B_T(1, n) = D \}$$



Ψ is continuous: given finite tree D

$$O = \{ T \in \mathfrak{X}_n \mid B_T(1, n) = D \}$$

$$\Psi^{-1}(O) = \bigcap_{w \in D} \text{dom } w = \text{a clopen set}$$



X and \mathfrak{X}_n are Hausdorff and compact $\Longrightarrow \Psi$ is embedding if it is into

X and \mathfrak{X}_n are Hausdorff and compact $\Longrightarrow \Psi$ is embedding if it is into

¡It is not into!

X and \mathfrak{X}_n are Hausdorff and compact $\Longrightarrow \Psi$ is embedding if it is into

¡It is not into!

To force injectivity of Ψ:

X and \mathfrak{X}_n are Hausdorff and compact $\Longrightarrow \Psi$ is embedding if it is into

¡It is not into!

To force injectivity of Ψ:

• $\Gamma = \langle \sigma_1, \sigma_2, ..., \sigma_n \rangle$ is δ -expansive

X and \mathfrak{X}_n are Hausdorff and compact $\Longrightarrow \Psi$ is embedding if it is into

¡It is not into!

To force injectivity of Ψ:

• $\Gamma = \langle \sigma_1, \sigma_2, ..., \sigma_n \rangle$ is δ -expansive

cut each dom σ_i into pieces of diameter δ

X and \mathfrak{X}_n are Hausdorff and compact $\Longrightarrow \Psi$ is embedding if it is into

¡It is not into!

To force injectivity of Ψ:

• $\Gamma = \langle \sigma_1, \sigma_2, ..., \sigma_n \rangle$ is δ -expansive

cut each dom σ_i into pieces of diameter δ

Reconstruct Ψ with the new generating set

X and \mathfrak{X}_n are Hausdorff and compact $\Longrightarrow \Psi$ is embedding if it is into

¡It is not into!

To force injectivity of Ψ:

• $\Gamma = \langle \sigma_1, \sigma_2, ..., \sigma_n \rangle$ is δ -expansive

cut each dom σ_i into pieces of diameter δ

Reconstruct Ψ with the new generating set

Thanks!