Lefschetz sequences
and chaotic dynamics

Klaudiusz Wójcik

Jagiellonian University

Kraków 2012
\[E = \{ E_n \}_{n \geq 0} - \text{a graded vector space over } \mathbb{Q}. \]
$E = \{E_n\}_{n \geq 0}$ - a graded vector space over \mathbb{Q}.

E is of a *finite type* iff
$E = \{E_n\}_{n \geq 0}$ - a graded vector space over \mathbb{Q}.

E is of a *finite type* iff

\triangleright $\dim E_n < \infty$, for all $n \in \mathbb{N}$,
\[E = \{E_n\}_{n \geq 0} \] - a graded vector space over \(\mathbb{Q} \).

\(E \) is of a finite type iff

- \(\dim E_n < \infty \), for all \(n \in \mathbb{N} \),
- \(E_n = 0 \), for almost all \(n \in \mathbb{N} \).
\(E = \{E_n\}_{n \geq 0} \) - a graded vector space over \(\mathbb{Q} \).

\(E \) is of a \textit{finite type} iff

- \(\dim E_n < \infty \), for all \(n \in \mathbb{N} \),
- \(E_n = 0 \), for almost all \(n \in \mathbb{N} \).

\(h = \{h_n\} : E \rightarrow E \) - an endomorphism of \(E \) i.e.,
\(h_n : E_n \rightarrow E_n \) is a linear map.
$E = \{E_n\}_{n \geq 0}$ - a graded vector space over \mathbb{Q}.

E is of a finite type iff

1. $\dim E_n < \infty$, for all $n \in \mathbb{N}$,
2. $E_n = 0$, for almost all $n \in \mathbb{N}$.

$h = \{h_n\} : E \to E$ - an endomorphism of E i.e.,
$h_n : E_n \to E_n$ is a linear map.

Lefschetz number of h

\[\text{Lefschetz number of } h = \sum_{n \in \mathbb{N}} (-1)^n \text{trace}(h_n). \]

Euler characteristic of E:

\[\chi(E) = \text{Lefschetz number of } \text{id}_E = \sum_{n \in \mathbb{N}} (-1)^n \dim E_n. \]
$E = \{E_n\}_{n \geq 0}$ - a graded vector space over \mathbb{Q}.

E is of a finite type iff

- $\dim E_n < \infty$, for all $n \in \mathbb{N}$,
- $E_n = 0$, for almost all $n \in \mathbb{N}$.

$h = \{h_n\} : E \to E$ - an endomorphism of E i.e., $h_n : E_n \to E_n$ is a linear map.

Lefschetz number of h

$$L(h) = \sum_{n \in \mathbb{N}} (-1)^n \text{trace}(h_n).$$
\[E = \{ E_n \}_{n \geq 0} - \text{a graded vector space over } \mathbb{Q}. \]

\(E \) is of a \textit{finite type} iff

\begin{itemize}
 \item \(\dim E_n < \infty \), for all \(n \in \mathbb{N} \),
 \item \(E_n = 0 \), for almost all \(n \in \mathbb{N} \).
\end{itemize}

\[h = \{ h_n \} : E \to E - \text{an endomorphism of } E \text{ i.e., } \]
\[h_n : E_n \to E_n \text{ is a linear map}. \]

\textit{Lefschetz number of } \(h \)

\[L(h) = \sum_{n \in \mathbb{N}} (-1)^n \text{trace}(h_n). \]

\textit{Euler characteristic of } \(E \):
\(E = \{E_n\}_{n \geq 0} \) - a graded vector space over \(\mathbb{Q} \).

\(E \) is of a \textit{finite type} iff

\begin{itemize}
 \item \(\dim E_n < \infty \), for all \(n \in \mathbb{N} \),
 \item \(E_n = 0 \), for almost all \(n \in \mathbb{N} \).
\end{itemize}

\(h = \{h_n\} : E \rightarrow E \) - an endomorphism of \(E \) i.e.,
\(h_n : E_n \rightarrow E_n \) is a linear map.

\textit{Lefschetz number of} \(h \)

\[L(h) = \sum_{n \in \mathbb{N}} (-1)^n \text{trace}(h_n). \]

\textit{Euler characteristic of} \(E \):

\[\chi(E) = L(\text{id}_E) = \sum_{n \in \mathbb{N}} (-1)^n \dim E_n. \]
Lefschetz sequence of $h : E \to E$:
Lefschetz sequence of $h : E \to E$:

$$L_k := L(h^k), \quad k \geq 0.$$
Lefschetz sequence of $h : E \to E$:

$$L_k := L(h^k), \quad k \geq 0.$$

Dual Lefschetz sequence of $h : E \to E$:

$$L^* k = L((h^* - \text{id}_E) k) = \sum_{m=0}^{k} (-1)^{k-m} L_m.$$

Question: Why is a dual Lefschetz sequence interesting from a dynamical point of view?

Motivation: Topological methods for detecting chaotic dynamics.
Lefschetz sequence of $h : E \to E$:

$$L_k := L(h^k), \quad k \geq 0.$$

Dual Lefschetz sequence of $h : E \to E$:

$$L^*_k = L((h - \text{id}_E)^k) = \sum_{m=0}^{k} (-1)^{k-m} \binom{k}{m} L_m.$$

Question: Why is a dual Lefschetz sequence interesting from a dynamical point of view?

Motivation: Topological methods for detecting chaotic dynamics.
Lefschetz sequence of \(h : E \to E \):

\[
L_k := L(h^k), \quad k \geq 0.
\]

Dual Lefschetz sequence of \(h : E \to E \):

\[
L^*_k = L((h - \text{id}_E)^k) = \sum_{m=0}^{k} (-1)^{k-m} \binom{k}{m} L_m.
\]

Question

Why a dual Lefschetz sequence is interesting from dynamical point of view?
Lefschetz sequence of $h : E \to E$:

$$L_k := L(h^k), \quad k \geq 0.$$

Dual Lefschetz sequence of $h : E \to E$:

$$L^*_k = L((h - \text{id}_E)^k) = \sum_{m=0}^{k} (-1)^{k-m} \binom{k}{m} L_m.$$

Question

Why a dual Lefschetz sequence is interesting from dynamical point of view?

Motivation: Topological methods for detecting chaotic dynamics.
X - a locally compact, metric space.
X - a locally compact, metric space.

$\phi : \mathbb{R} \times X \rightarrow X$ - a (local) flow and $W \subset X$.

The exit set of W:

$W - \{ x \in W : \phi([0, t], x) \not\subset W \quad \forall t > 0 \}$.

Definition: W is a block if $W, W -$ are compact.
X - a locally compact, metric space.

$\phi : \mathbb{R} \times X \to X$ - a (local) flow and $W \subset X$.

The exit set of W:

$W^e = \{ x \in W : \phi([0, t], x) \not\subset W \quad \forall \ t > 0 \}$.
X - a locally compact, metric space.

$\phi : \mathbb{R} \times X \to X$ - a (local) flow and $W \subset X$.

The exit set of W:

$$W^- = \{x \in W : \phi([0, t], x) \not\subset W \ \forall t > 0\}.$$
X - a locally compact, metric space.

$\phi : \mathbb{R} \times X \rightarrow X$ - a (local) flow and $W \subset X$.

The exit set of W:

$$W^- = \{ x \in W : \phi([0, t], x) \not\subset W \ \forall \ t > 0 \}.$$

Definition

W is a *block* if W, W^- are compact.
X - a locally compact, metric space.

$\phi : \mathbb{R} \times X \to X$ - a (local) flow and $W \subset X$.

The exit set of W:

$$W^- = \{ x \in W : \phi([0, t], x) \not\subset W \ \forall t > 0 \}.$$

Definition

W is a *block* if W, W^- are compact.
$f : \mathbb{R} \times M \rightarrow TM$ is a smooth time dependent vector field on manifold M, T-periodic with respect to time.
$f : \mathbb{R} \times M \to TM$ is a smooth time dependent vector field on manifold M, T-periodic with respect to time.

Definition

The Poincaré map of the equation

\[(\ast) \quad \dot{x} = f(t, x)\]

is the function

$$P : x_0 \mapsto P(x_0) := \varphi_{(0,T)}(x_0).$$

$\varphi_{(0,T)}(x_0)$ is the value of the solution of the problem

$$x' = f(t, x), \quad x(0) = x_0$$

at time T.
$f : \mathbb{R} \times M \rightarrow TM$ is a smooth time dependent vector field on manifold M, T-periodic with respect to time.

Definition

The *Poincaré map* of the equation

\[(*) \quad \dot{x} = f(t, x)\]

is the function

$$P : x_0 \mapsto P(x_0) := \varphi(0, T)(x_0).$$

$\varphi(0, T)(x_0)$ is the value of the solution of the problem

$$x' = f(t, x), \quad x(0) = x_0$$

at time T.

Remark

$$\{ k\text{-periodic points of } P \} = \{ \text{Initial points of } kT\text{-periodic solutions of } (*) \}$$
\(\pi_1 : \mathbb{R} \times M \to \mathbb{R}, \)
\(\pi_2 : \mathbb{R} \times M \to M \) - the projections
\[\pi_1 : \mathbb{R} \times M \to \mathbb{R}, \]
\[\pi_2 : \mathbb{R} \times M \to M \text{ - the projections} \]

\[Z \subset \mathbb{R} \times M \]

\[Z_t := \{z \in M : (t, z) \in Z\} \]
\(\pi_1 : \mathbb{R} \times M \to \mathbb{R}, \)
\(\pi_2 : \mathbb{R} \times M \to M - \) the projections

\(Z \subset \mathbb{R} \times M \)

\(Z_t := \{ z \in M : (t, z) \in Z \} \)
\(W \subset [0, T] \times M \)
\[W \subset [0, T] \times M \]

Definition

\(W \) is called a *segment* over \([0, T]\) for the equation

\[\dot{x} = f(t, x) \]
\[W \subset [0, T] \times M \]

Definition

\(W \) is called a *segment* over \([0, T]\) for the equation

\[
\dot{x} = f(t, x)
\]

if

1. \(W \) is a block for the vector-field \([1 \ f]\),
2. there is a compact set \(W^- \) contained in \(W \) such that
 \[
 W^- = W^- \cup (\{T\} \times W_T),
 \]
3. there exists a homeomorphism \(h : [0, T] \times W_0 \to W \) such that \(\pi_1 \circ h = \pi_1 \) and \(h([0, T] \times W_0^-) = W^- \),
4. \(W_0 = W_T, W_0^- = W_T^- \) are compact ENR's.
W is a segment over $[0, T]$

$m: W_0 \ni x \mapsto \pi_2 h(T, \pi_2 h^{-1}(0, x)) \in W_0$
W is a segment over $[0, T]$

$$m: \mathcal{W}_0 \ni x \mapsto \pi_2 h(T, \pi_2 h^{-1}(0, x)) \in \mathcal{W}_0$$
\mathcal{W} is a segment over $[0, T]$

$$m: \mathcal{W}_0 \ni x \mapsto \pi_2 h(T, \pi_2 h^{-1}(0, x)) \in \mathcal{W}_0$$

H a homology functor over \mathbb{Q}
\mathcal{W} is a segment over $[0, T]$

$$m: \mathcal{W}_0 \ni x \mapsto \pi_2 h(T, \pi_2 h^{-1}(0, x)) \in \mathcal{W}_0$$

H a homology functor over \mathbb{Q}

$$\mu_{\mathcal{W}} := H(m): H(\mathcal{W}_0, \mathcal{W}_0^{--}) \to H(\mathcal{W}_0, \mathcal{W}_0^{--})$$
W is a segment over $[0, T]$

$$m: W_0 \ni x \mapsto \pi_2 h(T, \pi_2 h^{-1}(0, x)) \in W_0$$

H a homology functor over \mathbb{Q}

$$\mu_W := H(m): H(W_0, W_0 \rightarrow) \rightarrow H(W_0, W_0 \rightarrow)$$

$$L(\mu_W) := \sum_{n=0}^{\infty} (-1)^n \text{trace } H_n(m)$$
\[\Sigma_2 := \{0, 1\}^\mathbb{Z} \]
\[\Sigma_2 := \{0, 1\}^\mathbb{Z} \]

\[\sigma : \Sigma_2 \ni (\ldots, s_{-1}.s_0, s_1, \ldots) \mapsto (\ldots, s_0.s_1, s_2, \ldots) \in \Sigma_2 \]
\[\Sigma_2 := \{0, 1\}^\mathbb{Z} \]

\[\sigma : \Sigma_2 \ni (\ldots, s_{-1}.s_0, s_1, \ldots) \mapsto (\ldots, s_0.s_1, s_2, \ldots) \in \Sigma_2 \]

Definition
The equation
\[\dot{x} = f(t, x) \]
is \(\Sigma_2 \)-chaotic if there exists a compact set \(I \subset \mathbb{M} \), invariant with respect to the Poincaré map \(P \) and a function \(g : I \rightarrow \Sigma_2 \) such that

1. \(g \) is continuous and surjective,
2. \(\sigma \circ g = g \circ P \),
3. for every \(k \)-periodic sequence \(s \in \Sigma_2 \) the set \(g^{-1}(s) \) contains at least one \(k \)-periodic point of \(P \).
Let \(W \) and \(U \) be segments over \([0, T]\) for the equation

\[(\ast) \quad \dot{x} = f(t, x),\]

where \(f \) is smooth and \(T \)-periodic with respect to \(t \) and

1. \((W_0, W_0^{-}) = (U_0, U_0^{-})\),
2. \(U \subset W \),
3. \(\mu_U = \text{id}_{H(W_0, W_0^{-})} \).
$I \subset \mathcal{W}_0$ is the set of all points in \mathcal{W}_0 whose full trajectories are contained in the bigger segment \mathcal{W}.

Define $g: I \rightarrow \Sigma^2$ by

$$g(x)_n = \begin{cases} 1, & \text{if } P_n(x_0) \text{ leaves } U \text{ in time less than } T, \\ 0, & \text{otherwise}. \end{cases}$$

One can prove that $g: I \rightarrow \Sigma^2$ is continuous and $\sigma \circ g = g \circ P$.
$I \subset W_0$ is the set of all points in W_0 whose full trajectories are contained in the bigger segment W.

It follows that I is compact.
$I \subset W_0$ is the set of all points in W_0 whose full trajectories are contained in the bigger segment W.

It follows that I is compact.

Define $g : I \rightarrow \Sigma_2$ by

$$g(x)_n = \begin{cases} 1, & \text{if } P^n(x_0) \text{ leaves } U \text{ in time less then } T, \\ 0, & \text{otherwise}. \end{cases}$$
$I \subset W_0$ is the set of all points in W_0 whose full trajectories are contained in the bigger segment W.

It follows that I is compact.

Define $g : I \rightarrow \Sigma_2$ by

$$g(x)_n = \begin{cases}
1, & \text{if } P^n(x_0) \text{ leaves } U \text{ in time less then } T, \\
0, & \text{otherwise.}
\end{cases}$$

One can prove that $g : I \rightarrow \Sigma_2$ is continuous and

$$\sigma \circ g = g \circ P.$$
Let $c^n_k \in \Sigma_2$ be n-periodic sequence such that 1 appears k times in c^n_k.
Let $c^n_k \in \Sigma_2$ be n-periodic sequence such that 1 appears k times in c^n_k.

$$L_k = L(\mu^{k}_W), \quad k \geq 0$$

where $\mu^{k}_W = \underbrace{\mu_W \circ \ldots \circ \mu_W}_{k}$, $\mu^0_W = \text{id}_{H(W_0, W_0^-)}$.

Theorem (Srzednicki, KW) $L^* k \neq 0$ implies that $g^{-1}(c^n_k) \cap \text{Fix}(P^n)$ is non-empty.

Corollary If $L_1 \neq L_0$ then $g : I \to \Sigma_2$ is surjective. Moreover, if $p > |L_1 - L_0|$ is prime, then $L^{*} p \neq 0$.

Let $c^n_k \in \Sigma_2$ be n-periodic sequence such that 1 appears k times in c^n_k.

\[L_k = L(\mu^k_W), \quad k \geq 0 \]

where $\mu^k_W = \mu_W \circ \ldots \circ \mu_W$, $\mu^0_W = \text{id}_{H(W_0, W^-_0)}$.

Theorem (Srzednicki, KW)

$L^*_k \neq 0$ implies that $g^{-1}(c^n_k) \cap \text{Fix}(P^n)$ is non-empty.
Let $c_k^n \in \Sigma_2$ be n-periodic sequence such that 1 appears k times in c_k^n.

$$L_k = L(\mu^k_W), \quad k \geq 0$$

where $\mu^k_W = \mu_W \circ \ldots \circ \mu_W$, $\mu_0^k = \text{id}_{H(W_0, W_0^-)}$.

Theorem (Srzednicki, KW)

$L_k^* \neq 0$ implies that $g^{-1}(c_k^n) \cap \text{Fix}(P^n)$ is non-empty.

Corollary

If $L_1 \neq L_0$ then $g : I \to \Sigma_2$ is surjective. Moreover, if $p > |L_1 - L_0|$ is prime, then $L_p^* \neq 0$.
If L_k is constant, then $L^*_k = 0$ for $k \geq 1$.
If L_k is constant, then $L_k^* = 0$ for $k \geq 1$.

Example

For 2-periodic L_k we have

$$L_k^* = \begin{cases} L_0, & \text{if } k = 0; \\ (-2)^{k-1}(L_1 - L_0), & k \geq 1, \end{cases}$$
Theorem (Pieniążyk, KW)

Assume that L_n is m-periodic and

$$L_1 = \ldots = L_{m-1}, \quad 0 \neq L_m = L_0 \neq L_1.$$

If m is even then $L_k^* \neq 0$ for $k \geq 0$.

If m is odd then $L_k^* = 0$ iff k is odd multiplicity of m.
Theorem (Pieniążek,KW)

Assume that L_n is m-periodic and

$$L_1 = \ldots = L_{m-1}, \quad 0 \neq L_m = L_0 \neq L_1.$$

If m is even then $L_k^* \neq 0$ for $k \geq 0$.

If m is odd then $L_k^* = 0$ iff k is odd multiplicity of m.

Theorem (Pieniążek, Srzednicki,KW)

For $n \geq 2$ and $\phi > 0$ small enough the equation

$$\dot{z} = (1 + e^{i\phi t}|z|^2)z^n$$

is Σ_2-chaotic for odd n. If n is even, then g is surjective and $F(c_m^k) \neq \emptyset$ whenever k is not an odd multiplicity of $m = n + 1$.
Theorem (Pieniążek, Srzednicki,KW)

For $n \geq 2$ and $\phi > 0$ small enough the equation

$$\dot{z} = (1 + e^{i\phi t}|z|^2)z^n$$

is Σ_2-chaotic for odd n. If n is even, then g is surjective and $F(c_k^m) \neq \emptyset$ whenever k is not an odd multiplicity of $m = n + 1$. (n = 2)
Möbius function $\mu : \mathbb{N} \to \mathbb{Z}$ is given by

$$\mu(n) = \begin{cases}
1 & \text{if } n = 1, \\
(-1)^k & \text{if } n = p_1 \ldots p_k, \ p_i \text{ different primes,} \\
0 & \text{otherwise.}
\end{cases}$$
Möbius function $\mu : \mathbb{N} \rightarrow \mathbb{Z}$ is given by

$$\mu(n) = \begin{cases}
1 & \text{if } n = 1, \\
(-1)^k & \text{if } n = p_1 \ldots p_k, \ p_i \text{ different primes,} \\
0 & \text{otherwise.}
\end{cases}$$

A sequence a_n of integers satisfies the Dold’s relations if

$$\forall n \in \mathbb{N} \quad \sum_{d|n} \mu(n/d) a_d \equiv 0 \mod n.$$
Möbius function $\mu : \mathbb{N} \to \mathbb{Z}$ is given by

$$
\mu(n) = \begin{cases}
1 & \text{if } n = 1, \\
(-1)^k & \text{if } n = p_1 \ldots p_k, p_i \text{ different primes}, \\
0 & \text{otherwise}.
\end{cases}
$$

A sequence a_n of integers satisfies the Dold’s relations if

$$
\forall n \in \mathbb{N} \quad \sum_{d \mid n} \mu(n/d) a_d \equiv 0 \mod n.
$$

In particular,

$$
a_p \equiv a_1 \mod p,
$$

for prime p.
Assume that p is odd prime and L_k is p-periodic and non-constant.
Assume that p is odd prime and L_k is p-periodic and non-constant.

Then

$$L_1 = \ldots = L_{p-1}, \quad L_p = L_0 \neq L_1.$$

It follows that $L_k^* = 0$ if and only if k is odd multiplicity of p.
Lemma
Assume that a_n is m-periodic sequence of integers such that for each prime p

$$a_p \cong a_1 \mod p. \quad (1)$$

If $(r, m) = 1$, then $a_r = a_1$
Lemma
Assume that a_n is m-periodic sequence of integers such that for each prime p

$$a_p \cong a_1 \mod p.$$ (1)

If $(r, m) = 1$, then $a_r = a_1$

Proof: Since $(r, m) = 1$, so by Dirichlet’s theorem there are $n_k \to \infty$ such that

$$p_k = r + n_k m$$

is a prime number for each $k \in \mathbb{N}$. In particular, there is k such that

$$p_k > |a_r - a_1|.$$

Then, by

$$a_r = a_{p_k} \cong a_1 \mod p_k$$

we get that $p_k | a_r - a_1$, hence $a_r = a_1$.
Theorem (Marzantowicz, KW)

(a) Sequences L_n and L^*_n satisfy Dold’s relations,
(b) If L_n is bounded but not the constant sequence (so it is periodic), then L^*_n is unbounded.
Theorem (Marzantowicz, KW)

(a) Sequences L_n and L^*_n satisfy Dold’s relations,

(b) If L_n is bounded but not the constant sequence (so it is periodic), then L^*_n is unbounded. Moreover there exists $\rho > 1$ such that

$$\lim_{k \to \infty} \frac{L^*_{2lk}}{\rho^{2lk}} = a \neq 0.$$
For \(n \geq |L_1 - L_0| \) we put

\[S(n) = \{ p \in \mathbb{N} : |L_1 - L_0| < p < n, \ p \nmid n, \ p \text{ prime} \}. \]

and

\[\nu(n) = \sum_{p \in S(n)} \binom{n}{p}. \]
For $n \geq |L_1 - L_0|$ we put

$$S(n) = \{ p \in \mathbb{N} : |L_1 - L_0| < p < n, p \nmid n, p \text{ prime} \}.$$

and

$$\nu(n) = \sum_{p \in S(n)} \binom{n}{p}.$$

Theorem (Gierzkiewicz, KW)

If $n \geq |L_1 - L_0|$, then P has at least $\nu(n)$ periodic points with minimal period n.
Theorem

Let $k \geq 1$ be fixed. If the sequence $\{L^*_m\}_{m \geq 1}$ is unbounded, then for each n-periodic sequence c^n_k the set $g^{-1}(c^n_k)$ contains infinitely many periodic points of P.

Corollary

Assume that L_n is a bounded but not the constant sequence. Then, $g^{-1}(1^\infty)$ contains infinitely many periodic points of P.