Homeomorphism groups of commutator width one

Takashi TSUBOI

the University of Tokyo

July 1, 2012
Introduction

Definition

A group is *uniformly perfect* if every element is written as a product of a bounded number of commutators. The least number of such bound is called the *commutator width*.

Theorem

Any element of \(\text{Homeo}(S^n)_0 \) can be written as one commutator, where \(\text{Homeo}(S^n)_0 \) is the identity component of the group of homeomorphisms of the \(n \)-dimensional sphere \(S^n \).

Theorem

Any element of \(\text{Homeo}(\mu^n) \) can be written as one commutator, where \(\text{Homeo}(\mu^n) \) is the group of homeomorphisms of the \(n \)-dimensional Menger compact space \(\mu^n \).
David Eisenbud, Ulrich Hirsch and Walter Neumann showed in

that the commutator width of $\text{Homeo}(S^1)_0$ is one.
In 1958, Anderson showed that in the group $\text{Homeo}_c(\mathbb{R}^n)$ of homeomorphisms of the n-dimensional Euclidean space \mathbb{R}^n with compact support, any element can be written as one commutator.

Then it has been known that the commutator width of $\text{Homeo}(S^n)_0$ is at most 2.
It is worth recalling the construction by Anderson.

For given \(f \in \text{Homeo}_c(\mathbb{R}^n) \), we find a bounded ball \(U \) such that the support \(\text{supp}(f) \subset U \).

Then we can find an element \(g \in \text{Homeo}_c(\mathbb{R}^n) \) such that

1. \(g^n(U) \) (\(n \in \mathbb{Z} \)) are disjoint and
2. \(\lim_{n \to \infty} \text{diam}(g^n(U)) = 0 \).

Put \(F = \prod_{n=0}^{\infty} g^n f g^{-n} \), then we have \(gFg^{-1} = f^{-1}F \).

Thus \(f = FgF^{-1}g^{-1} \).
The construction by Anderson

\[f \xrightarrow{g} g(U) \xrightarrow{g} g^2(U) \xrightarrow{g} g^3(U) \xrightarrow{g} g^4(U) \]
What is the meaning that the commutator width is one?

In the case of \(\text{Homeo}_c(\mathbb{R}^n) \), we see that for any element \(f \), there exist \(g \) such that \(g \) and \(fg \) are conjugate.

That is, \(g \) is dynamically so strong that \(fg \) and \(g \) have the same dynamics, and hence they are conjugate.
In the case of $\text{Homeo}_0(S^n)$ or $\text{Homeo}(\mu^n)$, we have the candidate which has the strong dynamics.

The candidate is the topologically hyperbolic homeomorphism.

Definition

A topologically hyperbolic homeomorphism is a homeomorphism h with one source s_+ and one sink s_- such that $\lim_{n \to +\infty} h^n(x) = s_-$ and $\lim_{n \to -\infty} h^n(x) = s_+$ for $x \notin \{s_-, s_+\}$.

Orientation preserving topologically hyperbolic homeomorphisms with nice fundamental domains outside the fixed points are conjugate.
Diffeo\((S^1)_0\)
Hence for a given homeomorphism f, we will construct a topologically hyperbolic homeomorphism g which is so strong that fg is topologically hyperbolic. See Figure.

Take four disjoint disks $f^{-1}(D^n_0)$, D^n_0, D^n_1, $f(D^n_1)$ and define g such that $g(D^n_0) = S^n \setminus \text{int}(D^n_1)$ and $g(S^n \setminus \text{int}(D^n_0)) = D^n_1$, and observe how are the actions of g and fg.
$\text{Diffeo}(S^n)_0$
\[\text{Diffeo}(S^n)_0 \]

\[
\begin{align*}
(gfg)(\Sigma) & \quad (fgf^{-1})(\Sigma) \\
(g^2)(\Sigma) & \quad (fg^2)(\Sigma) \\
(f^{-1}g^{-1}f^{-1})(\Sigma) & \quad (g^{-1}f)(\Sigma) \\
(f^{-1}g^{-1})(\Sigma) & \quad (g^{-1})(\Sigma) \\
(f^{-1}g^{-1}f)(\Sigma) & \quad (g^{-1}f^{-1})(\Sigma)
\end{align*}
\]
In the construction, we need the following deep theorems.

Generalized Schoenflies Theorem (Brown)

Let Σ be a locally flat $(n - 1)$-dimensional sphere in the n-dimensional sphere S^n. Then the closures of the complementary domains of Σ are homeomorphic to the n-dimensional disk D^n.

Annulus conjecture (Kirby, Quinn)

Let Σ_0 and Σ_1 be disjoint locally flat $(n - 1)$-dimensional spheres in the n-dimensional sphere S^n. Then the closure of the region between them is homeomorphic to $S^{n-1} \times [0, 1]$.
For the proof

Lemma

For any compact set K in the interior $\text{int}(D^n)$ of the standard disk D^k and any positive real number ε, there is a homeomorphism $\varphi_{K,\varepsilon} : D^n \to D^n$ which is the identity on ∂D^n such that $\text{diam}(\varphi_{K,\varepsilon}(K)) \leq \varepsilon$.
For the \(n \)-dimensional Menger compact space \(\mu^n \), we use the following propositions in the place of the above theorems and lemma. They are shown by using Bestvina’s Z-set unknotting theorem.
Proposition

Let A be a closed set in the compact n-dimensional Menger space μ^n such that

(1) A is homeomorphic to the compact $(n - 1)$-dimensional Menger space μ^{n-1},

(2) $\mu^n \setminus A = U_1 \cup U_2$, $U_1 \neq \emptyset$, $U_2 \neq \emptyset$ and $U_1 \cap U_2 = \emptyset$, and

(3) $U_1 \cup A$ and $U_2 \cup A$ are n-dimensional Menger manifolds and A is a Z-set in $U_1 \cup A$ and in $U_2 \cup A$.

Then $U_1 \cup A$ and $U_2 \cup A$ are homeomorphic to μ^n.
Prpopsition

Let A_1 and A_2 be a closed set in the compact n-dimensional Menger space μ^n such that

1. A_1 and A_2 are homeomorphic to the disjoint union of two compact $(n - 1)$-dimensional Menger space μ^{n-1},

2. $\mu^n \setminus A_i = U_{i1} \cup U_{i2} \cup U_{i3}$ (disjoint union of nonempty open sets; $i = 1, 2$) and

3. $\overline{U_{i1}}, \overline{U_{i2}}$ and $\overline{U_{i3}}$ are n-dimensional Menger manifolds and $A_i \subset \overline{U_{i2}}$ is a Z-set as well as $A_i \cap \overline{U_{i1}} \subset \overline{U_{i1}}$ and $A_i \cap \overline{U_{i3}} \subset \overline{U_{i3}}$.

Then any homeomorphism $A_1 \rightarrow A_2$ extends to a homeomorphism $h : \mu^n \rightarrow \mu^n$ such that $h(U_{1j}) = U_{2j}$ after changing the indices i_1 and i_3 if necessary.
Lemma

Under the assumption of the former Proposition for any compact set K in U_1 and any positive real number ε, there is a homeomorphism $\varphi_{K,\varepsilon}$ of μ^n such that $\varphi_{K,\varepsilon}|(U_2 \cup A) = \text{id}_{U_2 \cup A}$, $\text{diam}(\varphi_{K,\varepsilon}(K)) \leq \varepsilon$.